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The thesis explores the use of statistical point distribution models in machine 
vision. The effectiveness of traditional machine vision three-dimensional model 
building techniques has been limited, particularly when the objects being 
modelled are complex, smoothly deforming bodies such as human beings. 
Recently, a new approach to model building has been found that allows effective 
two-dimensional image space models of complex non-rigid objects to be 
automatically generated by statistically analysing a set of training images. One 
such technique creates what is known as a point distribution model. 

In this thesis I explore whether point distribution models still perform well in 
areas where the objects being modelled are much less complicated than have 
hitherto been tried. This was achieved by creating a rational reconstruction of 
an image interpretation system that automatically generated and used a point 
distribution model to recognize human beings, but to then use the resulting 
system to build (and use) models of much more simple rigid objects: specifically, 
convex polygonal prisms. The system that was reconstructed was a pedestrian 
tracking system designed and implemented by Baumberg, as part of a 
Leeds/Reading university collaboration project. 

It was found that for simple convex prismatic objects Baumberg's mechanism for 
automatically extracting point descriptions of object silhouettes (which are then 
be used to train a model) fails to produce outline descriptions in which the 
positions of the points move smoothly as the silhouette of the objects change.  
This problem meant that the resulting models were unstable and in the 
experiments done could only correctly classify objects just under 50% of the 
time. 

In addition, early indications were found that suggest that even if a more stable 
outline extraction method can be found, there is unlikely to be enough variation 
in the outlines of simple objects to enable this kind of model to be able to 
systematically distinguish between them. 
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1 Introduction

The ultimate goal of machine vision for a number of years has been to understand and appropriately

interpret images. This involves not only being able to discover the structure of the image, but also to

know what that image represents. Once this problem is unlocked a huge number of application areas

open out involving image classification, such as allowing content based image storage and retrieval,

and face recognition. In addition, higher level interpretation becomes possible if moving images are

considered. For instance, once it is possible to identify an object within a single image it is possible to

track that object through an image sequence and interpret that object’s behaviour.

One major difficulty with image interpretation is the need for a system to have a priori knowledge of

things that it will be “looking” at. Without this prior knowledge a system could be likened to a new

born child looking at the world for the first time and lacking the experience necessary to interpret what

it is seeing.

To provide the requisite knowledge for an image interpretation system it is necessary to use models that

describe the expected structure of the real world. Until recently the effectiveness of model building has

been limited to reasonably simple images of man made objects. Even then these models are only

practical to use in very controlled conditions such as a factory floor. However, recently new techniques

have been discovered that allow models of complex non-rigid objects (like people) to be automatically

generated.

The new techniques differ from traditional model building, as the new techniques do not involve

absolute descriptions of objects in three dimensions. Instead the models are built up by statistically

analysing changes in the two-dimensional projections of three-dimensional objects as they appear in

the image plane.  This means that these techniques are particularly suited to the analysis of image

sequences as the models are generated by, and describe, two-dimensional object representations, which

is precisely what images are.



At the core of these new approaches to machine vision lies the multivariate statistical technique of

Principal Component Analysis (PCA). It is the PCA that is responsible for the analysis of the objects in

the image sequences. One particularly nice feature of this analysis technique is that it lends itself to

approximation by certain neural networks. This potentially allows image interpretation systems to be

implemented as massively parallel architectures, which should be very fast and robust. In addition, the

fact that PCA can be implemented by a neural network lends weight to the argument that the human

visual system interprets data in a similar manner.

It is the exploration of these new techniques that formed the core of the work undertaken in this project.

To date these techniques have met with great success in areas that the more traditional model-based

systems failed in; i.e. areas where the objects being modelled are smoothly deforming, non-rigid, and

(relatively) complex objects like people or faces. But as yet it would appear that nobody has

ascertained how well model construction using PCA performs when used in situations where the

objects of interest are “simple” rigid objects. The goal of this project was to do precisely that and see if

the new techniques are still valid in areas were the objects being modelled are much less complicated.

If the answer to this question is “yes”, then it becomes possible to implement powerful image

interpretation systems designed to identify any kind of object using a single, unified system

architecture.

1.1 Overview of the Thesis:

•  Chapter 2 presents a brief history of relevant work in machine vision, leading up to the

development of point distribution models as studied in this thesis.

•  Chapter 3 describes in detail the work presented in Baumberg’s PhD thesis, the core of which is

rationally reconstructed in this thesis. This includes my own critique of Gower’s paper introducing

generalised procrustes analysis, a statistical technique used by one component of Baumberg’s

system.

•  In Chapter 4 full details of the implementation of my reconstruction of Baumberg’s work are

presented.



•  Chapter 5 shows results from initial exploration where, surprisingly, Baumberg’s system fails to

build effective models of simple prismatic objects.

•  In Chapter 6 the failures revealed in Chapter 5 are discussed and a hypothesis is formed to account

for the cause of these failures. Results from further experiments are present which support this

hypothesis.

•  Chapter 7 presents a discussion of several promising avenues of further research building on the

work presented here.

•  Finally, Chapter 8 concludes by summarising the aims, methods and achievements of this thesis.



2 Background

For a number of years the “Holy Grail” of machine vision has been to automatically understand and

appropriately interpret images. This does not simply involve being able to analyse the structure of an

image, it also involves being able to understand what that image represents. Being able to achieve such

automated image interpretation potentially provides solutions to a whole host of image classification

problems, ranging from face recognition to automatic diagnosis from medical images. In addition, there

is a school of thought that believes that any progress made in this area has the potential to shed further

light on how the human visual system functions.

For pragmatic reasons, early work in this area concentrated on the analysis of individual still images,

but more recently the arena of image interpretation has expanded to include moving image sequences.

The desire here is to recognise not only objects but also object behaviours over time. Having expanded

the size of the problem area, the number of applications made possible by finding solutions also

increases. For instance natural gesture interpretation allows handwriting or facial expression

monitoring to become feasible.

It has long been understood that to be able to perform image interpretation tasks a system must have

some prior knowledge about what it is “looking at”. Without prior information which describes and

labels the expected structure of the real world any interpretation system would simply be like a new

born baby looking at the world for the first time, and lacking the experience necessary to understand

any of it.

The approach to the problem of providing an image interpretation system with the requisite knowledge

has been to wrap the necessary information up as a model. This idea of constructing a model (otherwise

known as model-based vision) has strong biological foundations. The human visual system is

incredibly powerful and is capable of interpreting a huge range of often-subtle information present in

visual data. For example when looking at a person we are able to determine information about the age

or gender of the person from the gait and posture of their walk or we can often tell what mood that

person is in from their facial expression. All of this kind of interpretation is possible because we have



learnt characteristic behaviours of people and have therefore built up a mental model that we are able to

use when analysing visual data.

Until recently the success of such model-based visual systems has been limited, tending to achieve real

world applications only when the objects being modelled are simple man-made bodies, and when the

situation of operation is severely constrained (such as on a factory floor). These limitations are

probably mostly due to the fact that model-based vision has been dominated by the use of “hand-

crafted” three-dimensional models.

This kind of model building is prone to inaccuracies for two reasons. Firstly, when interpreting input

data it is necessary to construct representations of three-dimensional objects from two-dimensional

image input. This is a non-trivial, under-specified, and often computationally expensive problem, as the

complete set of features that are incorporated into such an object model is rarely present in an image.

For example, a picture of a car taken from the front will probably not explicitly show the position of the

back wheels.

The second problem with this type model building is the fact that often, for practical reasons, there is

no alternative but to construct the model by hand. This inevitably leads to inaccuracies, because to

build such a model simplifications need to be made which often fail to describe the natural variations in

real world objects and object behaviours. For example, when constructing a three-dimensional model

of walking human beings it would be very difficult to incorporate variations in object shape due to

clothing.

Recently a new development in model building has lead to a number of systems that have been

successful in image interpretation tasks involving complex non-rigid bodies in very uncontrolled

environments. These systems have not been based on the assumption that three-dimensional models are

necessary to perform object recognition. Instead these methods employ multivariate statistical analysis

of objects in the two-dimensional space of images, and it is possible to build models automatically

without simplifying the nature of the objects, by simply statistically analysing training images.



At the core of these new techniques lie statistical analysis methods such as principal component

analysis (PCA). PCA can be used to model objects in a number of ways, which differ depending on

which features of the images the analysis is applied to. For example, PCA can be used to statistically

analyse the differences that occur in the grey-scale levels of images of a certain object, and produce a

model describing the grey-scale levels that a particular object is likely to have. Alternatively, PCA can

be used to analyse the variability of a set of two-dimensional points, each of which is placed at a

particular feature of the object as it appears in the image plane. For example, when building a model of

human hands the points might be placed at the fingertips and at the troughs between the fingers.

Models based on the statistical analysis of such landmark points are more commonly known as point

distribution models.

Figure 2.1 Examples of the point descriptions of training shapes used in order to construct a model of
pedestrians. (Reproduced from Baumberg [1]).

It is also possible to construct a point distribution model based solely on the outlines of an object. For

example, a model of human beings could be constructed by analysing the point descriptions of human

silhouettes as they appear in different poses, such as is shown in Figure: 2.1. In these cases, when PCA

is applied to the set of point descriptions of possible object outlines, the outcome is a point description

of the average object outline along with the primary modes of variation that distinguish that average

shape from the original object outlines.



It is these results that form the basis of the object model. As the model is inherently two-dimensional

this kind of technique avoids the difficulty of having to extract three-dimensional information from an

image and hence avoids some of the difficulties involved with more traditional techniques.

Also, as the model can, in principle, be built by simply providing appropriate training images, a model

can be tuned to a number of scenarios without having to re-engineer the whole system. This feature,

enticingly, opens up the possibility that a particular task (such as object tracking) could be achieved

with a unified architecture regardless of the nature of the objects being tracked. (Baumberg [1],

Johnson[2]) For example, theoretically the same system could be used to track pedestrians through a

shopping mall as could be used to track the movement of mice in a laboratory. The only difference

would be the image data used to generate the model.

Another particularly nice feature of this analysis technique is that PCA lends itself to approximation by

certain neural networks (Haykin [2]). This potentially allows image interpretation systems to be

implemented as massively parallel architectures, which should be very fast and robust.

Interestingly, experiments have been done, such as the moving light displays of Johansson [4], that

show that the human visual system is very capable of interpreting objects when presented only with

minimal representations of those objects. Specifically, Johansson’s [4] work showed that humans could

distinguish between people walking and running when only presented with points marking the major

body joints. Alternatively, Baumberg [1] suggested that only silhouettes of pedestrians are needed for

the human visual system to be able to correctly identify those objects as pedestrians. These

experiments, coupled with the ease with which neural networks can approximate statistical analysis

techniques such as PCA, has added fuel to the debate that the human visual system interprets data in a

similar manner, thus circumventing the complexity of generating and manipulating internal

representations of three-dimensional objects (Cliff & Noble [5], Baumberg [1]).

Even though model building using statistical analysis is a reasonably recent phenomenon, already

several applications have been developed that successfully apply this technique to accomplish

automated image interpretation. Initially one of the focuses for this work was the medical domain, and



appears to have been dominated by the work of Cootes et al [6],[7]. Examples of the work achieved by

these people include the interpretation of echocardiograms, images of the spine, and radiographs of hip

replacements. Unfortunately the model building phase of these systems was not fully automated and

required point descriptions of the significant contours of an image to be extracted by hand.

Since the early days several advances have been made. In the first place several methods have been

developed that allow the significant contours of an image to be extracted automatically. For example

Baumberg’s work on pedestrian tracking [1] or Robinson’s [8] investigation of differential geometry

(as referenced by Taylor et al [6]).

In addition, the application space in which successful image interpretation systems have been made has

opened out to include things like automated pedestrian tracking systems (Baumberg [1]), and facial

recognition (Lanitis et al [9]). The success obtained in these areas has allowed such systems to be

developed further to include identification not only of objects as they appear in individual images but

also of object behaviour over time. An example of such work is Johnson’s [2] extension to Baumberg’s

pedestrian tracker that allowed atypical (possibly criminal) pedestrian activity to be flagged.

Most recently, Reading and Leeds universities have been involved in a collaborative project to develop

an integrated traffic and pedestrian vision system [10],[11]. This system was designed, not only to track

pedestrians and cars through an outdoor scene, but also to produce natural language descriptions of the

interactions between those pedestrians and vehicles. In this work the pedestrian tracker was an

implementation of the above-mentioned work done by Baumberg [1], and the behavioural analysis

work of Johnson [2] was extended by the Reading team, to include Bayesian belief nets to produce

natural language descriptions of object interactions. However, the vehicle tracker was implemented

using traditional geometric three-dimensional models. This project is an impressive piece of work, not

least because it integrates two completely different modelling techniques into a single system.

However, it does beg the question; “why was an integrated technique not chosen?”

It is reasonably clear from the literature that although developing a traditional three-dimensional model

to track complex objects like pedestrians is achievable (Hogg, as referenced by Cliff & Noble [5]), it is



very difficult and can only be applied to real world situations with limited success. However, it is not

clear that the new statistically formed model cannot be applied to simple, man-made, rigid bodies.

It would appear that nobody to date has attempted to investigate how well model construction using

PCA performs when applied to “simple” rigid objects. This could well be because there is simply not

enough variation in the silhouette of such an object for a statistical analysis of that variation to yield a

working model. However, this is by no means a foregone conclusion.  Hence the goal of this project is

to empirically ascertain whether or not these statistical techniques are still valid in areas where the

objects being modelled are much less complicated than have hitherto been tried. If the answer to this

question is “yes”, then it becomes possible to implement powerful image interpretation systems

designed to identify any kind of object using a single, unified system architecture. In addition, success

here will further support the claim that the human visual system performs a similar form of statistical

analysis in visual data interpretation tasks.

The approach taken in this project, to achieve the above goal, was to implement a rational

reconstruction of an interpretation system that generated and used a point distribution model to

recognise complex bodies, but then to use this system to build (and use) models of much more simple

objects such as cars. The system chosen as the basis of this work was the pedestrian tracker that

Baumberg implemented as part of the Leads/Reading collaboration. This system was chosen because it

was a tried and tested vision system that functioned very well in the real world, in addition this piece of

work was undertaken as a PhD project and hence (theoretically) the documentation was rich enough to

allow an accurate reconstruction to be achievable.



3  Related Work

As mentioned before, the goal of this piece of work is to determine if point distribution models are still

valid in areas where the objects being modelled are simple rigid bodies like cars. The way chosen to

achieve this aim was to rationally reconstruct a tried and tested vision system that was initially

developed to use these techniques to model more complex bodies like people.

The remainder of this chapter is a description of the pedestrian tracking system implemented by

Baumberg [1] as this was the system that was chosen to be reconstructed and therefore is the system

that forms the basis of this work.

The purpose of Baumberg’s research was to address the problem of automatically tracking a number of

pedestrians in an outdoor scene. The system specifications were to extract the position of moving

pedestrians in a scene filmed by a static surveillance camera and follow each person throughout the

captured video sequence. The system needed to be robust against noise and the tracking (although not

the initial acquisition of the model) needed to happen in real time (i.e. the tracking system needed to

have a frame processing rate equal to or less than normal video frame rates). Such a system could

become part of several applications, such as animation generation or human motion analysis, however

the key-motivating factor for this work was an automated surveillance system. Indeed, the success of

Baumberg’s work enabled the resulting system to become part of the Leeds/Reading joint traffic and

pedestrian vision system [10] [11].

The system that Baumberg implemented has two main parts. The first of these is the portion of the

system that is responsible for building the model, and the second is the part that employed the resulting

model to identify and track pedestrians through image sequences. It is the model building process that

first will be described in depth.



3.1 Building an Object model

Baumberg’s pedestrian model was automatically constructed by statistically analysing the two-

dimensional outlines of people taken from several sequences of real video footage of a street scene.

The system, as represented in Figure 3.1, took live images from a static camera, processed this data,

and extracted point descriptions of the outlines of any moving objects within the scene, in real time.

This data was then analysed off-line to generate the model.

Figure 3.1: A diagram representing the six stages involved in model construction.

As can be seen in Figure 3.1, there are six main stages to this process: -

•  Image capture to obtain the raw images to be used to train the model.

•  Differencer to obtain the moving parts of the image that correspond to pedestrians.

•  Outline extraction to obtain an outline description of each pedestrian shape.



•  Re-Pointer to obtain a point description of each pedestrian shape outline.

•  Off-line normalisation to align the training shapes so that differences in scale, translation and

rotation are not incorporated in the model.

•  Off-line Principal Component Analysis to build the shape model.

3.1.1 Image Capture

To some extent the choice of what training data is to be used is dependent on the final application. In

this case the final system was to analyse images taken with a static camera of a street scene. See Figure

3.2 for an example of that scene. So the input used to train the model was simply a sequence of images

taken with that same camera of that same street scene. This means that physical characteristics of the

system, such as position of the camera with respect to the ground plane, are implicitly incorporated into

the model. It also means that the model developed does not contain the full set of possible “views” of

human beings. These points might be considered as a significant drawback; however, in real

applications, the possible views of objects are rarely completely unconstrained. For instance it is

unlikely that in a surveillance system that the camera will be looking directly up at a person’s feet.

However, if this were that case then the system could still be trained using those images. In addition,

this concept of using training data comprised of images that would typically be those that the system

would eventually need to analyse, means that the system does not need to be re-engineered for every

different location it is used in. Instead, a model specific for each location can be simply and

automatically trained.

Figure 3.2: An example of a typical street scene as viewed by the surveillance camera that provided
training and input images for Baumberg’s pedestrian tracker. (Reproduced from Baumberg [1]).



3.1.2 Differencer

As the camera in Baumberg’s system was fixed, a simple background subtraction scheme was used to

obtain the moving parts of the training images. Background subtraction relies on the existence of a

static reference image of the scene’s “background”. This was obtained from a sequence of images

median filtered over time. This process of using a median filter can then be applied periodically using

input data from the camera to account for variable effects such as changing light conditions, or camera

shake.

Figure 3.3: An illustration of Baumberg’s image differencing stage. (a) Background image, (b)
Training image, (c) Differenced image, (d) Blurred and thresholded image. (Reproduced from

Baumberg [1]).

Subtracting the background image from each frame then identifies the moving objects within that

frame. Working with grey-scale images, this subtraction is achieved by subtracting the image

intensities at each pixel. To reduce the effects of noise in the images this differenced image is then

blurred using a standard Gaussian blur filter. Finally the resulting blurred differenced image is



thresholded to obtain a binary image where pixels corresponding to a significant change in intensity

(i.e. a moving object) are all coloured black, whereas the rest of the image is set to white. (Figure 3.3).

Where there is poor contrast between the moving object and the background, fragmentation can occur,

causing several small moving objects to be identified where there should be only one. Morphological

filters are applied to these gaps, where the foreground regions are successively grown and the

background regions successively shrunk until the fragmentation has been removed.

3.1.3 Outline Extraction.

Baumberg’s differencer, as described above, generates a binary image in which every pixel that is part

of a moving object is set to black, hence each black ‘blob’ is a potential silhouette of a single moving

object in the scene. As the model building process in the system is entirely automatic there is no

guarantee that each identified moving object is actually a pedestrian and therefore to be included in the

model. So some specific constraints need to be used to reject regions which are unlikely to be a single

pedestrian. Baumberg used bounding box characteristics to achieve this, and discounted any

differenced blob that did not fall within a maximum/minimum size range, or that did not have an

appropriate height to width ratio.

Once the ‘blobs’ have been filtered in this way, the outline of the ‘blob’ is identified by employing a

straight forward edge-detection algorithm; made easier by the fact that the ‘blobs’ are in binary images.

The output of the edge detector is a set of candidate edge-pixels; possibly disconnected and/or

discontinuous, and probably affected by noise. Baumberg the fitted a continuos set of spline curves to

give a smooth approximation to the raw outline. The control points for these spline curves represented

a set of points whose distribution varied between images. It was then the task of principal component

analysis to capture that variation.



3.1.4 Re-pointing.

There seem to be few prescriptive details available in the literature concerning what properties the

point descriptions of training shape outlines need to have for principal component analysis of those

shapes to be possible. However at least the following three constraints appear as implicit assumptions.

1. The number of points used to describe each shape needs to be the same.

2. For two similar shapes the i’th point on each shape should idealy to correspond to the same feature

in that shape. For example, when looking at two silhouettes of humans from the front, if the first

point of the first silhouette is the top of the head, then the first point of the second silhouette also

needs to correspond to the top of the head. If this is not the case then the model building process

will incorporate variation in the positioning of points into the model rather than simply the

variation of the shape itself. In cases where the shapes are not similar this constraint does not

apply.

3. Enough points to adequately describe the shape need to be used; i.e. more points need to be used to

describe more complex shapes.

To achieve this Baumberg first needed a method to find a fixed boundary point that would appear at the

same position on all contours that would be consistent and robust in the face of image noise. Once a

reference point was found for each contour then any consistent method for placing the rest of the points

around the outline would mean that the first two conditions would be met.

Baumberg’s method for obtaining the reference point was to find the principal axis of the object and

select the uppermost of the two points where the axis crossed the boundary of the shape. The

assumption being made here was that this point would be fixed for humans as they appear in the input

data. This was a reasonable assumption to make given that in the particular situation for which the

system was to be used people would always appear in an upright position.



Figure 3.4: A diagram representing Baumberg’s method for extracting a point description of a training
shape. (Reproduced from Baumberg [1]).

The rest of the points were determined by approximating the shape outline as a length-wise uniformly

spaced B-spline and using its control points in combination with the reference point as the outline

description.

To meet the final criteria mentioned above Baumberg, seemingly arbitrarily, chose that each shape

should be described using 40 control points, presented as a single column shape-vector of the form:

( )Tnn yxyxyx 111100 ,,...,,, −−=x         (3.1)

where ( )ii yx ,  is the position of the ith point on the training shape outline, n is the number of points

used to describe the outline and T represents vector transpose.



3.1.5 Normalisation

Before principal component analysis (PCA) can be applied to the point descriptions of the training

shapes, these shapes need to be aligned (i.e. rotated, scaled and transformed to a common origin),

otherwise the PCA will unnecessarily incorporate variation in size and location into the model. For

example, if two shapes that are very similar appear at different positions in the image frame then the

variation due to the different locations will actually swamp out any variation of shape.

To achieve normalisation Baumberg implemented a standard technique known as generalised

procrustes analysis, as derived by Gower [13].

When applied to a set of shapes, the goal of generalised procrustes analysis is to translate, rotate and

scale those shapes such that the total of the differences between each shape in the set and the resulting

average shape is minimised. In other words after normalisation, there is a set of shapes such that the

total of the distances between each point of each shape and the corresponding point of that set’s mean

shape is minimised. In analysis of variance terms, this is equivalent to minimising the residual sum-of

squares.

Specifically if there is a set of m shapes described by matrices of the form: -
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where n is the number of points used to describe each shape, and each row ( )kk yx ,  is the x, y co-

ordinates of the ith point used to describe the shape. Then generalised procrustes analysis will produce a

set of m shapes Zk, whose average is Mz, that minimise the equation for the residual sum-of-squares

given by:
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The transformation that each shape undergoes to achieve this normalisation involves translation,

rotation and scaling. The rotation can be achieved by post multiplying the original shape, iS , with an

orthogonal matrix iH , and uniform scaling is expressed as a multiplicative constant iρ . Translation

to a new origin involves adding the same (1 x 2) row-vector, it , to every row of the original shape, iS .

Expressing the (n x 2) translation matrix, whose rows are all set to be it , as iT  the transformation that

each shape undergoes can algebraically be expressed as: -

iiiii THSZ += ρ         (3.4)

where iZ , is the resulting normalised shape.

Now, it should be reasonably clear, that one way to minimise the sum of differences that each shape

has with the mean shape is to simply set each scaling factor, iρ , to be zero, and effectively reduce

each shape to a single point. This is a trivial solution and to have a more satisfactory method for

calculating the scaling factors one actually needs to minimise Equation 3.3 subject to some constraint.

The constraint chosen by Gower is given by: -
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Calculation of the translation matrices, iT , is relatively simple, as all that needs to be done to minimise

Equation 3.3 is to translate all of the input shapes to have the same centroid. This centroid can actually

be anywhere without breaking any constraints and is therefore, for convenience, chosen to be the

system’s origin. In geometrical terms, this is achieved by calculating the co-ordinates of the shape’s

centroid and subtracting these from each of the points describing the shape.



Once the original shapes have been translated, they need to be rotated and scaled. The problem of

simply rotating a matrix, X , to fit another matrix that has the same centroid, Y , is a well-understood

problem. A rotation matrix, H , such that XH best fits Y is given by: -

UVH T=                   (3.6)

 Where U and V are calculated by obtaining the singular value (or Eckart-Young) decomposition of

the matrix XYT as described by: -

VUXY Γ= TT        (3.7)

where U and V are orthogonal and Γ is diagonal.

However, where it is necessary to scale matrices as well as rotate them, the above method can not be

applied directly. This is because if a matrix is first rotated to fit another using the above method and

then a scaling factor found, these transformations in combination do not actually satisfy the constraint

of minimising Equation 3.3 above. In fact the problem of both scaling and rotating a matrix X  to fit

another matrix Y does not actually have an analytical solution, therefore the approach needed to solve

this kind of problem has to be iterative. In other words the matrix X needs to be rotated, then scaled.

Then the matrix resulting from these operations needs to be re-rotated and scaled until some tolerance

has been reached.

In cases where more than two matrices are needed to be aligned the problem is simply a generalisation

of the above case, and the way that the various rotation and scaling stages are calculated can be derived

by using standard calculus of variation techniques. The mathematics involved in doing this is beyond

the scope of this thesis, but a full description can be found in Gower [13]. However, a description of the

algorithm designed by Gower to achieve normalisation of m matrices will now be described.1

                                                          
1 It should be noted that whilst Gower’s description of the mathematical derivation of this algorithm is
sound, his description of the algorithm itself is, frankly, awful and contains at least one highly
misleading logical error in addition to several typographic errors. Therefore I would strongly



The first task is to translate all of the shapes to the origin, in analysis of variance terms this removes the

between-groups sum-of-squares variance leaving the rest of the process to minimise the within-groups

sum-of-squares variance. Then, so that the numbers are “friendly” each translated shape is scaled such

that: -
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If after normalisation is complete, and the original units for the shapes are important, the normalised

shapes should be multiplied by the scaling factor λ .2

The next step is an initialisation phase, so that all necessary variables are given appropriate values

before entering the iteration process. First of all the second shape in the set, 1S , is rotated to fit the first

shape, 0S . And then the matrix, sM , which is the average of 0S and the rotated 1S is calculated. The

next shape, 2S , is then rotated to fit the current value of sM  and sM is recomputed to be the average

of 0S , 1S and 2S . Subsequent shapes are similarly rotated to fit the mean, and the mean recomputed.

This gives initial values for the normalised shapes ( iZ ), their mean ( zM ), and an initial value for the

residual sum-of-squares ( RSS ) can be calculated.3

Now keeping the mean fixed, each shape can be rotated again to fit this value for the mean. After all m

shapes have been re-rotated a new mean ( z
Rotated M ) and a new residual sum-of-squares

( RSSRotated ) can be calculated.

                                                                                                                                                                     
recommend that, should anybody be wishing to implement this algorithm, they use the description
found here.
2 This initial scaling factor is not strictly necessary, as Gower only included it in his computation to
make sure that the numbers being dealt with were large enough for the computers available in 1975 to
be able to handle them with any accuracy. I chose to retain this stage, as the only way to verify the
operation of the algorithm was to reproduce the example results that Gower provides in his paper.
3 Again, this stage is not strictly necessary. Gower includes this initial rotation phase in an attempt to
make the resulting algorithm symmetrical (i.e. in the case of two matrices, rotating and scaling X to fit



Next the scaling factors iρ ( )1,...,1,0 −= mi  can be calculated, and the scaled and rotated shapes

found by multiplying the previously rotated shapes by the scaling factors. Once this has been done for

all m shapes a new mean ( z
RotatedScaled M+ ) and a new residual sum-of-squares ( RSSRotatedScaled+ )

can be calculated.

Now if the difference between the sum of squares for the rotated and scaled shapes

( RSSRotatedScaled+ ) and the sum of squares for the initial shapes ( RSS ) is below some tolerance

nothing more needs to be done. However if further reductions to the value of RSSRotatedScaled+ are

needed then further rotation needs be done and an improved scaling factor needs to be found. This is

achieved by re-rotating the previously rotated (but not scaled) shapes to fit the mean of the rotated and

initially scaled shapes. Then an improved scaling factor can be found that will scale the re-rotated

shapes to the new mean of that set

This process is repeated until convergence is achieved for the value of the residual sum-of-squares for

the rotated and scaled shapes. As this process is a little difficult to visualise an outline of the

computation necessary to achieve this normalisation follows.

3.1.6 Algorithm Outline

1. Initial translation step:

•  Centre each shape, iS  ( )1,...,1,0 −= mi , on the origin.

2. Initial scaling step:

•  Scale each translated, iS  by λ such that: -
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Y is equivalent to rotating and scaling Y to fit X). Again this stage was retained purely because to only
way to verify the algorithm was to exactly reproduce Gower’s work.



3. Initial rotation step (i.e. calculation of initial candidates for normalised set, iZ and the mean of

that set, zM .)

•  Set 00 SZ =

•  Rotate 1S to fit 0Z , and call the result 1Z

•  Now calculate the mean value, zM  to be the average of  ( 0Z , 1Z ).

•  Rotate 2S to fit zM , and call the result 2Z .

•  Re-calculate the mean, zM , to be the average of  ( )210 ,, ZZZ

•  Repeat above two steps for 143 ,...,, −mSSS

•  The results of this stage will be initial values for iZ ( )1,...,1,0 −= mi , and an initial

value for zM which is the average of ( )110 ,..,, −mZZZ .

•  Use the results to calculate an initial value for the residual sum-of-squares using :-

))(1( T
zztrm MMRSS −= 4 (3.10)

•  Finally initialise the scaling factors by setting them all equal to one.

1=iρ   for ( )1,...,1,0 −= mi

4. This is the start of the main iterative process, where a rotation step is calculated.

•  For  ( )1,...,1,0 −= mi  rotate iZ to fit zM , and call the result i
Rotated Z

•  Calculate a new mean called z
Rotated M that is the average of :-

( )110 ,...,, −m
RotatedRotatedRotated ZZZ

•  If desired, as it is not actually used in the calculation, find the residual sum-of-squares of

the rotated shapes using:-

( )T
zz

T
z

Rotated
z

RotatedRotated trm MMMMRSSRSS −∗−= (3.11)

5. Next a scaling step is calculated.

•  For ( )1,...,1,0 −= mi  evaluate 
i

i
new

p
ρ , using 5 :-

                                                          
4 This equation is a simplified version of Equation 3.3, where the initial scaling step (step 2 in the
above description) allows that simplification to be possible.
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•  Scale the rotated shapes i
Rotated Z  to produce scaled and rotated shapes,

i
RotatedScaled Z+ , by using:-

i
Rotated

i

i
new

i
RotatedScaled ZZ

ρ
ρ

=+

•  Calculate the new mean, z
RotatedScaled M+ .

•  Finally calculate the new residual sum-of-squares of the scaled and rotated shapes, using:

-

( )T
zz

T
z

RotatedScaled
z

RotatedScaledRotatedScaled trm MMMMRSSRSS −∗−= +++ (3.13)

6. Tolerance check:

•  If  toleranceRotatedScaled <− + RSSRSS then the iteration is complete and the

normalised set is i
RotatedScaled Z+ .

•  If toleranceRotatedScaled >− + RSSRSS then:-

•  Set i
RotatedScaled

i
newi ZZ +=
ρ

1

•  Set z
RotatedScaled

z MM +=

•  Set  i
new

i ρρ =

•  Return to step 4.

This ends the description of generalised procrustes analysis.

3.1.7 Principal Component Analysis

The outcome of the normalisation process is a set of aligned training shape-vectors that need to be put

in the form: -

                                                                                                                                                                     
5 The reason for using this equation to calculate the new scaling factors follows from the mathematical
analysis in Gower’s paper, which is considered beyond the scope of this thesis.



( )Tnn yxyxyx 111100 ,,...,,,, −−=x       (3.14)

It is these shape-vectors that are statistically analysed using principal component analysis (PCA) to

form the object model.

PCA allows the relationships within a set of correlated variables to be examined by transforming that

set of variables into a new set of uncorrelated variables called principal components. These new

variables are derived in decreasing order of importance so that the first principal component accounts

for as much as possible of the variation of the original data.

Taking the trivial 2-d example, of an original data set such as is shown in Figure 3.5. The result of PCA

is to establish a new co-ordinate system whose origin is the centroid of the system (i.e. the mean value

of the original data) and whose axes are in the directions that correspond to the most significant modes

of variation of the system. As can be seen, the number of principal components obtained is equal to the

number of dimensions in the original data set. (In this case that is two.)

The first principal component accounts for the most variation in the data set, and this is reflected by it

being associated with the largest eigenvalue in the set. The second principal component accounts for

the most variation in the original data that is not described by the first principal component. In addition

even if the data had actually been distributed on a straight line, as it is a two dimensional data set two

principal components would still be obtained. However, as there would only be variation in one

direction the second principal component would be associated with an eigenvalue equal to zero and its

direction would be arbitrary other than complying with the orthogonality constraints.



Figure3.5: A simple illustration of PCA

In Baumberg’s system PCA was not being used to analyse a data set consisting of two-dimensional

points. Instead it was applied to the set of normalised shape-vectors extracted from the training images.

Given such a set of column vectors, the outcome of PCA is the mean shape of the original set and a

number of orthogonal axes that represent the directions in which the initial set of shapes vary from that

mean. As will be seen, although the shapes are only two-dimensional the dimensionality of the analysis

is actually related to the number of points used to describe the outline of each shape.

The first stage in PCA is to calculate the mean shape vector of the normalised set, using
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where E{arg} is the expected value of the argument and M is the number of shapes in the set.

Then covariance matrix of the data set is calculated, as defined by.
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Because each vector si is of order 2n the covariance matrix Cs is of order 2n x 2n. The element cii of Cs

is the variance of the ith component of the original shape vectors. For example, element c00 is a measure

of how similar the values of x0 are across the data set, and element c11 is a measure of how similar the

values of y0 are. The element cij of Cs is the covariance between the ith and jth components of the

original data set. This is a measure of how correlated these different values are. For example, element

c01 is the covariance of the values for x0 and y0 across the original data set. If these components are not

correlated then their covariance is zero and, therefore, cij = cji = 0. The matrix Cs is both real and

symmetric.

Because the covariance matrix, Cs, is both real and symmetric it can be shown (Gonzalez [14]) that it is

always possible to find a set of 2n orthogonal eigenvectors that solve the equation: -

iii eCe λ=                (3.17)

Where ei are the eigenvectors and λi are the corresponding eigenvalues arranged in descending order so

that λ0 ≥ λ1 ≥ … λ(2n – 1) ≥ 0. It is the eigenvectors that are the new axes of the system and the

corresponding eigenvalues that describe how much of the systems total variance lies in the directions

denoted by each of these axes.

Now, the eigenvectors are arranged into a 2n by 2n matrix, P ordered so that the first column of P is the

eigenvector corresponding to the largest eigenvalue and the last column is the eigenvector

corresponding to the smallest eigenvalue.

It is the eigenvector matrix, the eigenvalues and the mean shape-vector that together form the object

model.

The eigenvalue matrix P, is essentially a transformation matrix that maps any shape-vector, si, to a new

vector, bi, in the model’s co-ordinate system as follows:



( )si
T

i msPb −=       (3.18)

The vector bi, is of the form: -

( )Tni bbb 1210 ,...,, −=b          (3.19)

Where the coefficients bi  are known as the shape parameters, and each of these coefficients is a

measure of how different the current shape-vector is from the training set’s mean value along the

direction of the corresponding eigenvector ei.

To ascertain whether an input shape-vector matches the class of shapes that have been modelled,

Equation 3.18 is used to translate the input shape-vector into the model space. The resulting shape

parameters are then individually tested to see if they lie within suitable limits.  These limits are set by

the eigenvalues resulting from the principal component analysis. The variance of the ith shape

parameter (bi) within the training set is simply the eigenvalue λi.  If the distribution of shape parameters

across the training set is assumed to be normal then the two times the standard deviation in any

direction will acount for ninety-nine percent of the variation seen in the training shapes along that

direction. As the standard deviation of a distribution is simply the square root of the distribution’s

variance, then the standard deviation for the model’s distribution of values for a shape parameter is

iλ . Therefore suitable limits for testing to see if an input shape is of the class of shapes that is

described by the model, are: -

iib λ2±=    (3.20)

Often it is possible to compress the size of the resulting model by discarding eigenvectors that

correspond to insignificant modes of variation. In other words, if any of the eigenvalues are very small

(or zero), then there is little (or no) variation in the direction specified by the corresponding

eigenvector, and these eigenvectors can be removed from the matrix P. Given that the eigenvectors are



arranged in decreasing order of importance, the least significant modes of variation can be removed by

simply discarding the last m columns of P.

The total variation of the original data set can be said to equal: -
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In other words the total variance of the original data is equal to the sum of the variances in each of the

directions denoted by the eigenvectors. Hence it is possible to state that the proportion of the total

variance in the original data occurring in the direction of the ith eigenvector is given by: -

112

0

−−

=





∗ ∑

n

i
ii λλ    (3.22)

This gives a convenient method for calculating how many eigenvectors need to be retained for the

model to be effective. For example, Baumberg’s training data consisted of outlines described by forty

two-dimensional control points; hence the outcome of PCA was a matrix containing eighty

eigenvectors. However, Baumberg found that the first eighteen eigenvalues accounted for ninety

percent of the variation in the training data, hence he compacted his model by discarding the remaining

sixty-two insignificant eigenvectors.

3.2 Object Tracking

The aim of Baumberg’s system was to track one or more non-rigid objects through a real life outdoor

scene. The image data that was to be analysed was simply real-time video footage of a pedestrian

scene. The model used to recognise objects of interest within the input data was a two-dimensional

statistical model as described in the previous section.

Given the nature of the input data (i.e. real-time video footage of an outdoor scene) there were two

main criteria that Baumberg’s object tracker needed to meet. First, his tracker needed to be able to

analyse the input images at the same rate that they were captured by the video camera. In other words,



thirty images per second needed to be analysed. Second, the tracking mechanism needed to be very

robust against noise, not only because the quality of video can be variable but also because objects

within the scene could be partly occluded.

Given these criteria there are several reasons as to why it was not enough for Baumberg to implement a

tracker that simply extracted the shape-vector descriptions of moving object silhouettes and compared

these to the object model.

Looking first at the fact that the live input video stream can be noisy, it may be the case that the

segmentation of the entire image could yield silhouettes that are significantly corrupted, and will

therefore not match the developed object model. Such a corrupted image is shown in Figure 3.6, where

“data drop-out” noise was simulated by randomly adding black or white image artefacts to the result of

image differencing. As can be seen from this diagram the existence of such noise can severely alter a

shape’s outline.

Figure 3.6: A sample corrupted image that was used as input data for Baumberg’s pedestrian tracker

In addition to containing noise, the input images could be very cluttered and contain many moving

objects. In order to be able to track all shapes as they move through a particular image sequence it is

necessary to be able to distinguish between the different objects even when they are occluding each

other. To achieve this some kind of mechanism needs to be employed to predict where a tracked shape

is going to appear in the next image. Applying such a prediction mechanism also reduces the overhead



of searching through the entire image for a particular object, thus helping to keep the computation time

down.

Baumberg’s predictive tracking mechanism involved the assumption that the objects undergo a uniform

two-dimensional motion in image space. Hence the position that a pedestrian is likely to be at in a

subsequent frame can be estimated, to within a certain error limit, from its position in the current frame.

Similar predictive assumptions can be made about how much the tracked shape was likely to have

rotated, changed in size and how the shape parameters are likely to have changed. At this point it was

possible to project the mean shape of the model into the image plane at the position, and with the

rotation and scaling factors previously estimated using: -

[ ] cssQ TPbMS ++= ),( ϑ    (3.23)

where ),( ϑsQ is a rotation by ϑ and a scaling by s and cT is a translation by ),( cc YX . The shape

vector S represents the position of the n outline points of the shape in image co-ordinates.

Now an iterative process is entered to refine all of the above estimates. First, suggested movements for

each landmark point are calculated. This is done by searching for the strongest edge along the normal

to the model boundary at each landmark point. The suggested movements for the landmark points are

set to be the distance between the original estimated position and the edge feature.  Once new estimates

for the values of the state parameters have been found it is possible to go back and improve on the

estimates for the translation, rotation and scaling parameters.

The way Baumberg achieved this is in practice was to use the following process. First the shape and

alignment (rotation and scaling) parameters were assumed to be fixed and a value for the new origin

found. The value for the new origin was calculated by first making an estimate of where the origin was

likely to be, subject to some error, and then by searching for edge features in the image to make a

“noisy” measurement of were the new actually origin was. These two measurements can then be

combined using a Kalman filtering technique ([15],[16]) that balances the errors in the estimated value

with the errors of the measured value, thus theoretically providing a more accurate result than either of



the two original values. Once a value for the new origin was found this was assumed to be fixed and

values for the rotation and scaling factors calculated using a similar mechanism.   Finally, again using

the same mechanism, each shape parameter could be updated, assuming that the position and alignment

factors were constant. This whole process was iterative so the shape contour was actually refined

several times for each frame.

This process was applied to each object that the tracker had already identified, so a separate fast

segmentation technique was necessary to locate any new moving objects in each frame. This technique

was similar to the background subtraction technique used to extract training shapes (as described in

Section 3.1.2), except that it did not contain the noise reduction step. Objects that were already being

tracked could then be removed from the resulting differenced image by simply clearing the bounding

box of the tracked object. Any remaining significantly sized components were then assumed to

correspond to new moving objects.

Initial estimates for translation, origin and scaling were calculated from the size and orientation of the

bounding box, and initial estimates for the shape parameters were just taken to be the associated

eigenvalue, iλ .

Unfortunately, Baumberg is not explicit about how his tracker distinguishes between moving objects

that are pedestrians and moving objects that are not. My assumption on reading his work is that if a

moving object does not correspond to the model constructed of pedestrians then there will be no (or

few) edge features available in the image within the limits of the feature search. This will result in

“lock” being lost and the object not being tracked.

3.3 Summary.

In this long chapter, an overview of the pedestrian tracking system implemented by Baumberg has been

presented. Baumberg’s system consisted of two main parts. The first of these automatically constructed

a point distribution model of pedestrians from a set of training images. This model builder functioned



by first taking live raw images from a static camera and applying a background differencing technique

to locate any moving objects within the scenes depicted. Once roughly human-sized moving objects

had been located, a reference point was found on each silhouette that roughly corresponded to the top

of the pedestrians head. The rest of the points used to describe each outline were calculated by setting

them to be the control points of a length-wise uniformly spaced B-spline that described the shape of the

outline. The resulting point descriptions of pedestrian outlines were then aligned, to remove any shape

variation due to transitional, rotational or scaling differences, by using a normalisation algorithm

known as generalised procrustes analysis due to Gower. Finally, the resulting aligned outlines could be

analysed, using the multivariate statistical technique principal component analysis, to produce the

model.

The model that resulted from this process was comprised of the mean pedestrian shape (i.e. the average

of all of the training shapes), and a set of eigen vectors that represent how that mean shape was allowed

to vary and still belong to the set of legal pedestrian silhouettes. The eigenvalues associated with the

eigenvecotrs give an indication of the degree of variation accounted for by each eigenvector.

The second part of Baumberg’s system employed the constructed pedestrian model to track people as

they moved through a real life out door scene. To achieve robust tracking in the presence of noise, a

predictive mechanism was employed that allowed an initial estimate for where in the image a

pedestrian was likely to be, before the silhouette for that pedestrian was identified and compared with

the model.



4 Implementation

Given the time constraints of a MSc project it was unfeasible to implement an exact reconstruction of

the pedestrian tracker created by Baumberg. However the goal of this project was to evaluate the point

distribution modelling techniques used by Baumberg in situations where the objects being modelled

were not as complex as human beings, and it was still possible to achieve this goal by implementing

only a “stripped down” version of Baumberg’s system. The main simplification made was to assume

that motion-based image segmentation was possible and that the input data, for both the model-building

part of the system and the tracker, was already outline descriptions of the silhouettes of simple three-

dimensional objects.

The effect that this has on the model building process is depicted in Figure 4.1 below, given that

segmentation of the training data is assumed the remaining model building process consists only of the

re-pointing, normalisation and statistical analysis stages.

Figure 4.1: A diagram representing the stages involved in model construction after simplification.



In addition, given that the input data was known to be clean, noise-free and uncluttered outline

descriptions of simple shapes, the tracking part of Baumberg’s system could also be greatly simplified.

Instead of having to employ the predictive mechanism outlined in the last chapter, all that it was

necessary to do was to extract the shape-vector descriptions of moving object silhouettes using the

same methods that were used to extract training shape descriptions, and compare these to the object

model.

4.1 General Comments

The system implemented here was written in Java 1.26 on a 333MHz NT Workstation. Also, given that

the normalisation algorithm and principal component analysis both rely heavily on matrix algebra, a

Java package that contained common matrix operations was essential to this project. Rather than “re-

inventing the wheel” a third party package (Jama [17]) was found and used. This package includes the

eigenvalue decomposition necessary for principal component analysis and the singular value

decomposition necessary for normalisation, as well as most common matrix operations.

4.2 Input Data

The data used in this project, both to construct a model and as input for the tracker, were synthetic two-

dimensional outline descriptions of simple convex three-dimensional objects. The sequences are

intended as realised results of contour finding applied to the results of Baumberg’s image-differencing

motion detection, performed on image sequences resulting from a moving camera continually aimed at

a stationary object.

                                                          
6 Java may not operate fast enough to be a suitable choice for implementing an object tracking system
that needs to work at video frame rate. However the system implemented here is intended as a proof of
concept rather than as a system that could function in the “real” world, so constraints such as speed of
operation do not apply.



Figure 4.2a: An example of the kind of simple convex prismatic objects being modelled in this project.
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Figure 4.2b: An example of the outline descriptions produced by the program used to generate the

input data for this project.

To generate this a third party C program was used. This program allows the user to describe the shape

of simple convex three-dimensional objects, state from which direction the objects are being viewed,

and to specify how the camera position and direction varies over time. The output from the program is

a set of matrices that describe the positions of each object’s outline silhouette as the camera view

changes. The silhouette itself is described as a list of x, y co-ordinates that represent the vertices of the



silhouette. All 3-D objects used here are prisms formed by extruding a planar (2-D) convex polygon

‘template’ along an axis perpendicular to the template’s plane. Figure 4.2a above, shows an example of

the kind of 3-D objects specified, and Figure 4.2b an example of the output produced from the

program.

4.3 Building the Object Model.

4.3.1 The Training Data.

The accuracy and therefore usefulness of the model is largely dependent on the training data that was

used to generate it.   For example, if a system being built to recognise and track people in a bus station

is trained only with images containing standing human figures then it will to fail match against people

who are seated, or walking.

As the type of training data required is clearly dependent on the end-use of the system, it is very

difficult to be prescriptive about exactly what constitutes a “good” training set. Indeed, there is no in-

depth discussion of training data in any of the referenced literature. However, even though there is no

quantitative analysis of training data requirements there are at least two qualitative guidelines. First, the

training data needs to contain images that cover the range of object aspects that are likely to exist in the

situation the system is being built for. Second, there is a desire to be able to train the model

automatically. For example, Baumberg used as training data 15 minutes of live video images of the

pedestrian scene that his system was designed to observe. In addition to this, once the human

silhouettes had been extracted from this data, each was reflected about its principal axis to produce

even more valid training data.

For this piece of work the second guideline is of less relevance, as this system is only intended to be a

“proof of concept” rather than a system that is designed to work in the real world. However, even if

real rather than synthetic data were being used, it is doubtful that the model building phase could be



entirely automatic. Even Baumberg carefully selected which video sequences to use as training data

such that they would not be too cluttered with moving objects.

Given the irrelevance of the second guideline, the training data simply needs to contain the range of

silhouettes that the objects are likely to exhibit in the field.

Figure 4.3a: A diagram depicting the upper view hemisphere of the object camera.

To achieve this it is worth thinking about a real world application area. For example, if a system were

being built to identify and track vehicles one could argue that the best way to collect training data

would be to film a number of stationary cars by moving the camera around those cars. To achieve good

coverage of the set of all possible viewing positions and angles using this system there are at least four7

independent variables that need to be considered, as depicted in Figure 4.3a & Figure 4.3b. These

variables are: -

•  θ.  The angle the camera makes with the principal horizontal axis of the object.

•  ϕ. The ‘tilt’ angle the camera makes with the ground plane.

•  d. The distance between the camera and the origin of the object.



•  α. The angle of acceptance of the lens (α → 0 for a telephoto lens and α → ∞ for a wide-

angle)

In practice the number of possible views of an object is actually constrained by the circumstance of the

viewing. For example, for a standard surveillance camera the angle of acceptance and the tilt angle are

liable to remain fixed. In addition any variability in the distance from camera to object is going to be

removed by the normalisation part of the model building process. So in this work training sets of

different objects were generated by keeping the camera’s angle of acceptance, camera tilt and distance

from the object constant, then taking a sequence of images of the object at suitable intervals of  θ.

Figure 4.3b: A diagram depicting the side elevation of the camera’s upper view hemisphere. Showing
the camera’s angle of acceptance, α

4.3.2 Re-Pointing.

As the input data is simply a description of the vertices of each shape a re-pointing algorithm is

required to change this input into a form that complies with the criteria discussed in Chapter 3.1.4.

Certainly, a vertex description will not guarantee that the same number of points is used to describe

each shape, even if on similar shapes the location of the points correspond to the same object feature.

                                                                                                                                                                     
7 If the object were large, or the camera was close to the object with a small angle of acceptance, then
the position of the origin in relation to the object would be another variable that would need to be



The re-pointing algorithm that has been implemented places the first landmark point at the highest

point of the contour in the image. If the top of this contour is a horizontal line then the first landmark

point is placed at the right extremity of that line. Then the rest of the desired number of points are

placed equidistantly around the outline. By always ensuring that the first point is located in the same

place it is guaranteed that for two almost identical shapes, any variation will be due to the difference in

the shape rather than to a difference in the way that the points were allocated.

In fact, using the highest point of the shape to place the first landmark point was suggested by

Baumberg as an alternative to his method of finding where the principal access cuts the image

boundary, for objects such as cars.8
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Figure 4.4: A training shape before and after re-pointing

The re-pointing algorithm was tested by visually comparing input and output shapes. An example can

be seen in Figure 4.4 above.

4.3.3 Normalisation Algorithm

The normalisation algorithm implemented was generalised procrustes analysis as outlined in section

3.1.5.

                                                                                                                                                                     
considered.



There were several pieces of the normalisation algorithm as derived by Gower [13] that were not

strictly necessary for the algorithm to function correctly in this circumstance. For example, the initial

scaling step where each of the original shapes, iS , is scaled by λ such that: -

∑
−

=
=

1

0

2 )(
m

i

T
ii mtr SSλ             (4.1)

was included by Gower simply to ensure that the numbers generated by the algorithm were “friendly”

enough for the computers available in 1975 to be able to  handle them accurately. In addition, the initial

rotation step was only included in an attempt to make the normalisation algorithm symmetrical (i.e. in

the case of two matrices, rotating and scaling X to fit Y is equivalent to rotating and scaling Y to fit X).

For this work it would have been acceptable to have a non-symmetrical algorithm that scaled and

rotated all of the shapes to fit the first shape of the set.

However, I decided that the algorithm should be implemented as described by Gower for two reasons.

In the first place, Baumberg did not discuss his implementation of the algorithm at all and hence

provided no indication of whether or not he simplified Gower’s work. Given that this work is a rational

reconstruction of Baumberg’s system, it was felt that the “safest” option was to implement the

algorithm exactly as Gower had defined it.

In addition Gower provided test data for a worked example in his paper (Please see Appendix B for this

test data), and this test data proved to be the most convenient way to verify that the algorithm was

working correctly. However, to gain identical results to Gower the algorithm had to be implemented

exactly as Gower had intended.

 The operation of the algorithm was also tested on three triangles as depicted in Figure 4.5.  Although

this was a very simple test case it allowed easy visual verification of all the stages during debugging.

                                                                                                                                                                     
8 Although Baumberg did not specify what to do should the upper most part of the shape be a
horizontal line rather than a single point.



Although it may not be clear from the level of description found here, identifying and dealing with the

errors and omissions in Gower’s article describing generalised procrustes analysis caused significant

problems and incurred heavy time delays.

4.3.4 Principal Component Analysis.

The statistical analysis of the training data was achieved by implementing principal component analysis

(PCA) as outlined in section 3.1.7.

The operation of the algorithm was visually inspected on some simple distributions of two-dimensional

points, an example of which can be seen in Figure 3.5

To verify that the algorithm was functioning correctly in more than two dimensions the effect of PCA

on a set of ellipses with equal height but varying width was examined. (See Figure 4.6 for a depiction

of the input data)
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Figure 4.5: A graph representing the set of ellipses used to verify the operation of the principal
component analysis algorithm.



When the PCA algorithm was applied to the above mentioned shapes only one of the resulting

eigenvectors had a corresponding eigenvalue that was not equal to zero. In other words there was only

one “direction” in which all of the variation of the original data occurred. This was the expected

outcome, as to produce a set of ellipses with different widths only one variable in the equation for an

ellipse is altered. This means that there is actually only one linearly independent variable that describes

the variation of the shapes, and therefore there can only be one direction of variation resulting from the

principal component analysis of that set of shapes.

As is it difficult when there are more than two dimensions to visualise the “directions” that

eigenvectors resulting from PCA correspond to, a method was needed to view and verify the outcome

of the algorithm when sets of shape vectors, rather than sets of two-dimensional points, were analysed.

The method used to visualise a mode of variation, as represented by an eigenvector and eigenvalue

pair, was to produce a set of shapes that were the result of varying the mean shape, within suitable

limits along the “direction” denoted by the eigenvalue for that mode. Explicitly, for the ith mode of

variation, shape-vectors )( jS  are calculated using: -

iim
j jstep eSS *)(*)( λ∗+=          (4.2)

Where mS is the mean shape, and j varies between –k and k (e.g. j = -2, -1, 0, 1, 2).  The variable step

multiplied by j controls how much the mean shape is varied along the direction denoted by the

eigenvalue ei. For example, if step is set to be 0.5 and the values of j are as above, then five shapes will

be produced. The first shape will differ from the mean by –1 standard deviation where the standard

deviation of the distribution of the possible shapes for that mode is given by the square root of the

corresponding eigenvalue, iλ . The second, forth and fifth shapes will differ from the mean by –0.5,

0.5, and 1 standard deviations respectively and the third shape will be the mean shape of the input set.

The visualisation of the only mode of variation resulting from the analysis of the ellipse shapes is

shown below in Figure 4.6.
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Figure 4.6: A visualisation of the single mode of variation produced by applying principal component
analysis to a set of ellipses of varying width.

4.4 Object Tracker.

Given that real image data was not being analysed the tracking mechanism implemented by Baumberg

was reduced to a much simpler object recognition mechanism. This mechanism consisted of three

principal parts. First the input shape was re-pointed using exactly the same re-pointing algorithm that

was employed in the model building stage, as is described above in Section 4.3.2. Then the re-pointed

shape was aligned to mean shape of the model at which point the resulting shape could be compared to

the model to see whether or not it was within the set of shapes allowed.

As the re-pointing algorithm implemented here was identical to the algorithm describe above, only the

normalisation and identification processes will be discussed here.

4.4.1 Normalisation.

When applied to two shapes and implemented as described above (Section 4.3.3), generalised

procrustes analysis will align those two shapes to each other. Hence it was not possible to employ the



above algorithm to rotate and scale the input shape to fit the model’s mean shape whilst keeping the

mean shape fixed.

To align the input shape to the model’s mean shape a non-generalised procrustes analysis was

implemented as follows.

First the model’s mean shape, sM , and the input shape, S , were aligned to each other using the

generalised procrustes analysis algorithm described above, to produce to new shapes, s
new M and

Snew . The new rotated and scaled mean9, s
new M , is given by: -

msmeans
new HMM ρλ ∗= (4.3)

Where λ is the initial scaling factor, and meanρλ ∗  is the total amount that the mean shape has been

scaled by, and mH is the matrix describing how the mean has been rotated.

The new rotated, scaled and translated input shape, Snew , is given by: -

ssshape
new TSHS +∗= ρλ                   (4.4)

Where, sT , describes the translation that the input shape undergoes, shapeρλ ∗  is the total scaling

factor, and sH is the matrix describing how the input shape has been rotated.

Next, the newly aligned input shape was re-aligned to the original mean shape. This was achieved by

calculating what the scaling and rotation factors applied to the mean shape in the above operation were,

and applying the inverse of these to the previously aligned input shape, Snew . In other words, the same

                                                          
9 The model’s mean shape is not translated during the generalised procrustes analysis, as it was placed
at the origin when calculated originally.



rotation and scaling operations that would translate the new mean, s
new M , to be identical to the

original mean, sM , needed to be applied to the new input shape, Snew .

Equation 4.3 indicates that the scaling factor applied to the original mean shape was equal to

meanρλ ∗ and both of these scaling factors are available as results of the generalised procrustes

analysis algorithm. However the rotational matrix mH , also from equation 4.3 above was not available

as a result, and therefore needed to be calculated.

Rather than find the rotation matrix that rotates the original mean to the new version of the mean, and

then finding the inverse of that matrix, the necessary rotation factor was found directly by using

principal value decomposition, as described previously in section 3.1.5. The matrix that rotates the new

mean, s
new M , back to fit the original mean, sM , is given by: -

UVH T=        (4.5)

where U and V are given by: -

VUMM Γ= T
s

newT
s (4.6)

Once the rotational matrix had been calculated the previously aligned input shape, Snew , is re-aligned

to fit the original mean using: -

( )SHS new

mean

Final

λρ *
1=      (4.7)

The above described non-generalised procrustes analysis algorithm was tested by visually examining

the shapes before and after they were normalised.

4.4.2 Object Identification.

Once the input shape has been re-pointed and aligned to the model’s mean shape, it is possible to

project the input shape into the model space and ascertain if the resulting shape parameters lie within

acceptable limits.



The input shape is projected into the model space, as derived in Section 3.1.7, by using: -

( )si
T

i msPb −=         (4.8)

Where b is the column vector of shape parameters (i.e. ( )1,10 ...,, −= ni bbbb  where n is the number of

principal components retained by the model), TP is the model’s eigenvector matrix, si is the input

shape-vector and ms is the models mean shape. As discussed in Section 3.1.7, suitable limits for testing

to see if an input shape as an allowable view of the object that is described by the model, are: -

iib λ2±=      (4.9)

where iλ is the corresponding eigenvalue.

4.5 Summary

In this section a description of the system implemented to explore the effectiveness of point distribution

models when used to model simple convex prismatic objects has been presented.

The system implemented here was a simplified version of Baumberg’s work, where the initial image

segmentation stages were assumed to be possible and therefore the input data, into both the object

builder and the tracker, was already available in the form of outline descriptions of simple object

silhouettes. This meant the object builder implemented here needed to consist only of re-pointing,

normalisation and principal component analysis stages.

In addition, by cutting out the use of raw image data, the tracking part of the system used for testing the

operation of the built models was also simplified. Instead of needing to employ Baumberg’s predictive

mechanism, it was enough to use methods similar to those used in training the model to extract outline

descriptions of the input data, and compare the resulting descriptions directly to the model.



5 Results: Preliminary Exploration

In order to investigate the performance of point distribution models where the objects being modelled

are simple convex rigid bodies, several models of different simple objects were constructed and these

models were then applied to object recognition tasks.

For a preliminary exploration, models were constructed for the four objects shown below in Figure 5.1.

For the rest of this document the naming convention adopted will be to refer to these objects by their

distinguishing faces, i.e. square, parallelogram-1, parallelogram-2, and parallelogram-3.

Figure 5.1: A representation of the three-dimensional objects being modelled. (Not to scale)

The training data used to construct an object model comprised of outlines of the object as seen by a

camera as it rotated around that object. In other words, the camera’s angle of acceptance (α), tilt (φ)

and distance from the object (d) were held constant, while the angle the camera made with the principal

horizontal axis of the object (ϑ) was varied, in suitable steps, between 0 and 360 degrees. (As depicted

in Figure 5.2 below)



Figure 5.2: A representation of the camera path used to produce a sequence of training images.

The values for α, φ, d, and ∆ϑ  (the amount by which ϑ  varied between “frames”) were chosen to be: -

•  α = 45o

•  φ = 10o

•  d = 4010

•  ∆ϑ  = 10o, where ϑ  ranges from 0o to 360o

These values were chosen (reasonably arbitrarily) such that the training set produced was of a nature

that allowed easy visual inspection of the object silhouettes. Given this choice each training set

contained 36 outlines, some of which are displayed below in Figure 5.3.

                                                          
10 Where distance in measured in some arbitrary unit.
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Figure 5.3: Examples from the set of training data generated for parallelogram-3

Several versions of model were built for each object, where the compactness of the model was varied in

two ways. First, different models of the objects were constructed by varying the number of points

added by the re-pointer to describe each shape in the training set. Second, the amount of amount of

variation of the training data that the model finally accounted for was varied. In other words, the

number of eigenvectors (resulting from the principal component analysis of the training shapes)

retained by the model was varied.

When a model is presented with an input shape there are four different identifications that the model

can make depending on whether or not the input shape is of the class of shapes being modelled. These

are: -

•  True positive: The shape is correctly identified as fitting with the model.

•  True negative: The input shape is correctly rejected.

•  False positive: The input shape is incorrectly identified.

•  False negative: The input shape is incorrectly rejected.

The overall accuracy of a model can be examined by looking at what percentage of input shapes are

correctly classified, i.e. how often a model produces a true positive or a true negative when it should.

However, a model can be incredibly good at positively identifying shapes of its own class without

necessarily being good at rejecting shapes corresponding to a different object. Therefore it is also



useful to look at what percentage of input shapes that do correspond to the model are correctly

positively identified in isolation from what percentage of input shapes that do not correspond the model

are correctly rejected.

The data presented to the models here, to see how well they performed at identification tasks, was

actually the training data described above. So for each set of training data the corresponding model

should always be able to positively identify input shapes as belonging to the class of shapes described

by that model. However, it was expected that given how similar the four objects being modelled were,

that the models would falsely identify input shapes that are views of objects which were not the object

being modelled.

The first set of models was constructed such that they retained the modes of variation that accounted

for 99% of the variance of the training data. Several of these models were built for each object where

the number of points used in the re-pointer to describe the training shapes varied between 10 and 80.
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Figure 5.4: A graph showing the accuracy of classification against number of points used to describe
the training shapes for each of the four models and the overall accuracy of identification for all four

models.

Looking first at the overall performance accuracy (Figure 5.4), it was found that the combined accuracy

of the models when presented with all four sets of input data was slightly below 50%.  In other words,

whilst working in parallel, the models misclassified (i.e. either produced a false negative or a false

positive identification) input shapes over 50% of the time. Out of the four models, the model of



parallelogram-3 had the best overall performance and correctly classified input shapes just under 80%

of the time.

In addition the accuracy of the individual and overall performances were not affected to any significant

degree by changing the number of points (within the limits tried here) that were used to describe each

training shape.

Looking at how accurately the models could positively identify shapes of its own class (Figure 5.5), it

was found that over all four models input shapes were only correctly positively identified around 90%

of the time. By this measure the square model had the best performance, being the only model to

achieve 100% recognition of its own shapes. However this result coupled with the fact that the square

model only achieved an overall performance of around 25% indicates that the model for the square was

too general and allowed all shapes belonging to the three other objects to be incorrectly identified.

Conversely, the parallelogram-3 model achieved good overall results, and yet was the model least able

to identify shapes of its own class.
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Figure 5.5: A graph showing the accuracy of positive identification against number of points used to
describe the training shapes for each of the four models and the overall accuracy of identification for

all four models.

Again, changing the number of points used to describe the training shapes had little effect on

improving the accuracy of the models.



Next, a set of models was constructed such that the models all used 30 points to describe the training

shapes, while the amount of variation of the training data that the models accounted for was varied.

As can be seen from Figure 5.6, only the overall performance of the models was not significantly

effected by changing the number of modes of variation retained by the model.
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Figure 5.6: A graph showing the accuracy of classification against the percentage of the variance of the
training data retained by the model.

Looking at how well models identified shapes of their own class (Figure 5.7), as before the square

model had the best performance, and indeed was the only model to achieve 100% accuracy on positive

identification tasks. All of the models remained largely unaffected by changing the number of modes of

variation retained by the models.
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Figure 5.7: A graph showing the accuracy of positive identification against the percentage of the
variance of the training data retained by the model.



6 Discussion and Further Exploration

6.1 Discussion of Initial Results

The most significant result gained from the initial exploration was the fact that, apart from the square

model, all of the models failed some of the time to correctly identify shapes of their own class. This

was particularly worrying, as the input data used to test the models was identical to the data used to

train them. When a training shape is projected into the model space the outcome is a column vector of

shape parameters given by: -

)( si
T

i msPb −=           (6.1)

where P is the eigenvector matrix and sm is the mean shape. Across the whole training set, the

variance of the ith shape parameter is given by the corresponding eigenvalue iλ . The distributions of

the shape parameters is assumed to be normal and an input shape is considered to belong to the object

described by the model if the shape parameters (corresponding to the input shape) all lie within 2

standard deviations of the mean (i.e. iib λ2± ). In other words, given the assumption that the

distribution of the each shape parameter is normal, a model should correctly positively identify input

shapes at least 99% of the time when the input shapes are identical to the set of training shapes.

This level of accuracy in positive identification tasks was clearly not achieved by three of the four

models tested in the initial exploration phase, leading to the hypothesis that the shape parameters of the

training shapes are not normally distributed. Further investigation confirmed this hypothesis. In

addition it was found that not only are the distributions of the shape parameters not normal, but they

also contain multiple peaks. It is these unexpected extra peaks in the distributions that cause the models

to be unstable and therefore degrade their performance at positive identification tasks. This is discussed

in more detail below.



The unexpected nature of the shape parameter distributions is caused by the way that the re-pointing

algorithm works.  Point descriptions of all of the input shapes were gained by taking the highest point11

of the input shape (this is known as the reference point) as the position of the first point, and then

distributing the rest of the points around the outline with equidistant spacing. For the most part, this

approach results in the same point on the 3D object being identified as the location for the first point to

be placed on the 2D image space projection of that object. However, as the view of the object changes,

there are times when over a small change in view the first point positioned on the 2D object outline

stops corresponding to one part of the object and ‘jumps’ such that it then corresponds to an entirely

different part of the object. For example, for a 3-D parallelogram when the camera angle ϑ  varies

between 1° ~ 89° the first point of the outline description will correspond to the top left-hand corner of

the face at the rear of the object as this is the highest point of the object within the image plane. As the

camera view varies from 89° ~ 90° the highest point of the object (and therefore the position of the first

point) flips to be what was originally the top left-hand corner of the object’s front face. (Please see

Figure 6.1)
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Figure 6.1: A diagram showing the “jump” of the positioning of the first outline point as the view of
parallelogram-3 passes through 90 degrees.

As can be seen from Figure 6.2, these discontinuities in the shapes descriptions are preserved even after

normalisation. The result of the normalisation process is clusters of shapes, where each cluster

corresponds to views of the object where the first point of each outline description is constant, and the

                                                          
11 If the highest part of the image is a horizontal line then the right most extremity of that line is chosen



discontinuity between clusters corresponds to a shift in what features of the object the points

correspond to.
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Figure 6.2: A diagram showing ‘jump’ in the positions of the outline points after normalisation has
occurred.

The reason that the square model behaved better (at positive identification tasks) than the other three

models tested was because of the symmetrical nature of the cube object being modelled. When the

reference point jumps to another location on the cube, because of rotational symmetry, the new outline

description produced will match an outline description produced when the reference point was at a

different object location. For example, the outline description of a cube centred on the origin and

viewed at 91° exactly matches the outline description of the same cube when viewed at an angle of 1°.

The slight degradation of the square model performance can therefore be explained by the fact that the

program that created all of the input data did not allow the objects to be centred on the origin. Instead

the objects were placed in the view hemisphere such that front left-hand bottom corner of the object

corresponded to the system’s origin. This shift in origin is enough to mean that although shape

descriptions before and after a shift in the positioning of the first outline point are similar they are not

identical, thus leading to a slight deformations in the distributions of the model’s shape parameters.

                                                                                                                                                                     
as the position for the first point.



6.2 Further Results

To confirm that the incorporation of discontinuities in the outline descriptions was the only thing that

caused the bad performance of the models when presented with positive identification tasks, a further

set of experiments were run. Here, the models were constructed by constraining the object’s view space

such that the first point of the outline description of the training shapes always corresponded to the

same location on the object.

The same four objects were modelled as before (see Figure 5.1). To produce the training data used to

build the models, the camera path used before was constrained such that the angle the camera made

with the objects only ranged between 10° ~ 80°, with a 10° variation per “frame”. Discontinuities in the

positioning of each outline’s reference point only occur every time the camera angle passes through 90°

(i.e. at 90°, 180°, 270° & 360°), hence by limiting the range of views used as above, the data was

known to contain only smooth transitions of the outline points. The training sets constructed contained

8 object views each.

As before, the first set of models was constructed such that the models retained the modes of variation

that accounted for 99% of the variance of the training data. Several of these models were built for each

object where the number of points used to describe the training shapes varied between 10 and 80. The

data presented to the models, to see how well they performed at identification tasks, was again identical

to the training data used to create the models.

As can be seen from Figure: 6.3, the accuracy of each model at correctly identifying shapes, as

belonging to the class of shapes described by that model, was 100%. And this level of accuracy was

totally unaffected by how many points were used to describe each shape. In addition, the overall

accuracy of the models performance (i.e. how well the models could correctly identify shapes of their

own class in addition to how well the models could correctly reject shapes that did not belong),

improved. With the new set of models, correct classification is achieved just under 70% of the time,

rather than before when the accuracy was below 50%. (Figure 6.4)
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Figure 6.3: A graph showing the accuracy of positive identification against number of points used to
describe the training shapes for each of the four models.
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 Figure 6.4: A graph showing the accuracy of classification against number of points used to describe
the training shapes for each of the four models.

Again as before, a second set of models were constructed such that the models all used 30 points to

describe the training shapes, while the amount of variation of the training data that the models

accounted for was varied.

For the new set of models, regardless of how much variance of the original data was retained by the

model, the performance for correct positive identification of shapes remained at 100%. However the

overall accuracy for general shape classification dropped from just under 70% to 25% as the amount of



possible shape variation described by the models varied from 99% to 90% (Figure: 6.5). This, in

combination with the results concerning the models’ ability to perform positive identification tasks,

indicates that as the possible shape variation retained by a model is decreased, that model becomes less

good at correctly rejecting shapes that do not belong to its class of shapes.
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Figure 6.5: A graph showing the accuracy of classification against the percentage of variance of the
training data retained by the model.

6.3 Further Discussion

The second set of results show that the incorporation of discontinuities in shape outline descriptions

was the only thing that caused the bad performance of the models at correctly recognising shapes that

were used to construct the model in the first place.

This indicates that for this kind of automatically-constructed point distribution model to be effective in

anything other than highly constrained circumstances there needs to be a mechanism for accurately

identifying a stable reference point on the object outline. In addition, this fact is true for any objects

being modelled regardless of how simple or complex they are.

To a certain extent, it would appear that Baumberg was lucky that he did not encounter this difficulty.

Wherever a camera is placed on the surface of the view hemisphere (Figure 6.6), it becomes clear that



(unless the camera angle of elevation (α) is at 90°) the upper most point of the pedestrian silhouette is

always going to correspond roughly to the top of a persons head. However, using the same technique to

identify a reference point on a silhouette would not work for humans if it was applied in situations

where people are either not in an erect posture or where it is likely that they should be holding their

hands above their head.12

Figure 6.6: A diagram representing the possible viewing angles of an upright human being.

For the kinds of objects discussed in this thesis it is not obvious how it would be possible to

systematically identify a single stable reference point that lies on the outline of the object. This is

because, for the objects studied here, there is no single point of reference on any of the objects that

remains in view regardless of where the camera is on the view sphere.

One suggestion for overcoming this problem would be to find a systematic way of automatically

identifying a series of reference points, such that for any one view of an object there was at least one of

the reference points visible. Then it would be possible to write a normalisation algorithm that takes

these reference points into consideration when aligning the input shapes, thus avoiding discontinuities

being incorporated into the model.

                                                          
12 Thus providing any potential criminals reading this thesis with two ways of fooling the
Reading/Leeds automated surveillance system whilst stealing cars.



However, until such a solution to the reference point problem can be devised it is clear that this kind of

automated point distribution modelling technique is not going to applicable to a wide range of objects,

unless the circumstance of operation is severely constrained.

Once the discontinuities were removed from the shape descriptions of the training data, it was possible

to see that the models were still failing to correctly classify input shapes.  As the models performance

at positive identification was one hundred percent, it is clear that the remaining classification errors

were due to the models falsely identifying shapes that did not belong to the sets of shapes being

modelled. In other words the remaining source of errors was due to the fact that the models could not

systematically distinguish between the different shapes.

Unfortunately, due to time constraints, not enough experimentation was possible to ascertain more than

an intuitive feel for how this remaining error rate was affected by varying some of the model

parameters. For example, the ability for the models to be able to correctly distinguish between shapes is

clearly dependant on how different the objects being modelled are, however the work done here does

not provide any quantitative description of how different the shapes need to be. In addition, the models

were not tested on data that was not part of the training data, so this work sheds no light on how

comprehensively the training data needs to cover the view space for the model performance to be

optimised.

However, even from these limited results it is clear that, where simple objects are concerned, a model

that only incorporates data concerning how the silhouette of an object varies is going to encounter

shapes that it cannot correctly classify. This is because the spaces of allowable outline shapes defined

by different models are going to overlap in certain circumstances. In other words, failures to correctly

reject shapes will occur when an outline of an object also corresponds to a valid view of a different

object. In cases where confusion is bound to occur (simply because there is not enough variation

between views of different objects to allow a model of this nature to operate), some secondary

characteristics are going to need to be modelled to help resolve conflicts when they occur. For example,

in the above case, including information about the positions of all visible object edges, rather than just

the edges forming a silhouette, is going to improve the chances of being able to distinguish between



views of the square and views of the parallelograms. However, this kind of additional modelling is a

non-trivial problem, as years of research in the field of machine vision will testify.

The question that this project was attempting to answer was whether or not point distribution modelling

techniques are still valid in areas where the objects being modelled are simple rigid objects. Certainly

this project has shown that, in anything other that very constrained circumstances, not being able to

automatically identify a stable object reference point when extracting outline descriptions causes this

kind of system to fail badly. Even if it was possible to fix this, the early indications are that it is

doubtful whether or not there is enough variation in simple object silhouettes for such a system to be

able to systematically correctly classify such objects.



7 Further Work

Before this type of model building technique becomes appropriate for use in a broad range of

applications some way needs to be found to extract stable outline descriptions of the objects being

modelled. Without the ability to do this, automatically generated point distribution models are not

going to operate effectively unless either the circumstance of operation is severely constrained, or the

nature of object itself is such that an object-specific solution can be found.

One potential solution that could be investigated would be to find a systematic way of automatically

identifying a series of reference points, such that for any one view of an object there was at least one of

the reference points visible. Then it would be possible to write a normalisation algorithm that takes

these reference points into consideration when aligning the input shapes, thus avoiding discontinuities

being incorporated into the model.

In addition, much more experimental work can be done to gain more insight into how the performance

of this kind of model can be optimised. Examples of experiments that can be done to achieve this

include: -

•  Investigation into how well the models behave when presented with data that is not identical to

the data used to generate the model. (i.e. so called “out-sample” testing) This idea can also be

extended further to see how gracefully the model’s behaviour decays when the data presented to it

falls outside of the range of the training data.

•  Investigation of how sparsely the training data can cover the possible view space of an object

before the performance of the model falls below an acceptable level.

•  Investigation that yields qualitative (or preferably quantitative) results concerning how different

the objects being modelled need to be in order to minimise the occurrences of false identification.

This work could also be extended to explore what secondary characteristics should be modelled

in order to allow distinction in cases where silhouette information is not enough on its own.



Certainly some if not all of the above-mentioned investigations need to be undertaken before any

evidence is produced that has the potential to shed light on whether or not the human visual system

functions by statistically analysing visual data.



8 Conclusions

The goal of the piece of work described in this thesis was to ascertain if it is valid to use new model

building techniques involving the automatic generation of two-dimensional point distribution models,

for image interpretation tasks where the objects being viewed are much less complicated than have

hitherto been tried.

This goal was achieved by implementing a rational reconstruction of an image interpretation system

that generated and used a point description model to recognise complex bodies, and then to use this

system to build and test the function of models describing simple convex prismatic objects.

The system chosen as the basis for this work was a pedestrian tracking system that was created by

Baumberg for his PhD thesis. This work has two main parts. The first of these is the portion of the

system that is responsible for creating the model of pedestrians. The model builder functioned by

taking live raw images from a static surveillance camera and automatically extracting point

descriptions of any pedestrian-sized moving objects within the scene. This data was then statistically

analysed using principal component analysis to create a model describing how a silhouette of a

pedestrian is allowed to vary.

The second part of Baumberg’s system used the resulting model to track pedestrians through a real life

outdoor scene. The image data that was to be analysed was simply real-time video footage of a typical

street scene.

Given the time constraints of a MSc project it was unfeasible to implement an exact reconstruction of

the pedestrian tracker done by Baumberg. Therefore the system implemented here was simplified by

assuming that raw image segmentation was possible and that the input data, into both the object

building part of the system and the tracker, was already available in the form of outline descriptions of

the silhouettes of simple three-dimensional objects.



The outline descriptions of the simple three-dimensional objects were created using a third party C

program. A re-pointing algorithm was then used to change the input shape descriptions to point

descriptions similar to those that Baumberg constructed from raw images. These point descriptions

were then normalised and statistically analysed, using the same methods as Baumberg, to produce an

object model.

The resulting object models were then tested to see how well they could recognise input shapes. This

was achieved by presenting the models with the same images that were used to train them in the first

place (i.e. in sample testing), and gaining a measure of how accurately the models could classify these

shapes.

It was found that the method Baumberg used to automatically generate point-descriptions of object

outlines did not produce descriptions in which the positions of the points move smoothly as the

silhouette of the objects change. This in turn caused the models constructed by statistically analysing

the movement of these points to be unstable and to fail to systematically recognise shapes even though

those shapes were part of the training set used to create the model in the first place.

In addition, preliminary evidence was found that suggested that, even if a method can be found that

will automatically generate stable object outline point-descriptions, simple convex prismatic objects do

not display enough variation in outline for this kind of model to be systematically effective at

distinguishing between similar objects.

Further possible exploration that extends the work done here includes investigation into a method for

automatically generating point descriptions of object outlines, that will allow this kind of system to

function correctly in a boarder range of situations than is as yet possible. In addition, much more

experimental work can be done to gain more insight into how the performance of point distribution

models describing simple rigid bodies can be optimised.
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