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Generalized K-Harmonic Means 
-- Boosting in Unsupervised Learning1 

Bin Zhang 
Hewlett-Packard Laboratories 

bzhang@hpl.hp.com 
 
Abstract  We propose a new class of center-based iterative clustering algorithms, K-Harmonic Means (KHMp), 
which is essentially insensitive to the initialization of the centers, demonstrated through many experiments.  The 
insensitivity to initialization is attributed to a boosting function, which increases the importance of the data points 
that are far from any centers in the next iteration.  The dependency of the K-Means’ and EM’s performance on the 
initialization of the centers has been a major problem.  Many have tried to generate good initializations to solve 
the sensitivity problem.  KHMp addresses the intrinsic problem by replacing the minimum distance from a data 
point to the centers, used in K-Means, by the Harmonic Averages of the distances from the data point to all 
centers.  KHMp significantly improves the quality of clustering results comparing with both K-Means and EM.  
The KHMp algorithms have been implemented in both sequential and parallel languages and tested on hundreds of 
randomly generated datasets with different data distribution and clustering characteristics. 
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1. Introduction 
 
Clustering is one of the principle workhorse techniques in the field of data mining [FPU96], statistical data analysis 
[KR90], data compression and vector quantization [GG92], and many others.  K-Means (KM), first developed more 
than three decades ago [M67], and the Expectation Maximization (EM) with linear mixing of Gaussian density 
function [DLR77] are two of the most popular clustering algorithms [BFR98a], [SI84], [MK97].  See [GG92] for 
more complete references for K-Means and [MK97][RW84] for EM.  

K-Means stands out, among the many clustering algorithms developed in the last few decades, as one of the few 
most popular algorithms accepted by many application domains.  However, K-Means does have a widely known 
problem – the local optimum it converges to is very sensitive to the initialization.  Many people have proposed 
initialization algorithms.   

Instead of inventing or improving an initialization for K-Means, we look into the intrinsic problem that resulted 
in K-Means sensitivity to initialization – its winner-takes-all partitioning strategy, which makes the association 
between data points and the nearest center so strong that the membership of a data point is not changed until it is 
closer to a different center.  This strong association prevents the centers from moving out of a local density of data.  
We use the association provided by the harmonic means function, to replace the winner-takes-all strategy of K-
Means.  With this new strategy, the association of the data points with the centers is distributed (like EM, but EM 
has certain problems, pointed out in Section 3.2/Fig. 2, that prevent it from reaching a good clustering) and the 
transition becomes continuous.   

We also show that K-Harmonic Means has a “built-in” boosting function, which boosts the data that are not 
close to any center by giving them a higher weight in the next iteration.   We call this weighting function a dynamic 
weighting function because it is automatically adjusted in each iteration.  With these changes, the new algorithm is 
essentially insensitive to initialization, demonstrated by starting KHM with various initializations (good and bad) 
and comparing its convergence quality with KM or EM under the same initialization.  We also present all three 
algorithms (KM KHM, EM) under a unified theoretical view (see the Section 3), which gives a more detailed 
explanation of KHM’s insensitivity to initialization. 

The rest of the paper is organized as follows:  Section 2 introduces the generalized K-Harmonic Means 
clustering algorithms.  It presents the KHM’s performance function, PerfKHM, its generalized form, PerfKHMp, and the 
KHMp algorithm.  It also briefly discusses our implementation.  Section 3 compares KHMp with KM and EM in 
detail.  It presents a unified view of the three performance functions, as well as a framework for comparing the three 
algorithms.  In particular, it shows how KHMp uses a dynamic weighting function to boost data points that are not 

                                                           
1 Released as a Hewlett-Packard Laboratories Technical Report in Oct.,2000.  Available at 
http://www.hpl.hp.com/techreports/2000/ HPL-2000-137.pdf. 
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close to any centers in the next iteration.  Section 4 compares the computational cost of KM, EM and KHMp.  
Section 5 presents experimental results.  Section 6 concludes the paper. 
  
 
2. The Generalized K-Harmonic Means Clustering Algorithm 
 
2.1 Finding Clusters 
 
Let M be a set of K centers.  For the class of center-based clustering algorithms, including K-Means, K-Harmonic 
Means, and EM, the quality of the result is measured by the sum of a function d(x, M) over all x, 
  

( , ) ( , )
x X

Perf X M d x M
∈

= � . 

We write down d(x,M) for the following three algorithms:  
 
K-Means:   2( , ) {|| || | }d x M MIN x m m M= − ∈ ; 
K-Harmonic Means:  2

2
1( , ) { || || | } | |

|| ||m M
d x M H A x m m M M

x m∈

= − ∈ =
−� ; 

EM:     ( , ) log( * ( ))m m
m M

d x M p G x
∈

= − �
2. 

 
Intuitively, d(x,M) measures how well a particular data point x is taken care of by the set of centers.  If a data point 
is close to one of the centers, it is well represented by the center it is close to. 
 
 
2.2 The Nature of the Harmonic Average 
 
The harmonic average of K numbers {a1 , ……, aK} is defined as  
 

1
1

1({ , ......, })
K

K
k k

HA a a K
a=

= � . 

 
The harmonic average is small if one of the ak ‘s is small.  Therefore, HA() behaves more like the MIN() function 
than an averaging function.  This is the desired property we need for defining a performance function for measuring 
clustering quality, explained at the end of Section 2.1.   

Fig. 1 has a plot of the harmonic average of two numbers (x,y) in [0,10]x[0,10] and comparing it with the 
MIN(x,y).  The plot of HA() is very similar to that of MIN().  More detailed mathematical comparisons of the two 
functions are possible based on their boundary conditions and their derivatives.  Due to the limited length of this 
paper, we omit it.  
 

 

 

 

 
 
 
 
 
 

Fig. 1.  The plots of HA() on the left and MIN() on the right. 

                                                           
2 2( ) exp( || || )mG x x m≈ − − , the Gaussian density function.  We limit the covariance matrix to be identity matrix in 
this paper for the consistent comparison with K-Means and K-Harmonic Means. 
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2.3 The Performance Function of K-Harmonic Means 
 
K-Means’ performance function is 
    2

1 1
1

({ } ,{ } ) || || ,
l

K
N K

KM i i l l l
l x S

Perf x m x m= =
= ∈

= −��      (1) 

where N
iil xXS 1}{ ==⊂  is the subset of x’s that are closer to ml than any other centers in K

llmM 1}{ == . (Or 
{Sl|l=1,…,K} is the Voronoi partition).  The double summation in (1) can be considered as a single summation over 
all x (data points) and the squared distance under the summations can be expressed by MIN().  Therefore, the KM 
performance function can be rewritten as3 
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Replacing MIN() by HA(), we get the performance function of KHM: 
2
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The quantity inside the outer summation is the harmonic average of K squared distances {||x – ml||2 | l = 1,…,K}.   
A unified view of the KM’, KHM’ and EM’s performance functions is given later in Section 4, in which all are 

considered as ways of mixing bell-shape functions.   
 
 
2.4 The KHMp Performance Function and the KHMp Algorithm 
 

Using a general distance function, d(x,m),  the most general form of K-Harmonic Means performance function  
is 

 
1 1
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In our earlier version of K-Harmonic Means paper [ZDH00], we presented KHM for d(x,m) =||x-m||2, which 
does not have the desired weighting function (for weighting functions, see Section 3.3) in its recursive optimization 
algorithm.   

In this paper, we show that the desired weighting function can be derived theoretically by using the pth power 
of the L2-distance as d(x,m) in KHMp

4.   
The performance function of KHMp is defined by: 
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   (4) 

 
To derive an algorithm for minimizing the KHMp performance function, we take partial derivatives of the KHM’s 
performance function (4) with respect to the center positions mk, k=1,…,K, and set them to zero, 
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,

1 ,
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N
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K
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i k p
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m d

d

∂
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where di,l  = ||xi – ml|| on the right of (5) are still functions of the centers.  “Solving” mk’s from the last set of 
equations, we get a recursive formula: 

                                                           
3 For K-Means, the centroids are the optimal locations of the centers of a given partition only if the distance function 
is L2.  K-Means can be generalize to Lp space but the center locations will not be the centroids. 
4 We could also use this distance function in K-Means.  In this new version of  K-Means, the optimal centers will no 
longer be the centroids.  But this replacement does not introduce a weighting function in K-Means.  
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This is the recursive formula for minimizing the KHMp’s performance function.  KHMp, like KM and EM, is a also 
center-based, iterative algorithm that refines the clusters defined by the K centers.  Starting with a set of initial 
positions of the centers, KHMp calculates di,l = ||xi-ml||, and then the new positions of the centers from (6) or from 
the decomposed sequence below, 
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The recursion is continued until the performance value stabilizes. 

The calculation of qi,k’s (combination of (7.1) and (7.2)) can be done as follows:  
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where ).,...,1|( ,min, KldMINd lii ==   All the ratios (di,min/di,l) are in [0,1].   

We have implemented KHMp in several different languages -- C, Matlab and the parallel programming 
language ZPL (KHMp has been run on multiple processors in parallel.  See [FZ00]).  We have tested KHMp on 
hundreds of randomly generated datasets without encountering any numerical difficulties. 
 
 
3. A Unified Analysis of K-Means, EM and K-Harmonic Means 
 
3.1 The EM Clustering Algorithm Based on Linear Mixing of Gaussian Distributions 
 
We briefly review a version of the EM algorithm needed later for the comparison with KHMp and KM.  We limit 
ourselves to the EM algorithm with linear mixing of K identical spherical bell-shape (Gaussian distribution) 
functions.  Let    
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a linear mixing of K identical spherical bell-shape functions.  EM algorithm is a recursive algorithm with the 
following two steps: 
 
E-Step:    ,

)(*)|(

)(*)|()|(

1
�

=

= N

i
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lli
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mpmxp
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where p(x|m) is the prior probability with Gaussian distribution, p(ml ) is the mixing probability. 
 

M-Step:   1
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where N is the size of the whole data set.  For more details, see [MK97] and the references there. 
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3.2  A Unified View of The Three Performance Functions 
 
Without introducing any change, applying the identity mapping -log(EXP(-(  ))) to the performance functions of  
KM and KHM, we get 

( )2
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( , ) log || || | ;
N
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i

Perf X M EXP MIN x m m M
=

� �� �= − − − ∈� �� �	 
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i
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Now they share the same form of the EM’s performance function: 
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If we remove the negative sign in front of the “log”, all three algorithms can be considered as maximizing the log-
likelihood functions except that, for the K-Means and K-Harmonic Means, the functions under the products are not 
normalized to be probability density functions.  Therefore, K-Means and K-Harmonic Means are not exactly EM-
type of algorithms.   

The quantity inside the brackets “[]” in (14) is the linear mixing of the bell-shape functions – the EXP()’s.  We 
can also look at the performance functions of KM and KHM as mixings of bell-shape functions.   

 
Define 
MIN Mixing:   ( )2|| || | 1,...,lEXP MIN x m l K� �− − =� �

     (15) 

 
Min-Mixing can also be called Max-Mixing because EXP(-x) is monotone decreasing and  
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   (16) 

 
Harmonic Mixing:  ( )|| || | 1,...,p

lEXP HA x m l K� �− − =� �
     (17)  

Linear Mixing:   

( )
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l lD
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p EXP x m
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− −�      (18) 

We use one dimensional data and two bell-shape functions to illustrate the differences among the three kind of 
mixings in Fig. 2.   These are exactly the plots of  exp(-d(x,M)) (See Section 2.1). 
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Fig. 2. Comparing Three Different Mixings of Two One-dimensional Bell-shape Functions.   As the centers move from near to 
far, the differences among the three mixings decrease.  Legend: ‘x’ — KM, ‘.’ – KHM, and ‘triangle’ – EM. 
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Under linear mixing, when the centers are too close to each other,  two or more bell-shape functions merge into 
a single peak.  The maximum of that single peak behaves like a ghost center and the individual centers lose their 
identity.  For finding clusters, the linear mixing (the limited version with fixed covariance matrix) does not behave 
properly.  This was clearly shown in our experimental results published in [ZDH00].   
 
 
3.2 A Unified View of Three Algorithms and the Dynamic Weighting Function 
 
We compared three performance functions in the last section.  In this section, we compare all three algorithms.    All 
three algorithms take the following form, 
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      (19.1-19.4) 

 
a(x), the weighting function of the data points, decides how much of each data point x participates in the next 
iteration of calculating the new center locations.  )|( il xmp , the “membership” functions”, decides the portion of 
a(xi)*xi that is associated with ml.   

For a given algorithm of the following type, which covers KM, KHM and EM: 
 

, ,
1 1
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m c x c
= =
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the membership function is calculated by normalizing ,l ic over l so that (19.4) is satisfied: 
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and the weighting function is simply 
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For K-Means, each data point belongs to the closest center 100% (winner-takes-all).  Therefore, p(ml|xi)=1 if ml 
is the closest center to xi, otherwise 0.  The weighting function a(x) =1, for all data points in all iterations.   

For EM: the membership function is derived from Bayes’ rule.  Let p(xi| ml) be the lth Gaussian density 
function and p(ml) the weight of p(xi| ml) (See (8) and (9) in Section 3.1).   The membership function is 
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Since the membership function is already normalized (satisfying (19.4)), the weighting function a(x) =1.   

For K-Harmonic Means, the iterative procedure (6) (in Section 2.4) can be written as  
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where di,k=||xi –mk||.   For KHMp, we have  

2 2
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1 1,
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i k l l
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   (24) 

As a data point x is approached by a center m, the weighting function satisfies ap(x)=O(||x-m||p-2) near m where m is 
the center closest to x (See Fig. 3).  For p>2, ap(x) has a smaller value for the data points that are closer to one of the 
centers.  This property serves as a boosting function (see [FS96] and the references there for boosting in supervised 
learning theory).  It boosts, in the next iteration, the participation of the data points that are not close to any centers.  
The more centers are near a data point the smaller the weight for that data point.  This has the effect of flattening out 
a local density that trapped more than one centers and reduces the chance of multiple centers being trapped by a 
single local cluster of data.  Based on the fact that the weight of each data point in the calculation of the center 
locations in the next iteration depends on the current location of the centers, we call this dynamic weighting of the 
data points.  This is the most important difference between K-Harmonic Means and K-Means or EM.  Fig. 3 has a 
plot of the weighting functions for p=2, 2.5, 3, 3.5, 4.  For p=2, in Fig. 3, the weighting function does not have the 
desired boosting behavior.  The weight of the data points that are close to one of the centers is not lowered.  This 
explains the experimental results presented in Section 5.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.  A Plot of a(x) for K-Harmonic Means with two centers in one-dimensional space.    
The two centers are located at 6.5 and 19.5.   

 
 

4. Computational Costs in Each Iteration 
 
In each iteration, calculating all the pair-wise distances from N data points to K centers (of D dimensional vectors) 
costs O(N*K*D).  KM and EM (linear mixing) share the same cost on this part.  After getting the coefficients pi,k, 
calculating the linear combinations mk = � pi,k*xi costs another O(N*K*D).  EM costs the same on this part.  KM 
costs less (O(N*D)) on this due to the partitioning but an additional O(N*K) comparisons and assignments 
(marking) are used to do the partitioning. After calculating the distances, all quantities used in the algorithm no 
longer depend on the dimension and all other costs are O(N*K).  The leading asymptotic term for all three 
algorithms are the same O(N*K*D).  

The asymptotic computational complexity per iteration for KM, KHM and EM (linear mixing model) are all 
O(N*K*D). For all three algorithms, since the costs are dominated (especially for high dimensional data) by the 
distance calculations ||xi-mk||, and there are exactly the same number of distances to be calculated, the coefficients of 
the cost term N*K*D of all three algorithms are very close.  It is the convergence rate and the convergence quality 
that differentiate them in real world applications5.   

Space complexity of KHM is NxD for data points, KxD for the K centers and KxD+2*K for temporary storage.  
The temporary storage requirement tends to be lower than KM because the later needs a O(N) temporary storage to 
keep the membership information and N>>K in real problems. 

For low dimensional data (D=2), KHM and EM are slower than K-Means.  This difference disappears quickly 
as D increases.  

                                                           
5 Due to the partitioning nature, faster algorithms/implementations have been designed for KM using trees to do 
spatial partition of either the centers or the data [GG92],[PM99]. 

p=2   
p=2.5  
p=3   
p=3.5  
p=4   

5 10  15  20  25  0 

0.01   

0.02   

0.03   

0 



 8

5. Experimental Results 
 
A number of experimental results on a special version of KHM (p=2 plus heuristics) have been published in 
[ZDH00].  In this paper, we focus on the experimental results on KHMp for different p values and comparing them 
with K-Means and EM.  

We experimented with seven algorithms: KHMp with p=2, 2.5, 3, 3.5, 4, K-Means and EM.  For each 
algorithm, 3 different type of initializations are used:  

Type-1:  Very bad -- all 50 centers are initialized to be within a small region relative to the data.   
Type-2:  Bad -- all centers are randomly initialized, not related to the data.  The centers have a bigger spread 

than the data itself.   
Type-3:  Better  -- the centers are initialized to 50 randomly chosen data points from the dataset.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Two samples of each type of initializations.  Ordered from left to right: Type-1, Type-2, Type-3.  
The light backgrounds are the data points and the dark dots are the initial center locations. 

 
We randomly generated 100 datasets, Dataset(i), i=1, …, 100.  For each dataset, we randomly generated three 

initializations, one of each type, Init(i,j), j=1, 2, 3, for all i.   We ran all seven algorithms on each pair, (Dataset(i), 
Init(i,j)).  A total of 100*3*7=2100 experiments were conducted.   

The following function, with N=2500, K=50, D=2, is used to generate all the datasets.  r is randomly generated 
between 10 and 30. 

 
function [dataset,centers] = ClusGen(K, N, D, r) 
% K = # clusters, N = #data points, D = dimensionality, r = within cluster variance/inter-cluster variance. 
%Step 1: Generate cluster centers. 
        centers = r * rand(K,D);    % K center locations are generated and scaled up by the factor r. 
% Step 2: Generate the random sizes of the K clusters. 
        s = 2*rand(K,1)+1;       s = round(N*s/sum(s)); N1 = sum(s);  diff = abs(N-N1); 
        s(1:diff) = s(1:diff) + sign(N-N1);  % adjust the size so that they add up to N. 
 %Step 3: Generate clusters one-by-one. 
        for k=1:K 
         cluster = randn(s(k),D); % normal distribution.    

        % move the clusters to the kth center location. 
        mean = sum(cluster)/s(k); Sk = repmat(centers(k,:)-mean,s(k),1)+cluster; 

                % merge the cluster into the dataset. 
                dataset = [dataset' Sk']'; 
        end;  % of for loop.    %End of the cluster dataset generator. 
 
To compare the results from seven different algorithms, we need a common measure.  We used the square-root 

of the K-Means performance function to measure the quality of the clusters derived by all seven algorithms,  
 

( , ) ( , )KMPerf Dataset Centers Perf Dataset Centers= .   (25) 
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We chose K-Means’ performance function because it is more popular and simpler than others.  We took the square-
root of it because the original K-Means performance is quadratic, which makes the bad results look a lot worse than 
they really are6.  For the phrase – “the performance is with-in 2*optimum” to make sense, we need a linear measure.    

Measurements are compared with (divided by) the optimal performance, which is also measured by the square-
root of the K-Means performance function and is derived by running K-Means on the location of the “true” centers 
of the clusters returned by the ClusGen() function7.  The average values and the coefficient of standard deviation of 
the ratio between the actual performance value and the optimal performance value are given in Table 1.   Formulas 
in (26) give the details of the calculations: 

       

100 100
2

21 1
( )

( ( ), ) , , .
( ( )) 100 100

i i
i i

i

ratio ratio avg
Perf Dataset i Centersratio avg and

Optimum Dataset i avg
σσ θ= =

−
= = = =

� �
  (26) 

Formulas in (26) are applied to the performance measure of each algorithm under each type of initializations.  
These average values are also plotted in Fig. 5 and Fig.  6.  Fig. 5 shows the sensitivity of the average performance 
ratio over the optimal performance of each algorithm to the initialization of the centers.  Fig. 6 shows the 
performance ratio over optimal for just the Type 3 initialization with improved resolution along the vertical axis.  
When the global optimal performance is achieved, the ratio will be 1.  From Table 1, we see that KHMp performs 
best at p=3.5 (for two dimensional data).  No matter what type initialization is used, KHM(p>=2.5) always out 
perform KM and EM, measured by K-Means performance function.   This is not only true on average but also true 
on most individual experiments.  To give a more detailed picture, we also plot the results from individual runs for 
KM, EM and KHM(p=3.5) in Fig. 7.  The 100 experiments are listed along the horizontal axis.  The ratios of 
performance value over the optimum are along the vertical axis.   

It is not surprising to see that KHM(p=2) does not perform better than K-Means on good initializations (see Fig. 
6) because the desired dynamic weighting function is not in KHM(p=2) (See Fig. 4 and the explanation there).  
However, KHM(p=2) is still much more insensitive to initializations than K-Means and EM (see Fig. 5).  The 
dynamic weighting function (or boosting) explains only partially the insensitivity of KHMp to initialization.  The 
insensitivity of KHM(p=2) to initialization has to be explained by other properties of the K-Harmonic Means 
function and its minimization algorithms. 

In general, the higher the dimensionality, the larger p value is desired.  We have to omit the details on high 
dimensional datasets due to the limited length of this paper.   A separate paper for clustering high dimensional 
datasets is in progress. 

We run 40 iterations, which are sufficient, for all seven algorithms on all datasets and initializations.  It is 
difficult to plot all the convergence curves because there are such a large number of them.  We plot the average 
“convergence speed” over 100 experiments under each type of initialization in Fig. 8.  In each figure, the horizontal 
axis is the number of iterations; the vertical axis is the average ratio (over 100 experiments) between the actual 
performance value and the global optimum, both measured by the K-Means performance function.  In general, K-
Means converges faster than KHM under good initializations and KHM converges faster than K-Means under bad 
initializations.  Some of the EM’s convergence curves are not monotone decreasing because its performance is 
measured by K-Means performance function instead of EM’s.  The same thing could also happen to KHM’s 
convergence curves.  

 
 

6.  Conclusion 
 

We discovered, through developing the K-Harmonic Means clustering algorithms, that the boosting concept in supervised 
learning applies to unsupervised learning as well.  Boosting (dynamic weighting) function contributed to the insensitivity of 
KHMp to the initialization of the centers.  This is clearly demonstrated through the comparison of KHMp (p>2) with K-Means, 
EM and KHM(p=2).   
 
 
Acknowledgements We like to thank Dr. Meichun Hsu and Dr. Charles Elkan for their comments on the 
KHM algorithm.  We also like to thank Meichun for her suggestions on the presentation of the 
experimental results, which significantly improved the clarity of this paper, and her proofreading of the 
manuscript.  

                                                           
6 For example, if the deviation of the centers from they optimal locations is doubled, the performance value is 
quadrupled. 
7 which is, of course, only an approximation of the true global optimum.   
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Table 1.  The average and the coef. of std. dev. of the ratios between actual performance values and the 
global optimum (under K-Means), all measured by the K-Means performance function. 

 
type 1 initialization type 2 initialization type 3 initialization 

 Avg. 
Coef. Std. 

Dev. Avg. 
Coef. Std. 

Dev. Avg. 
Coef. Std. 

Dev. 
EM 4.6091 0.5452 3.1050 0.4238 1.6995 0.2436 
KM 3.7222 0.4822 2.8191 0.3388 1.3765 0.2198 

KHM 2.0 1.6143 0.2934 1.3379 0.1815 1.5810 0.2781 
KHM 2.5 1.1709 0.1170 1.1607 0.1097 1.2264 0.1452 
KHM 3.0 1.1409 0.1127 1.1463 0.1091 1.1563 0.1098 
KHM 3.5 1.1500 0.1077 1.1515 0.1127 1.1395 0.1066 
KHM 4.0 1.2343 0.1673 1.1896 0.1455 1.2028 0.1562 
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Fig. 5 (top) Robustness of KHM: KHMp is largely insensitive to initializations while EM and 
KM are very sensitive.    
 
Fig. 6 (bottom) Performance of KHM: Even with careful initializations, KHM with p>=2.5 
(I.e., when boosting is in effect) consistently performs better than EM and KM.  The 
average ratio of the performance values over the global optima are averaged over 100 
different datasets.  For p=3 and 3.5, the performance of KHMp are about 1.2 times 
optimum on average on the 100 datasets.  
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Fig. 7 The ratios of performance values over the optimum from 100 individual runs are plotted here 
without averaging.  KHM not only out-perform KM and EM on average, but also on most individual 
runs especially under bad initializations.  To avoid over-crowding, only KHM(p=3.5) is plotted.  For 
other p>2, the results are similar.  The ranges of the vertical scale of the plots are different but they 
all start at 1. 
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Fig. 8 The convergence speed of KM, EM and KHM, averaged over 100 individual runs are plotted.   
In general KM converges faster under good initializations and KHM converges faster under bad 
initializations.  The overall rate is about the same.  The theoretical asymptotic convergence rate of 
KHM is not known.   All three plots share the same legend but the vertical scales of them are 
different. 
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