

Compression of Polynomial Texture Maps

Giovanni Motta, Marcelo J. Weinberger
Information Theory Research Group
HP Laboratories Palo Alto
HPL-2000-143 (R.2)
April 24th , 2001*

image
compression,
texture
mapping, 3D
graphics, JPEG,
JPEG-LS,
polynomial
texture maps

Polynomial Texture Maps (PTM's) are representations of
stationary 3D objects which provide enhanced image quality
and improved perception of the object surface details at the cost
of increased storage requirements. In this paper, we investigate
several compression schemes for PTM's, that either preserve
every feature of the original texture map (lossless compression),
or allow for a small reconstruction error (near-lossless and
lossy compression).

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

2

1. Introduction

Polynomial Texture Maps (PTM’s) were introduced by Malzbender et al. in [1] as an extension
to conventional texture mappings. PTM’s represent stationary 3D objects while providing
enhanced image quality and improved perception of the object surface details. This
representation is derived from a series of pictures of the same object taken with a conventional,
stationary, digital camera under slightly different conditions (light direction, focus plane,
illumination). Since both the camera and the object are stationary, the set of pixels in a common
location carries information on the object surface and its behavior under changes in illumination.
Combining the information of the pixels in corresponding locations (x, y) in the sequence of
images, intensity dependencies on the light direction (lx, ly) are modeled with second-order bi-
quadratic polynomials. For example, for the surface luminance L,

L(x, y; lx, ly) = a0(x, y) lx
2 + a1(x, y) ly

2 + a2(x, y) lx ly + a3(x, y) lx + a4(x, y) ly + a5(x, y) .

One possible approach is to store for each pixel (x, y) the six polynomial coefficients a0.,...,a5
(i.e., its luminance model), in addition to its color intensity values. When reconstructing images
under varying illuminations, the color intensity values are scaled by luminance.

At the cost of increased storage requirements, PTM’s have the advantage that more information
is available for each pixel and this information can be used to enhance the rendering and improve
the visual interpretation of the represented 3D object. Applications in several fields such as
archeology, forensics, medicine, quality control, etc., can take advantage of this representation.
In this paper, we report on an investigation aimed at designing methods for reducing the storage
requirements of PTM’s while either preserving every feature of the original texture map (lossless
compression) or allowing for a small reconstruction error (near-lossless and lossy compression).
When a reconstruction error is allowed, it is important that the most interesting features of the
PTM representation are carefully preserved.

Two different PTM formats were addressed: LRGB and RGB. In LRGB format, each pixel is
represented by 9 values, namely the six polynomial coefficients ai

I, 0 ≤ i < 6, that model its
luminance as a function of the light direction, and the three Red, Green, and Blue (R,G,B) color
components. The richer RGB format uses 18 values that represent three different intensity
models, one for each color component: ai

R, ai
G, ai

B, 0 ≤ i < 6. The polynomial coefficients are
stored after appropriate bias cancellation and scaling, rounded to the nearest integer so that they
always assume values in the alphabet {0, …, 255}. Original coefficients can be reconstructed
(with some loss due to the rounding) as:

afinal = (araw – bias) * scale

More details on these and other PTM formats can be found in [2]. (Following [2], we call
“textel” the set of coefficients that represents a pixel.)

3

Compression Modalities
Three main compression modalities were investigated, each aimed at a different application of
PTM’s:
1. Lossless compression: useful for archiving the maps. When a PTM is compressed in lossless

mode, it is always possible to reconstruct the uncompressed original without any error.
Because of the perfect reconstruction requirement, lossless coding achieves the highest bit
rate among the three methods and the compressed maps are sometimes still too large for low
bandwidth applications.

2. Near-lossless compression: the compression algorithm is allowed to introduce some coding
error so that the absolute difference between each reconstructed pixel and its original value is
bounded by a fixed quantity that is predefined in the coding process. Typical values for the
maximum error range from 1 to 5, depending on the image and on the targeted bit-rate. Near-
lossless compression is useful when a lower bit rate is required but the image quality cannot
be compromised in an unpredictable manner.

3. Lossy compression: this modality achieves the lowest bit rate among the three methods. The
compressed image can still be used for most applications and is in general virtually free from
visible artifacts, but there is no guarantee that the absolute value of the error on each pixel is
limited in a uniform and predictable way. While we distinguish between near-lossless and
lossy compression based on the way the error is introduced, near-lossless is of course a
special case of lossy compression.

2. Description of the Algorithms

Display of each coefficient plane as an image shows that planes look very similar and each plane
preserves most of the characteristics of the object that is represented (see Fig.1 and Fig.2).
Accordingly, we follow an approach common in digital compression of multi-spectral images.
Multi-spectral images consist of several “bands,” each representing a slightly different view of
the same scene. RGB color images are an example of multi-spectral images, in which the bands
are the color components red, green, and blue. A common approach to the compression of this
kind of images consists in the determination of a decorrelation transform that removes the
redundant information common to more than one plane and makes the planes “simpler” and
ready to be compressed individually.
Ideally, in a sequential scheme, the probabilistic model used to compress a plane ought to be
based on all previously encoded information, including neighboring pixels located in reference
planes, as well as causal neighbors in the same plane. However, a two step approach with clear
computational advantages consists of:
a) Inter-plane prediction: given a reference plane, it “guesses” the value of the pixels in the

plane being encoded; and
b) Intra-plane probabilistic modeling applied to inter-plane prediction residuals: builds a

probability model for the residuals by using the values of its (previously encoded) neighbors.
Similar considerations apply to non-sequential schemes (e.g. JPEG compression).

The first step is a preprocessing that applies to all compression modalities. Computing and
executing the decorrelation transform first and compressing its result later, plane by plane, also

4

allows for the use of off-the-shelf general purpose image compression algorithms for the
compression of the individual planes. In general (see, e.g., compression of RGB images [7]), this
two-step approach comes close to the compression achieved by global modeling approaches, and
is thus adopted for PTM’s.

The decorrelation is achieved by deciding for each plane its encoding mode (inter or intra),
determining which reference plane must be used for the prediction (if the mode is inter), and by
ordering the planes in a sequence that is compatible with a causal decoding. Inter-plane
prediction requires the reference plane to be known to the decoder before the inter coded plane it
predicts. To avoid error propagation, when in lossy modalities, the reference plane used in the
prediction must not be the original one but, rather, its lossy decoded version. While the reference
plane can be, in turn, inter or intra coded, at least one plane must be intra coded. The (total)
ordering must be compatible with the partial ordering determined by the modes and by the
reference planes. Coefficient planes are encoded and presented to the decoder according to this
order, so that the decoder, before decoding an inter plane, has complete knowledge of its
reference plane.

Cost Matrix and Optimal Ordering
Unlike in most compression algorithms involving inter-plane decorrelation, for which the
relations between the planes, motivated by physical reasons, are known a priori (e.g., RGB
image coding), such prior knowledge is not available in our framework. Instead, coding mode
decision and coding order are determined on an image-by-image base, by an algorithm that
builds a cost matrix and minimizes the total cost of the compression. The algorithm uses a
fictitious “plane 0,” in which every pixel value equals 0, for the purpose of building the cost
matrix. Predicting a plane i from plane 0 is equivalent to compressing the plane i in intra mode.
Thus, the mode decision is implicit in the cost minimization algorithm. The entry cost(i, j) in the
cost matrix represents the cost (say, in bits) of predicting plane i by using plane j as a reference.
To speed up the matrix construction it is assumed that cost(i, j) = cost(j, i), so that only half of
the matrix must be computed. We generated matrices using various cost functions, such the plain
entropy of the prediction error, prediction error entropy after application of the Median Edge
Detector described in [3], and number of bits generated by an actual compression scheme with
the chosen lossless or lossy encoding. Each cost function represents a trade-off between the
compression achieved and the complexity of computing it.

The decorrelation sequence that minimizes the total cost is determined by interpreting the cost
matrix as an adjacency matrix of a complete graph, and by finding its minimum cost spanning
tree. Plane 0 will be a node of the spanning tree, and we can always assume the tree to be rooted
at 0. Any topological ordering of the spanning tree rooted at 0 is clearly compatible with a
sequential encoding and decoding (a similar approach is proposed in [8] for multispectral
images). Figure 3 depicts a cost matrix, a minimum spanning tree, and a compatible plane
ordering for the LRGB PTM image “trilobite.ptm”.

Transforms
Inter-plane prediction is based on a simple difference between the plane being predicted and a
reference plane. In order to achieve a more effective prediction, one or more transformations,

5

selected in a small set, can be applied to the reference plane before it is used. Two
transformations were determined to be effective in improving the prediction between planes:
a) Plane inversion, computed by complementing the value of each pixel; and
b) Motion Compensated prediction, a translation of the reference plane.

Plane inversion is motivated by the observation that some of the planes look like “negatives” due
to the way the coefficients are generated. Complementing the value of each pixel in those planes,
allows more choices for the possible decorrelation.

Motion Compensation (MC) is a technique widely used in video compression and it is well-
motivated in this particular framework, since PTM images are generated by combining pictures
of an object taken while changing the illumination conditions. Thus, the changes in the direction
of the light result in small “movements” of the object’s edges. It was found that MC of the order
of one pixel is enough to achieve the highest decorrelation. Block-based motion compensation
does not appear to be necessary since, while reducing the energy of the prediction error, it
introduces blocking artifacts that may compromise the performance of the compression of the
prediction error. Motion compensation is performed in two steps: first, we search for the integer
displacement of the reference plane that achieves lowest prediction error; then, we refine the
displacement of ±½ pixel along each coordinate. Half pixel refinement is performed by
interpolating the reference plane and has the advantage of allowing smaller displacements while
limiting the complexity of a full search.

After each plane has been decorrelated, a standard image compression algorithm can be applied
to the planes (if intra coded) or to their prediction error (if inter coded). For our experiments we
used JPEG-LS [3] for lossless and near-lossless compression, and JPEG [4] for lossy
compression. Higher compression ratios in lossy mode, at the cost of increased computational
complexity, can be obtained with the upcoming JPEG2000 standard.

Modulo Reduction
When subtracting a plane from another, the alphabet size for the prediction errors doubles (see
[3] for a discussion on this topic); if the coefficients range between 0 and 255, a difference
between coefficients can assume any value in the range [–255, +255]. In lossless compression,
the reference value is known to the decoder, so it is possible to use modular arithmetic (or other
similar mappings) to bring the alphabet of the prediction error to its original size (this technique
also produces a slight improvement in the compression ratio). However, when an error is added
in the encoding of the prediction error, modular arithmetic may cause overflows that are visible
in the reconstructed image. Overflow errors appear on a limited number of pixels and are
corrected by sending additional side information to the decoder. After the encoding, the
reconstructed plane is compared to the original and if there is any overflow, the position of the
corrupted pixel and its original value are described to the decoder. In near-lossless compression,
overflows are detected by comparing the reconstructed plane with the original; a reconstructed
pixel value that differs from the original by more than the predefined error bound, is an overflow.
With JPEG, errors can be potentially large and their detection is less trivial. However, we are
interested only in the correction of differences that are noticeable in the reconstructed image, so
that comparing the error with a fixed threshold was found to be a good alternative.

6

3. Results

In assessing the compression results, it is important to assess the artifacts present after possible
enhancements of the PTM images. In particular, the so-called “specular enhancement” algorithm
(see [1]), which behaves as a strong contrast enhancement operator, is critical. Because of its
behavior, compression artifacts are usually more noticeable after application of this algorithm.
Since PTM images can be used in different settings and for different purposes, it is not possible
to determine a single objective quality measure that captures the effects of the error introduced
by lossy compression. Thus, visual assessment was the main tool to determine whether the final
quality was acceptable.

Table I shows that the average compression ratio achieved in lossless mode on the set of LRGB
and RGB images that we used for the tests, was 34.98 bits per textel (bpt). This result approaches
the one obtained by a (lossy) vector quantization (VQ) scheme previously proposed to encode
PTM images. Notice that while the palette indices in the VQ scheme are uncoded, further
compression would require a hugely complex reordering of the color palette.

A 30% additional gain can be obtained by using near-lossless compression with a ±1 error bound
(22.22 bpt on the average). By increasing the near-lossless error, higher compression ratios are
achieved. It should be noted, however, that the use of near-lossless JPEG-LS with large error
bounds (larger than 4) and with images that have large uniform areas, can produce a
characteristic striping pattern. A modification of JPEG-LS to limit these errors is under
investigation.

Higher compression ratios are achieved in lossy mode. When using JPEG compression on the
decorrelated planes, a fidelity parameter between 75 (default) and 45, yields average ratios
ranging between 7.81 and 4.44 bpt. Blocking artifacts (typical of low bit-rate JPEG encoding)
are present in some images that have large smooth areas and are thus highly compressible
(around 3 bpt). Those artifacts disappear with a quality factor of 55 or more (corresponding to
5.14 bpt or better). By embedding the upcoming JPEG2000 standard, a further reduction of the
bit-rate might be possible while preserving the final quality.

Clearly, the RGB images in Table I show a significantly higher compression than the LRGB
images (as the original depth is 18 bytes, as opposed to 9). This is explained by a higher impact
of decorrelation, as the use of luminance in the LRGB representation already implies a form of
decorrelation.

While our experiments show that some pairs of planes are strongly correlated across most
images, the transformation that achieves the highest possible decorrelation for each image does
not appear to be a single one. Table II shows the effect of using a fixed decorrelation for every
image. It also shows a comparison between the compression obtained with decorrelation via the
minimum spanning tree on the cost matrix, and the compression achieved by encoding every
plane in intra mode (no inter-plane prediction).

7

4. Issues for Further Investigation

The following is a partial list of subjects that warrant further investigation:

• Encoding of inter-coded and intra-coded planes with different quality factors
The loss introduced in inter-coded and intra-coded planes may affect differently the final
quality of the rendering. Moreover, errors in the coefficients may have different visual
effects. The current implementation of the algorithm uses identical qualities for all the
planes.

• Implementation of other transforms
Physical considerations may provide insight into preferred decorrelation schemes. These may
include multiplicative (rather than additive) factors, logarithmic scales, etc.

• Quality measures
The determination of an objective quality measure, including assessment of the usual MSE
metric and study of the effect of artifacts in near-lossless JPEG-LS and JPEG, may lead to
variants in the compression schemes.

• Inclusion of JPEG2000 image compression
The bit-rates at which JPEG2000 may justify its additional complexity should be determined,
as near-lossless compression tends to be effective at high bit-rates, whereas JPEG’s
performance in the medium range is quite reasonable.

• Various minor improvements
Includes removal of JPEG-LS/JPEG header from the compressed data, and more compact
encoding of side information.

Acknowledgement

Thanks to Tom Malzbender, Dan Gelb, Hans Wolters, and Gadiel Seroussi, for useful
discussions.

8

Figure 1: A PTM image used in the experiments (file “trilobite.ptm”). The image format is
LRGB. Coefficient planes are displayed from left to right and from top to bottom, in the order a0

I,
a1

I, a2
I, a3

I, a4
I, a5

I, followed by the Red, Green and Blue color components.

9

Figure 2: Histograms of coefficient distributions for the PTM file “trilobite.ptm” and the
corresponding entropies (in bpt). The image format is LRGB. Coefficient histograms are
displayed from left to right and from top to bottom, in the order a0

I, a1
I, a2

I, a3
I, a4

I, a5
I, followed by

the Red, Green and Blue color components.

10

0 a0i a1i a2i a3i a4i a5i R G B
0 Inf 138051 145578 134055 125445 129146 148530 151115 153645 149732

a0i 138051 Inf 131061 138048 138050 138050 138048 138067 138058 138067
a1i 145578 131061 Inf 145575 145577 145576 139267 145604 145594 145604
a2i 134055 138048 145575 Inf 134054 134052 134050 134055 134055 134055
a3i 125445 138050 145577 134054 Inf 125444 125444 125444 125440 125444
a4i 129146 138050 145576 134052 125444 Inf 129145 129140 129141 129140
a5i 148530 138048 139267 134050 125444 129145 Inf 144656 148530 144008
R 151115 138067 145604 134055 125444 129140 144656 Inf 79638 99309
G 153645 138058 145594 134055 125440 129141 148530 79638 Inf 98520
B 149732 138067 145604 134055 125444 129140 144008 99309 98520 Inf

Figure 3: Cost matrix, associated minimum spanning tree, and a compatible plane ordering for
the LRGB PTM image “trilobite.ptm”.

11

JPEGLS JPEG
lossless loss = 1 loss = 2 loss = 3 loss = 4 Q = 75 Q = 65 Q = 55 Q = 45 Note

coins 2031567 1241809 986270 851797 740833 386760 283278 215352 173748 RGB
cotton 2106431 1317863 1053185 861544 731712 402618 311089 251826 216530 RGB
mixed 1946743 1204517 975814 843444 753682 434315 350682 295033 257341 RGB
mummy 3586213 2347745 1692872 1238139 966134 596553 452573 363069 316850 RGB
seeds 1441366 949560 814431 730101 662793 372578 303700 254751 222217 RGB
tablet1 1750345 1070855 832043 698090 602077 378500 301536 247465 213186 RGB
tablet2 1715498 1060516 870492 760288 671772 397456 318223 262006 223498 RGB
trilob 1439545 880602 668584 515357 405325 237771 181737 146981 126554 RGB
coins_l 1612965 1153624 950568 836389 747472 506832 412945 345655 298309 LRGB
cotton_l 1842863 1251167 1016295 877086 779644 523039 426572 360554 312153 LRGB
focus2 1231976 735403 557910 433039 341093 248226 204166 174500 157456 1D-RGB
lthouse 479184 282025 207657 167807 140065 130358 112987 101004 93615 1D-RGB
mixed_l 1224239 804790 647222 552794 492833 328311 267567 226931 199072 LRGB
mummy_l 3256099 2059996 1654979 1436623 1281981 780456 629664 524691 451481 LRGB
seeds_l 990605 646305 535851 476514 437054 313924 266165 231259 207793 LRGB
tablet1_l 1107603 698256 548909 469495 413538 265292 213583 176720 150708 LRGB
tablet2_l 1042111 648347 519726 449912 401496 256166 208133 173597 149000 LRGB
trilob_l 1119299 710151 561797 482229 429322 268020 213889 174499 147274 LRGB

loss = 0 loss = 1 loss = 2 loss = 3 loss = 4 Q = 75 Q = 65 Q = 55 Q = 45 Pixels
coins 62.00 37.90 30.10 25.99 22.61 11.80 8.64 6.57 5.30 262144
cotton 45.71 28.60 22.86 18.70 15.88 8.74 6.75 5.46 4.70 368640
mixed 59.41 36.76 29.78 25.74 23.00 13.25 10.70 9.00 7.85 262144
mummy 34.50 22.59 16.29 11.91 9.30 5.74 4.35 3.49 3.05 831488
seeds 43.99 28.98 24.85 22.28 20.23 11.37 9.27 7.77 6.78 262144
tablet1 53.42 32.68 25.39 21.30 18.37 11.55 9.20 7.55 6.51 262144
tablet2 52.35 32.36 26.57 23.20 20.50 12.13 9.71 8.00 6.82 262144
trilob 43.93 26.87 20.40 15.73 12.37 7.26 5.55 4.49 3.86 262144
coins_l 49.22 35.21 29.01 25.52 22.81 15.47 12.60 10.55 9.10 262144
cotton_l 39.99 27.15 22.06 19.03 16.92 11.35 9.26 7.82 6.77 368640
focus2 20.53 12.26 9.30 7.22 5.68 4.14 3.40 2.91 2.62 480000
lthouse 14.62 8.61 6.34 5.12 4.27 3.98 3.45 3.08 2.86 262144
mixed_l 37.36 24.56 19.75 16.87 15.04 10.02 8.17 6.93 6.08 262144
mummy_l 31.33 19.82 15.92 13.82 12.33 7.51 6.06 5.05 4.34 831488
seeds_l 30.23 19.72 16.35 14.54 13.34 9.58 8.12 7.06 6.34 262144
tablet1_l 33.80 21.31 16.75 14.33 12.62 8.10 6.52 5.39 4.60 262144
tablet2_l 31.80 19.79 15.86 13.73 12.25 7.82 6.35 5.30 4.55 262144
trilob_l 34.16 21.67 17.14 14.72 13.10 8.18 6.53 5.33 4.49 262144
Average 34.98 22.22 17.49 14.60 12.59 7.81 6.22 5.14 4.44 6288128

Table I: Compression results in bits and bits per textel

12

bits per textel lossless loss = 1 loss = 2 loss = 3 loss = 4 Q = 75 Q = 65 Q = 55 Q = 45
All Intra Coded 40.95 25.43 19.47 16.00 13.66 9.30 7.42 6.15 5.30
Fixed Decorrelation 35.88 22.87 18.00 15.01 12.91 8.27 6.62 5.51 4.79
Minimum Cost 34.98 22.22 17.49 14.60 12.59 7.81 6.22 5.14 4.44

% gain
Fixed Decorrelation 12.39 10.06 7.54 6.25 5.43 11.02 10.78 10.39 9.68
Minimum Cost 2.51 2.84 2.86 2.72 2.48 5.55 6.07 6.70 7.35

Table II: Comparison between PTM test images intra coded, inter and intra coded by using a
fixed decorrelation and by finding the decorrelation trough minimization of the cost matrix.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

lossless loss = 1 loss = 2 loss = 3 loss = 4 Q = 75 Q = 65 Q = 55 Q = 45

All Intra Coded
Fixed Decorrelation
Minimum Cost

13

Appendix I: Compressed Polynomial Texture Maps (.ptm) File Format

A compressed PTM file consists of the following 12 sections separated by “newline” characters.
When a section consists of multiple elements, represented in ASCII, individual elements are
separated by a white space:

1. Header String. The ASCII string ‘PTM_1.1’ appears on the first line of the file. This
identifies the file as a PTM file and provides the PTM version number being supported.

2. Format String. One of the following ASCII strings appears on the next line identifying the
format of the file:

PTM_FORMAT_JPEG_RGB
PTM_FORMAT_JPEG_LRGB
PTM_FORMAT_JPEGLS_RGB
PTM_FORMAT_JPEGLS_LRGB
PTM_FORMAT_JPEG2000_RGB
PTM_FORMAT_JPEG2000_LRGB

Note that the current version does not support JPEG 2000 compression.

3. Image Size. The next line consists of an ASCII string containing the width and height of the
PTM map in pixels.

4. Scale and Bias. After biasing, scaling, and rounding, each PTM coefficient is stored in the
file as a single byte. A total of 6 bias and 6 scale values, one for each of the 6 polynomial
coefficients, are provided. The six ASCII floating point scale values appear first in the file,
followed by the six ASCII integer biases, all separated by spaces.
Scale and bias values are taken directly from the original uncompressed PTM file and remain
unchanged after compression. As in the uncompressed PTM format, original coefficients are
reconstructed according to

afinal = (araw – bias) * scale

5. Compression Parameter. It consists of an ASCII string that contains the parameter being
fed to the JPEG-LS or to the JPEG encoder.
When the file is encoded with JPEG-LS, the parameter represents the lossless mode (if zero)
or the maximum absolute value of the loss for each pixel (if greater than zero).
For JPEG, the parameter represents an encoding quality factor ranging between 20 and 100
(best quality).

6. Transforms. It is a sequence of 18 (for RGB PTM’s) or 9 (for LRGB PTM’s) ASCII
integers. The (i+1)-st integer represents the transforms that must be applied to the reference
plane (see section 9) before prediction of the coefficient plane indexed by i.

14

Each transform is represented by a constant value that is a power of 2 (see table below), so in
order to specify multiple transforms, constants can simply be OR-ed together to form a single
integer. The following transforms are currently implemented:

Transform Constant Name Integer Value
No transform NOTHING 0
Plane Inversion PLANE_INVERSION 1
Motion Compensation MOTION_COMPENSATION 2

7. Motion Vectors. It is a sequence of 36 (for RGB PTM’s) or 18 (for LRGB PTM’s) ASCII
signed integers. The first half represents the x coordinates and the second half the y
coordinates of the 18 (or 9) motion vectors.
Since integers are used to represent half pixel displacements, these values must be divided by
2 in order to obtain the final displacements along the x and y dimensions.

8. Order. It is a sequence of 18 (for RGB PTM’s) or 9 (for LRGB PTM’s) ASCII integers that
represent the order in which the corresponding coefficient plane must be decoded. This order
guarantees causality in the decoding process.
If plane i is predicted from plane j (called reference for i), order of j will be smaller than
order of i and decoding of j must precede decoding of i.
To start the decoding process, there is always (at least) a plane that is not predicted from any
other plane and whose order is 0.

9. Reference Planes. A sequence of 18 (for RGB PTM’s) or 9 (for LRGB PTM’s) ASCII
integers that represent the index of the reference plane used for encoding the coefficient
plane i.
Coefficient planes are indexed starting from zero: If plane i is predicted from plane j, then the
(i+1)-st integer in the sequence is j. A special reference index “–1” is used to indicate a plane
that is intra coded (i.e., that it is not predicted from any other plane).

10. Compressed Size. A sequence of 18 (for RGB PTM’s) or 9 (for LRGB PTM’s) ASCII
integers in which the (i+1)-st integer is the size, in bytes, of the i-th compressed coefficient
plane.
Since coefficients are not interleaved and compressed planes may have different sizes, this
information (and the side information size, see below) must be combined to extract properly
the compressed planes from the "Compressed Coefficient Planes" section.

11. Side Information Size. A sequence of 18 (for RGB PTM’s) or 9 (for LRGB PTM’s) ASCII
integers in which the (i+1)-st integer represents the size (in bytes) of the side information
used to correct possible overflows occurring during the (lossy) encoding of the i-th
coefficient plane (see below). If no overflow occurred during the encoding of the i-th plane,
the corresponding side information size will be zero.

12. Compressed Coefficient Planes. Compressed coefficient planes are stored plane by plane,
in sequence, following the original plane ordering. Coefficients are not interleaved and each

15

plane must be extracted by using the information provided in the sections “Compressed Size”
and “Side Information Size.” Each compressed plane is stored according to the bit-stream
format corresponding to the compression algorithm used (JPEG or JPEG-LS). When a lossy
mode is used, each compressed plane is followed by a sequence of zero or more bytes
representing the side information necessary to correct overflows resulting from modular
arithmetic. This “Side Information” section consists of a sequence of pairs (Pixel Position,
Pixel Value), represented with five consecutive bytes as follows:

(Pixel Position, Pixel Value) = P3, P2, P1, P0, V.

Pixel position is a 4-byte integer (with the highest order byte stored first), which represents a
pixel position when the image is linearized in row order scan, top to bottom, left to right. The
pixel value V is the original pixel value that must be substituted in the decoded plane in that
position in order to fix the overflow. Overflows must be corrected before using the decoded
plane as a prediction reference.

16

References

[1] T. Malzbender, D. Gelb, H. Wolters and B. Zuckerman, “Enhancement of Shape Perception
by Surface Reflectance Transformation”, HP Laboratories Technical Report, HPL-2000-38,
March 2000.

[2] T. Malzbender, D. Gelb and H. Wolters, “Polynomial Texture Map (.ptm) File Format”.
Private Communication.

[3] M. Weinberger, G. Seroussi and G. Sapiro, “The LOCO-I Lossless Image Compression
Algorithm: Principles and Standardization into JPEG-LS”, IEEE Trans. on Image
Processing, Vol. 9, No. 8, August 2000, pp. 1309-1324 (also HP Laboratories Technical
Report, HPL-98-193(R.1), November 1999).

[4] W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data Compression Standard, Van
Nostrand Reinhold, New York, 1993.

[5] R. Barequet and M. Feder, “SICLIC: A Simple Inter-Color Lossless Image Coder”, in
Proceedings of the 1999 Data Compression Conference (DCC’99), (Snowbird Utah, USA),
pp. 501-510, March 1999.

[6] X. Wu and N. Memon, “Context-Based Lossless Interband Compression – Extending
CALIC”, IEEE Trans. on Image Processing, Vol. 9, No. 6, June 2000.

[7] B. Carpentieri, M. Weinberger and G. Seroussi, “Lossless Compression of Continuous-Tone
Images”, Proceedings of the IEEE, November 2000 (to appear).

[8] S. Tate, “Band Ordering in Lossless Compression of Multispectral Images”, IEEE
Transactions on Computers, Vol. 46, No. 4, April 1997.

	Compression of Polynomial Texture Maps
	
	
	Introduction
	
	Compression Modalities
	Transforms

	Issues for Further Investigation
	Acknowledgement
	Appendix I: Compressed Polynomial Texture Maps (.ptm) File Format

	References

