

End-to-End E-se rvice Transaction and Conve rsation
M anage m e nt th rough Distributed Corre lation

Ak h il Sah ai1, Jinsong Ouyang2, Vijay Mach iraju1, Klaus W urste r2
Softw are Te ch nology Laboratory
H P Laboratorie s Palo Alto
H PL-2000-145
Nove m b e r 7th , 2000*

end to end ,
transaction,
conve rsation,
E-se rvice ,
m anage m e n t,
W e b , Inte rn e t

W ith th e w ide spre ad de ploym e n t of Inte rn e t, E-se rvice s are
b ecom ing pre vale n t. E-se rvice s are b e ing cre ated in th e form of
portals and e -busine ss site s. Th e y inte ract am ongst th e m se lve s
to provide a range of functionality to clie n ts. E-se rvice s th us
undertak e static com position . Th e re is an incre asing trend
tow ards dynam ic com position, w h e re e -se rvice s ch oose
dynam ically th e ir trading partn e rs. As th e se
e -se rvice s are b e ing de ployed by diffe re n t e n te rprise s, th e y are
distributed and fe d e rated in nature . Th e y also h ave varied
im ple m e n tations. In addition, th e se e -se rvice s undertak e
conve rsations th at involve m ultiple inte ractions b etw e e n e -
se rvice s, w h ich is asynch ronous and ofte n asym m e tric in
nature . End-to-End m anage m e n t of e -se rvice conve rsations and
th e reby th e ir transactions is th e re fore a ch alle n ging
task . A distributed corre lation approach is pre se n ted th at
e n able s end to end corre lation of conve rsations and
transactions spanning m ultiple e -se rvice s in a distributed and
de ce n traliz e d m ann e r. Th e d istributed corre lation m e ch an ism
obviate s th e n e e d of a ce n tral corre lation e ngine as th e
corre lation data is se n t along w ith th e docum e n ts e xch anged
am ongst th e e -se rvice s.

* Inte rnal Accession Date Only Approved for Exte rnal Publication
1 Η P Laboratorie s Palo Alto
2 H P Open Vie w Business Unit
 Copyrigh t H e w le tt-Pack ard Com pany 2000

Abstract: With the widespread deployment of Internet, E-services
are becoming prevalent. E-services are being created in the form
of portals and e-business sites. They interact amongst themselves
to provide a range of functionality to clients. E-services thus
undertake static composition. There is an increasing trend
towards dynamic composition, where e-services choose
dynamically their trading partners. As these e-services are being
deployed by different enterprises, they are distributed and
federated in nature. They also have varied implementations. In
addition, these e-services undertake conversations that involve
multiple interactions between e-services, which is asynchronous
and often asymmetric in nature. End-to-End management of e-
service conversations and thereby their transactions is a therefore
a challenging task. A distributed correlation approach is
presented that enables end to end correlation of conversations and
transactions spanning multiple e-services in a distributed and
decentralized manner. The distributed correlation mechanism
obviates the need of a central correlation engine as the correlation
data is sent along with the documents exchanged amongst the e-
services.

A. INTRODUCTION

An e-service is a service available via the Internet that
completes tasks, solves problems, or conducts
transactions. These e-services are accessible on the
Internet at a particular Uniform Resource Locator. An e-
service may depend on other e-services. These e-
services are termed composite e-services. This
composition could be static or dynamic in nature.

Figure 1. E-services undertake conversations

1 HP Laboratories Palo-Alto

2 HP OpenView Business Unit

These e-services are federated in nature as they interact
across management domains and enterprise networks.
Their implementations could be vastly different in
nature. They could be based on CORBA [4], BizTalk
[3], COM, E-speak [2] or on other platforms. The
diversity in their implementations makes it difficult to
manage them. They also need to agree upon document
exchange protocols to communicate and interoperate
with each other. These E-services undertake
conversations [5, 8] in particular agreed upon protocols
like CBL, cXML, EDI etc. Every conversation consists
of multiple exchange of XML documents, which are
termed interactions, that involves exchange of
documents. A conversation in the simplest case consists
of a transaction. A conversation can in effect contain
multiple or no transactions.

Management of E-services is a challenging task because
of the varied, federated, decentralized and distributed
nature of e-services. As a single transaction spans
multiple e-services it is difficult to undertake end to end
e-service management in a distributed and decentralized
manner.

Motivations for end to end e-service management arise
from the perspective of both clients and service
providers. Clients are interested in tracking their
interactions and in understanding the e-service process
flow internals. This enables the client to seek some
insight to the actual e-service flow. Service providers
that are using other services to provide composite
services would like to know how the component services
are behaving. By studying and observing their behavior
a composite e-service would be able to optimize itself by
either changing its component sub services or by
instructing the existing component sub services to
improve performance.

B. INTERACTIONS BETWEEN E-SERVICES

A typical e-service would get an http request from the
parent e-service (if it itself is not the root service) or an
ultimate consumer. The request is routed from one of the
webserver in the webserver farm to one of the
application modules in the application server farm.
Thereafter, business logic is applied to the request and a
new request can be directly sent to sub e-services

Akhil Sahai1, Jinsong Ouyang2, Vijay Machiraju1, Klaus Wurster2

 E-services Solutions and Management Department , HP Laboratories
 1501 Page Mill Road, Palo-Alto, CA = 94034

 End-to-End E-service Transaction and Conversation
 Management through Distributed Correlation

E-Service

E-Service

E-Service

E-Service

conversations

conversations

conversations

through an http request at this level. The response from
the sub e-service is expected at the listener (attached to
the web server farm) that is waiting to receive
documents.

Figure 2. E-Service interactions

Once the corresponding sub e-service responds with a
document the response is sent to the business logic,
which in turn sends a response to the parent e-service.
The communication pattern can vary depending on the
implementation. For example, the application logic can
send an immediate response to the parent e-service
before receiving response from the sub e-service. The
final response may be sent later. Also, the final response
can be sent directly to the parent e-service by the sub e-
service, instead of being routed through the business
logic. In addition the format of communication is not
symmetric in the e-services world. An E-service request
may not always have a matching response. A single e-
service request can have multiple responses.

As there is no single point of control it is difficult to
monitor the request and responses going into and
coming out of an e-service and correlate them without
knowing the business logic of the E-service. E-service
conversation and transaction level correlation would
therefore need intrusive instrumentation.

Application Response Measurement (ARM) [7] is a
standard in intrusive instrumentation of applications.
Although ARM cannot be directly applied to e-service
management domain it is interesting to understand the
functioning of ARM. This will enable an understanding
of the proposed distributed correlation approach.

C. ARM OVERVIEW

ARM provides APIs that can be used to delimit sections
of application code base to monitor time spent in those
sections. These APIs correspond to starting and stopping
of code sections and assigning handles to them for
manipulation by the local ARM Agent.

Figure 3. Usage of ARM

ARM 2.0 API also adds interesting functionality in the
form of correlation and furnishing of application data in
the form of data buffers that are maintained by the ARM
library. The correlation data is sent to a central
correlation application that undertakes the task of
linking up the transactions with their component
transactions.

Figure 3. Correlation in ARM

An E-service on the other hand undertakes conversations
with other e-services, which involves multiple
interactions (exchange of documents). These e-services
are federated and distributed with varied
implementations. In addition, their interactions are
asymmetric and asynchronous in nature. On the other
hand ARM assumes a centralized correlation
application. A concern with ARM when tracing any
application flows is overwhelming the correlation
application and/or the network with the volume of data
collected at the agent, sent to the correlation application,
and processed. ARM is also ill suited to the
asynchronous and asymmetric interaction model that e-

Parent E-Service

Web Server
 Farm

Application Server

Business Logic

Business Logic

http

response

request

request

response

Sub E-Service

E-Service

services operate in. ARM is also designed to maintain
transaction level data while e-services need conversation
monitoring.

D. E-SERVICE MANAGEMENT THROUGH
DISTRIBUTED CORRELATION

At any given instant of time e-services form a tree or a
directed acyclic graph with e-services at various nodes
and conversation related interactions (document
exchanges) as the branches (refer figure 1).

As these DAGs are created either statically or
dynamically and conversations/transactions are
performed management information can be exchanged
amongst these e-services. We term our protocol as the
MI protocol (Management Information Protocol) a.k.a.
my protocol. This Management Information (MI) would
be exchanged amongst these e-services. The MI
structure contains two types of data at every level: the
correlator and the management information object
(MIO) a.k.a. my Objects. As an e-service conversation
can go across multiple e-services, the correlation
information (correlator) is needed to track a
conversation and correlate the management data
collected at each participating e-service. As the
conversations are performed the MI structures would be
correlated and sent back along with the response
documents. MIs at every level are all collated into a
single MI structure finally in the response to the parent
e-service. In other words, when an e-service sends its
parent a response at the middle or the end of its
conversation, the piggybacked MI contains the sub MIs
relative to the sub e-services involved in the
conversation.

The biggest problem in providing such a correlation
technique is the fact that the request and response
documents are usually different documents. The MI
library locally maintains the correlation information and
updates this in the header of the documents provided to
it. In order for this scheme to work it would need
cooperation from the e-services to provide the MI
library with its document (it receives and intends to
send) and uses the documents (with modified header)
returned by the MI library instead.

The MI structures are created by default by the MI
library and finally the document received by the parent
e-service would contain the full correlator containing the
transaction flow information.

E-services at each level can further enrich the data
collection by agreeing on a certain ESSMIO (E-service
specific MIO) defined in a particular schema that would
enable the collaborating e-services to furnish business
logic data (e.g. the number of book buy requests
received etc). The default MI structure contains the
correlator and a certain set of predefined management
information data as described in section G.

1st. MI APIs

An e-service conversation/transaction usually starts with
a request from a consumer or a parent e-service, and
ends with a response or a new request to another e-
service. In between, one or more of the following can
occur, depending on how a conversation is defined and
implemented.
• The e-service replies with an immediate response to

a request (which will be an http response). The
actual business level reply is sent later
asynchronously;

• The e-service can receive one or more subsequent
requests;

• The e-service can send one or more requests to one
or more of its sub/external e-services;

• The e-service can receive one or more responses
from its sub/external e-services.

To manage an e-service conversation with the above
communication pattern, two issues must be addressed.
First, the communication between e-services is
asymmetric. That is, one or more responses can
correspond to one request, or vice versa. Furthermore,
an e-service can send a response directly to the ultimate
requester, instead of its parent. Second, the
request/response documents to be sent/received by an e-
service can be handled by different threads/components
while each thread/component handles the documents
relative to different conversations. To address the two
issues, some form of correlation is needed, and we
propose a mechanism and an API on top of it for
generating, exchanging, and syndicating MI structures at
cooperating e-services. As a result, an e-service, when
receiving a request/response, can associate it with a
specific conversation, and from management point of
view find out which response corresponds with which
request.

MI APIs enable getting and setting of Management
Information Objects.

Two types of information are collected from e-services.
One type is descriptive information, which contains the
e-service and transaction definitions. The other is
management information, which contains the data for
each instance of a conversation. The management data is
part of the MI definition, which will be described in the
following section.

Descriptive information is provided in the class
MITranRegistration. An e-service, when getting started,
initiates an instance of this class and calls registration
method, MI_register_transaction, to define the mapping
from a universally unique transaction class ID to a name
pair (service, transaction). There are two versions of
MI_register_transaction, depending on whether the
transaction ID is provided as a parameter, or generated
by the MI library. The MI library maintains a list of
registered transactions. When the method
MI_register_transaction is called, a new entry will be
added in the list.

public class MITranRegistration extends Object {
// Public Constructors

public MITranRegistration();
// Public Instance Methods

public short MI_register_transaction(
String service_URI,
String tran_name,
byte[] tran_id;
int flags);

public byte[] MI_register_transaction(
String service_URI,
String tran_name,
int flags);

// misc …
}

Management information is provided in the class
MIServiceTran. This class represents e-service
transactions when they execute. An e-service creates as
many as instances it needs. This would typically be at
least as many as the number of transactions that can be
executing simultaneously. An e-service would typically
create a pool of MIServiceTran objects, take one from
the pool to use when a transaction starts, and put it back
in the pool after the transaction ends for later reuse.
Internally, each entry in the list of registered transaction
has a list of transaction instances. Each entry contains
the MI structure of a specific transaction instance. When
a new instance of a transaction class is started, a new
entry will be allocated and added in the corresponding
instance list. The contained MI structure will be
updated at each stage of the transaction. The maximum

length of each transaction instance list depends on the
system configuration. The definition of the class is as
follows.

public class MIServiceTran extends Object {
// Public Constructores
 public MIServiceTran();
// Public Instance Methods
 public Policy MI_getPolicy

 (Document document
int doc_type);

 public long MI_start(byte[] tran_id,
long ptran_handle,
ESSMIO essmi_object,
int flags);

 public long MI_start(byte[] tran_id,
long ptran_handle,
long tran_handle,
ESSMIO essmi_object,
int flags);

public long MI_update(long tran_handle,

 ESSMIO essmi_object,
 int flags);

 public Document MI_sendReq
 (Document document,

int doc_type,
long tran_handle,
Policy req_policy,
ESSMIO essmi_object,
int flags);

 public long MI_recvReq
 (Document document,

int doc_type,
long tran_handle,
ESSMIO essmi_object,
int flags);

 public Document MI_sendRep
 (Document document,

int doc_type,
long tran_handle,
ESSMIO essmi_object,
int flags);

 public long MI_recvRep
 (Document document,

int doc_type,
long tran_handle,
ESSMIO essmi_object,
int flags);

 public long MI_stop(long tran_handle,
int tran_status,
ESSMIO essmi_object,

 int flags);

// misc for getting MIO and ESSMIO…
}
If a transaction is due to a request (i.e., a XML
document) from a parent e-service or a consumer,
MI_getPolicy is invoked to retrieve from the document
the policy containing the information about how the
service request should be handled from the client’s
perspective. Method MI_start is used to start a
transaction. There are two versions of MI_start,
depending on whether a transaction handle is provided
by the user or generated by the MI library. The other
parameters to this method are the transaction class ID,
the parent transaction handle, and the ESSMIO. The
transaction ID is the type of transaction this transaction
instance (the transaction handle) belongs to. The parent
transaction handle associates this transaction with its
parent transaction if any. The ESSMIO is used to
contain the necessary e-service specific management
information for this transaction, if any.
If the transaction is due to an external service request, it
calls method MI_recvReq by providing the transaction
handle and the received document. MI_recvReq
retrieves the MI and ESSMIO trees from the document
header, and creates a new MI structure containing the
correlator and management information for this
transaction instance. Then MI_recvReq creates a new
MI/ESSMIO tree by appending the transaction’s
MI/ESSMIO to the MI/ESSMIO tree retrieved from the
request, and associates the paths with the transaction
instance. The resulting MI and ESSMIO trees are used
to identify this transaction instance in the context of the
containing e-service conversation and present the
corresponding management statistics. The correlator for
a transaction instance is made unique by the
combination of
• The transaction class ID
• The transaction handle, an incremented integer
• The interaction handle, an incremented integer,

corresponding to an interaction with a sub e-service

The IDs and handles of transactions participating in a
conversation are combined to identify the conversation.
The interaction handles of a specific transaction instance
are used to identify the sub e-services’ contributions to
the transaction’s statistics.

As described before, an e-service can receive a
subsequent request from its parent during a transaction.
When this occurs, MI_recvReq is invoked by providing
the same transaction handle, the new received document,
and the updated ESSMIO of the transaction if any. Then

MI_recvReq is executed to update the transaction’s
context (i.e., its MI and ESSMIO trees) with the
retrieved and passed MIs and ESSMIOs.

Method MI_sendReq is called when an e-service needs
to send a service request to a sub e-service in one of the
following scenarios: after receiving a request from its
parent (MI_start and/or MI_recvReq was called), or
after receiving a response from a sub e-service
(MI_recvRep was called). The parameters to this
method are the document to be sent, the transaction
handle, and the updated ESSMIO if the transaction’s e-
service specific management information has changed.
A policy can optionally be provided to indicate how the
request should be serviced. The transaction handle is
used to locate the MI and ESSMIO trees of the
transaction. If a policy and/or an updated ESSMIO is
supplied, MI_sendReq will use them to update the
transaction’s MI structure and/or ESSMIO accordingly.
MI_sendReq is invoked to perform two tasks: first, the
MI library records the start of a new service interaction
for this transaction instance; second, generates the
proper MI and ESSMIO trees for the outgoing
interaction, which should include the MIs/ESSMIOs for
this transaction instance and all of its predecessors, and
exclude those relative to the sub e-services the
transaction previously interacted with. Then
MI_sendReq inserts the generated MI and ESSMIO
trees into the header the document to be sent, and
returns the document to the caller.

When a transaction receives a response from an external
e-service, it calls MI_recvRep to mark the end of the e-
service interaction. MI_recvRep is executed to retrieve
the MI and ESSMIO trees containing the latest
conversation path and the management statistics relative
to the latest interaction. Then MI_recvRep uses the
transaction handle to locate the transaction’s entry,
marks the end of the interaction, and uses the retrieved
MIs and ESSMIOs and the passed ESSMIO to update
the transaction’s statistics.

An e-service may send back some preliminary or final
result before or at the end of the transaction. If this
occurs, the current conversation path and its statistics at
each participating e-service tier need to be sent back
together with the response document. Also, the
transaction’s context needs to be updated so that the
subsequent response will not contain the statistics and e-
service interactions prior to this point. To achieve this,
method MI_sendRep is invoked by providing the
document to be sent, the transaction handle, and the
transaction’s ESSMIO if updated. With the transaction

handle, MI_sendRep locates the transaction’s context,
and updates and summarizes its statistics. Then it
generates the MI and ESSMIO trees containing the
transaction’s statistics and the breakdowns at each
participating e-service tier. Finally MI_sendRep inserts
the generated MI and ESSMIO trees into the header of
the response document before it is sent back.

MI_end is used to inform the MI library the end of a
transaction, and summarizes its statistics. It also informs
the MI library the status of this completed transaction. If
the application logic finishes successfully, the status is
set to MI_GOOD. If the service request is not satisfied
(e.g., could not reserve a hotel room due to no vacancy),
the status is set to MI_ABORTED. The status is set to
MI_FAILED if there is an application or system failure
(e.g., a sub service is unavailable).

2nd. Usage of MI APIs

The APIs provided by the MI library can be classified
into three categories: registration, demarcating business
transactions, and tracking interactions/conversations
with the outside world. When an application/e-service
starts, it calls MI_register_transaction to register the
types of transactions it provides.

During runtime, it calls MI_start to begin an instance of
a registered transaction, and calls MI_stop to end the
transaction instance. In between the application/e-
service, calls MI_sendReq, MI_recvReq, MI_sendRep,
or MI_recvRep when sending or receiving a request or
response from the outside world.

MI_register_transaction(cli_URL, t00, ID00)

h00 = MI_start(ID00, h00, NULL, 0)
sendOrderReq = MI_sendreq(OrderReq,
 SOAP, h00)
Send the order request to the server

MI_stop(h00, MI_GOOD, NULL,0)

 Client

Receive the confirmation from server
MI_recvrep(OrderConfirm, SOAP, h00, NULL, 0)

MI_register_transaction(ser_URL, t10, ID10)

h10 = MI_start(ID10, NULL, NULL, 0)
MI_recvreq(sendOrderReq, SOAP, h10, NULL, 0)

MI_Stop(h10, MI_GOOD, NULL, 0)

Send the confirmation to the client

 Receive a request for placing an order

Performs some actions to place the order

 OrderConfirm = MI_sendrep(Confirm, SOAP, h10)

MI

Request

MI

Confirm

Server

Figure 4. A service request for placing an order

Figure 4 shows an example where the client sends a
service request for placing an order, and the server
replies with a confirmation after processing the request.

A more realistic example would a travel e-service that
interacts with air flight, hotel, and car rental e-services.
The interactions between these e-services are shown in
figure 5. The travel e-services undertakes conversations
and exchanges documents with Airline e-service, Hotel
E-service and Car e-service.

Travel

Car

Hotel

Air

Figure 5. The interactions between a travel e-service, its
consumer, and its sub-e-services

Figure 6 illustrates how the MI API is used to
instrument the travel and its sub e-services. Note that,
though the conversation in the example is symmetric,
the MI library and its API also support asymmetric
conversation model. Moreover, a transaction can go
across different threads/components. In other words,
MI_start, MI_recvReq, MI_sendReq, MI_sendRep,
MI_recvRep, and MI_stop for one transaction can be
called by different threads/components.

MI_register_transaction(ts_URL,Travel, ID00)
MI_register_transaction(ts_URL, Airline, ID01)
MI_register_transaction(ts_URL, Hotel, ID02)
MI_register_transaction(ts_URL, Car, ID03)

h00 = MI_start(ID00, NULL, NULL, 0)
MI_recvreq(document, SOAP, h00, NULL, 0)

h01 = MI_start(ID01, h00, NULL, 0)
h02 = MI_start(ID02, h00, NULL, 0)
h03 = MI_start(ID03, h00, NULL, 0)

sendAirReq = MI_sendreq(AirReq, SOAP, h01)
Send the air request to the airline service
sendHotelReq = MI_sendreq(HotelReq,SOAP, h02)
Send the hotel request to the hotel service
sendCarReq = MI_sendreq(CarReq, SOAP, h03)
Send the Car request to the car rental service

MI_stop(h01, MI_GOOD, NULL, 0)
MI_stop(h02, MI_GOOD, NULL, 0)
MI_stop(h03, MI_GOOD, NULL, 0)
MI_stop(h00, MI_GOOD, NULL,0)

Perform some actions and start three sub
transactions and send requests to air, hotel, and
car rental services

Receive a flight scedule from air service
MI_recvrep(AirOffer, SOAP, h01, NULL, 0)
Receive a reserved hotel from hotel service
MI_recvrep(HotelOffer, SOAP, h01, NULL, 0)
Receive a rental car from car rental service
MI_recvrep(CarOffer, SOAP, h01, NULL, 0)

perform some actions prepare to the itinerary, and
then stop the transactions
sendItinerary = MI_sendrep(Itinerary,SOAP, h00)

Send the travel itinerary to the customer

 Receive a travel request from a customer

 Travel Service

AirPayment = MI_sendreq(Payment1, SOAP, h01)
Send the flight payment to the airline service
HotelPayment=MI_sendreq(Payment2,SOAP, h02)
Send the hotel payment to the hotel service
CarPayment = MI_sendreq(Payment3,SOAP, h03)
Send the car payment to the car rental service

Receive the flight confirmation from airline service
MI_recvrep(AirConfirm, SOAP, h01, NULL, 0)
Receive the hotel confirmation from hotel service
MI_recvrep(HotelConfirm, SOAP, h01, NULL, 0)
Receive the car confirmation from car service
MI_recvrep(CarConfirm, SOAP, h01, NULL, 0)

MI_register_transaction(as_URL, flight, ID10)

h10 = MI_start(ID10, NULL, NULL, 0)
MI_recvreq(sendAirReq, SOAP, h10, NULL, 0)

MI_Stop(h10, MI_GOOD, NULL, 0)

Confirm the flight and send back the confirmation

 Send the flight confirmation to the travel service

 Receive a flight request from the travel service

Perform some actions and select a flight that fits in
with the customer's requirement. Then send the offer
back to the travel service

Airoffer = MI_sendrep(offer, SOAP, h10)
Send back the offer
MI_recvreq(AirPayment, SOAP, h10, NULL, 0)

AirConfirm = MI_sendrep(AirCon, SOAP, h10)

Air ServiceMIs

AirReq

MIs

AirOffer

MIs

Payment

MIs

Confirm

MI_register_transaction(hs_URL, hotel, ID20)

h20 = MI_start(ID20, NULL, NULL, 0)
MI_recvreq(sendHotelReq, SOAP, h20, NULL, 0)

MI_Stop(h20, MI_GOOD, NULL, 0)

Confirm the hotel and send back the confirmation

 Send the hotel confirmation to the travel service

 Receive a hotel request from the travel service

Perform some actions and select a hotel that fits in
with the customer's requirement. Then send the offer
back to the travel service

Hoteloffer = MI_sendrep(offer, SOAP, h20)
Send back the offer
MI_recvreq(HotelPayment, SOAP, h20, NULL, 0)

HotelConfirm = MI_sendrep(HotelCon,SOAP, h20)

MIs

HotelReq

MIs

HotelOffer

MIs

Payment

MIs

Confirm

MI_register_transaction(cs_URL, car, ID30)

h30 = MI_start(ID30, NULL, NULL, 0)
MI_recvreq(sendCarReq, SOAP, h30, NULL, 0)

MI_Stop(h30, MI_GOOD, NULL, 0)

Confirm the car and send back the confirmation

 Send the car confirmation to the travel service

 Receive a car rental request from the travel service

Perform some actions and select a car that fits in with
the customer's requirement. Then send the offer back
to the travel service

Caroffer = MI_sendrep(offer, SOAP, h30)
Send back the offer
MI_recvreq(CarPayment, SOAP, h30, NULL, 0)

CarConfirm = MI_sendrep(CarCon, SOAP, h30)

MIs

CarReq

MIs

CarOffer

MIs

Payment

MIs

Confirm

Hotel Service

Car Service

Figure 6. An instrumented travel e-service and its sub e-services

E. MI DATA FORMAT DEFINITION

An MI structure contains a correlator and a management
information object (MIO), and the MIO may consist of a
policy and a set of management parameters. Figure 7
shows the MI structure. We have described the format of
the correlator and its use for measuring end-to-end e-
service conversation and the breakdowns at each
participating e-service tier. In this section, we derive a
set of management parameter [6] that should be included
in the MIO, then present the MI schema [1].

MI

Correlator
MIO

Policy Management
parameters

Figure 7. The MI structure

The management parameters in MIOs are classified into
the following types. Note that the first type of parameter
is provided by the client and sent to the server, and the
other types of parameters are provided by the server and
sent to the client.
• SLA related policies. This type of parameter

presents the expectation from a consumer or an e-
service how the service request should be handled.
For instance, a request can be prioritized as
“normal”, “silver”, “gold”, or “platinum”, and is
expected to be serviced within a certain amount of
time under certain constraints (SLO).

• E-service health index. This indicates the current
status of an e-service. Possible values are: up, down,
congested, halted, restarting, and unknown.

• Availability. This indicates an e-service’s
availability, in terms of downtime per a certain
period of time. Downtime is the duration of e-
service unavailability due to system or application
faults.

• Reliability. The reliability of an e-service can be
measured in terms of the fault rate. That is, the
number of faults per the number of handled service
requests.

• Performance. Performance parameters include
response time, response status, throughput/rate,
aborted count/rate, and failed count/rate. Response
time is the duration from the sending of a request to
the receiving of a response. Response status
indicates if a service request has been done, aborted,
or failed. Throughput/aborted/failed rate is the

number of committed/aborted/failed services per the
total number of service requests.

• Faults. A fault parameter contains the information
about a fault when a request is serviced (e.g., fault
ID, fault description, time of the fault occurred).

The above parameters form a base for the management
of e-service conversations. Depending on how much
information one e-service is willing to expose to
another, some of the raw parameters can be put into
MIOs the aggregated information can be calculated
based on the raw parameters, and need not be put into
MIOs. For instance, the MI library can get a throughput
rate of a sub e-service by using the formula: the number
of successful responses divided by the number of total
responses from the sub e-service.

By aggregating and analyzing MIOs, the MI library can
provide the necessary information that higher level
management agents can use to perform the following
management tasks. Firstly it can be used for end-to-end
conversation management. It enables an e-service or a
consumer to track its interactions with other e-services
and the e-service flow. Secondly, it helps an e-service
perform e-e-service ranking and selection. An e-service
can rank its external e-service providers based on their
performance, availability, and reliability. The latest
statistics of the external e-services can also help the e-
service choose the right e-service supplier. Thirdly it
enables service optimization. By identifying
performance bottlenecks and service failure points, the
management agent can reconfigure and/or restart the e-
service to achieve better performance and availability. It
also helps in e-service evolution. An e-service provider
usually provides different types of services. The
information provided by the MI library could be used to
monitor the access patterns for the provided services,
and help make decisions about whether or how to evolve
the non-performing services to generate more revenue.
Lastly it enables consumer tracking. The information
can be used to find out the consumer pattern so that
actions can be taken to guarantee the QOS for valued
consumers.

3rd. The MI schema

Each MI structure contains a correlator identifying the
context of a transaction in a conversation. It is
transparently handled by the MI library. Its schema is:

<complexType name = “CorrelatorType”>
<element name = “TranID” type = ”string”/>
<element name = “TranHandle”

type = “decimal”/>

<element name = “InteractionID”
type = “decimal”/>

</complexType>

A policy sets a priority for a service request. It can also
set a set of QoS paramenters (SLOs) indicating how and
when the request should be serviced.

<complexType name = “PolicyType”>
<element name = “Priority” type = “decimal”

minOccurs = “0” maxOccurs = “1”>
<element name = “SLO” type = “SLOType”

minOccurs = “0” maxOccurs = “unbounded”>
</complexType>

<complexType name = “SLOType”>
<element name = “Term” type = “string”/>
<element name = “Constraint” type=“string”/>
<element name = “Threshold” type=“string”/>

</complexType>

Currently the measurement data in each MIO contain the
identity (i.e., URI for a consumer or service provider),
and performance, availability, and reliability statistics.

<complexType name = “MeasurementType”>
<element name = “Identity” type = “IDType”/>
<element name = “Performance”

type = “PerfType”/>
<element name = “Availability”

type = “AvailType”/>
</complexType>

<complexType name = “IDType”>
<element name = “From” type = “serviceURI”/>
<element name = “to” type = “serviceURI”/>

</complexType>

<complexType name = “PerfType”>
<element name = “RespTime” type=“decimal”/>
<element name = “StartTime” type=“decimal”/>
<element name = “StopTime” type=“decimal”/>
<element name = “TranStatus”

type = “decimal”/>
</complexType>

<complexType name = “AvailType”>
<element name = “ReqCount” type =“decimal”/>
<element name = “ComCount” type =“decimal”/>
<element name = “FailCount” type=“decimal”/>
<element name = “AbortCount”

type = “decimal”/>
</complexType>

The MIO consists of Policy and MeasuredData. Its schema is
as follows.

<complexType name = “MIOType” >
<element name = “Policy” type=“PolicyType”

minOccurs = “0“ maxOccurs = “1”>
<element name = “MeasuredData”

type = “MeasurementType”
minOccurs = “0“ maxOccurs = “1”>

</complexType>

The Correlator and MIO construct a MI structure that is
used to identify a transaction’s local context and
statistics.

<complexType name = “MIType” >
<element name = “ParentCorrelator”

type = “CorrelatorType”
minOccurs = “0” maxOccurs = “1”>

<element name = “Correlator”
type = “CorrelatorType”/>

<element name = “MIO” type=“MIOType”/>
</complexType>

To identify a service request in the context of a
converstaion, an e-service needs to get the MI structures
of its predecessors. To know how its sub e-services
perform, an e-service needs to get the MIs of the
participating e-services. MITree is defined to serve the
need. This is the structure piggybacked on the
documents exchanged between e-services.

<element name = “MITree”
type =“MITreeType”/>

<complexType name = “MITreeType” >
<element name = “predecessor”

type = “MIType”
minOccurs = “0“ maxOccurs = “unbounded”>

<element name = “MI”
type = “MIType”/>

<element name = “Child”
type = “MIType”

minOccurs = “0“ maxOccurs = “unbounded”>
</complexType>

F. EVALUATION OF THE DISTRIBUTED
CORRELATION APPROACH

This approach has multiple advantages and certain
disadvantages
4th. Advantages
♦ Information containment at every level
e-services have control over the information they reveal
to other e-services. Depending on the negotiated
manageability they reveal information to other e-
services.
♦ Uniformizing different e-service implementations
Irrespective of different and varied implementation of e-
services, if they agreed on certain data formats for MI
structures to be exchanged these e-services could be
managed
♦ Policy specified by requester
The requesting e-service can specify a management
policy for handling of a conversation document in the
MI structure. This could be ignored or taken into
account by the receiving e-service and will enable it to
handle them differently according to the policy specified
in the MI structure of the received document. The E-

service specific MIOs can be used to quantify these
service level expectations
♦ Saving on http connection by piggybacking
MIs and ESSMIOs are sent back piggybacking on the
responses and no special connections are made to a
management system at every e-service level. There is no
central correlation agent who is entrusted with the job of
maintaining the correlations. The data collection is
decentralized.
♦ Support for multiple conversation formats
This protocol is capable of handling symmetric,
asymmetric and synchronous, asynchronous
conversations.

5th. Disadvantages

There are also certain disadvantages to this approach
♦ The MI structures are sent back with the response

documents that can increase their length depending
on the level of nesting allowed.

♦ E-services do not have a global picture till the
response is sent back. In case the response is not
sent back immediately the management information
is not conveyed back to the previous e-service till
the whole chain of transactions is complete.

G. ACKNOWLEDGEMENT

We would like to thank Sekhar Sarukkai for having
contributed to the initial concept of distributed
correlation.

H. CONCLUSION

End to end E-service transaction and conversation
management is a challenging task. The distributed
correlation approach enables this task in a distributed
and decentralized manner. The data collected by this
approach can be used for business logic optimization
and e-service management.

I. REFERENCES

[1] XML at World Wide Web (WWW) Consortium.
 http://www.w3.org/xml

[2] Hewlett-Packard Company. E-Speak Architecture Specification. Version
 Beta2.2. December 1999.
 http://www.e-speak.net/library/pdfs/E-speakArch.pdf

[3] D. Rogers. BizTalk service framework. Microsoft Corporation.
 http://www.biztalk.org

[4] Object Management Group. The common object request broker:
 Architecture and specification. Revision 2.0, July 1995
 http://www.omg.org

[5] A. Dan and F. Parr. An Object implementation of network centric
 business service application (NCBSAs): conversational service
 transactions, service monitor, and an application style. OOPSLA’97,
 Business Object Workshop III.

[6] J. T. Park and J. W. Baek. Web-based Internet/Intranet service
 management with QoS support. IEICE Trans. Commun., e82-b:11,
 1999.

[7] ARM Working Group. Application Response Measurement API Guide.
 1997.
 http://www.omg.org/regions/cmgarmw/index.html

[8] K. Evans, J. Klein, and J. Lyon. Transaction Internet Protocol –
 Requirements and Supplemental Information. 1998.
 http://www.landfield.com/rfcs/rfc2372.html

http://www.w3.org/xml
http://www.e-speak.net/library/pdfs/E-speakArch.pdf
http://www.biztalk.org/
http://www.omg.org/regions/cmgarmw/index.html

	INTRODUCTION
	Interactions between E-Services
	ARM Overview
	E-service Management Through Distributed Correlation
	MI APIs
	Usage of MI APIs

	MI Data Format definition
	The MI schema

	Evaluation of the Distributed Correlation Approach
	Advantages
	Disadvantages

	Acknowledgement
	Conclusion
	ReferenceS

