
 

     
Invariant Signature s from  Polygonal 
Approxim ations of Sm ooth  Curve s  
 

Doran Sh ak ed  
H P Laboratory Israe l1  
H PL-2000-131 
Octob e r 2nd , 2000* 
 
e m ail:   dorons@h pli.h p.com  

 

obje ct re cognition, 
invariant 
signatures ,  
s em i-local                   
invariants, 
polygonal sh apes , 
Dynam ic 
Program m ing 

 

In  th is pape r w e  propose  to use  invariant signatures  of
polygonal approxim ations of sm ooth  curves  for
proje ctive  obje ct re cognition . Sim ilar signatures  h ave
b e e n  proposed pre viously as sim ple  and robust
signatures . H ow e ve r, th e y w e re  k now n to b e  s ens itive
to th e  curve  sam pling sch e m e  and density, and w ork ed
w e ll m ainly for intrinsically polygonal sh apes . Th is
pape r proposes  a re -sam pling m e th od for arb itrary
polygonal approxim ations of sm ooth  curves . Th e
proposed re -sam pling provide s  for w e ak -affine invariant
param e te riz ation  and signature . Curve  te m plates
ch aracte riz ed  by  a scale space  of th e s e  w e ak -affine
invariant signatures  toge th e r w ith  a m e tric based  on  a
m odified Dynam ic Program m ing algorith m  can 
accom m odate  proje ctive  invariant inde xing. 

 

 

  

1 H P Labs Israe l, Te ch n ion  City, H aifa 32000, Israe l 
* Inte rnal Accession Date  Only    Approved for Exte rnal Publication   
  Copyrigh t H e w le tt-Pack ard Com pany 2000 

 



1 Introduction

An invariant signature of a planar curve is a unique description of that curve that is invariant

under a group of viewing transformations. Namely, all curves which are transformations of

each other, have the same signature, whereas the signatures of all other curves are di�erent.

Invariant signatures may be used to index [2, 3, 6, 8, 11, 13, 20], or to detect symmetries

[5, 17] of planar curves under viewing transformations.

Invariant signatures of planar curves are the subject of many research papers [1, 2, 3, 8, 12,

13, 19, 20], to name a few. Generally speaking, in order to describe planar curves under a

group of transformations, one has to employ two independent local descriptors, which are

invariant under the required group of transformations. Namely, two numbers, which are

well de�ned on small curve segments and change whenever the curve is changed, unless the

change is a transformation under which these numbers should be invariant. The above is

expressed independently in many ways:

� For every curve point there are two numbers which specify a point in R2. The full

curve de�nes therefore a unique (usually continuous) arrangement of points in R2,

which characterizes the curve and all its transformations [2, 6].

� Let one invariant descriptor be used for invariant reparameterization (the simplest in-

variant reparameterization is usually called the arclength of the transformation group).

Let the other descriptor be the signature value on the invariant position determined

by the parameterization. This description is a scalar function over S1, which describes

the curve up to an unknown initial curve point (or equivalently the phase in S1).

� When the two descriptors have a di�erential formulation, the curve is a solution of the

di�erential equations and the required initial conditions. Two independent descriptors

are needed since each limits the locus of the 'next curve point' to a one dimensional

manifold (the 'next point' is the intersection of these manifolds).

Let us consider the boundary condition mentioned in the last item. Since the description is

invariant under a group of transformations, one should be able to reconstruct all the instances

of that transformation from the same signature (though necessarily from di�erent boundary

conditions). Table 1 details the common groups of viewing transformation, and the asso-

ciated free parameters. In order to accommodate the dimensionality of the transformation

groups we necessarily need more boundary conditions for more complicated groups.
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Group Transl. Rotation Scale Aspect R. Skew Tilt Total

Translation 2 - - - - - 2

Euclidean 2 1 - - - - 3

Similarity 2 1 1 - - - 4

Weak-A�ne 2 1 - 1 1 - 5

A�ne 2 1 1 1 1 - 6

Projective 2 1 1 1 1 2 8

Table 1: Degrees of freedom for common viewing transformation groups.

It is indeed a known fact that the di�erential signatures of more complicated groups of

transformations have higher degrees of derivatives (see e.g. [3]). This, in turn causes practical

problems when one tries to implement the theory for complicated groups.

An accepted solution to the high derivative problem is to trade derivatives for features, which

are integral in nature, and thus more stable. The integral features are local applications of

global geometric invariants [1, 20]. They are sometimes called semi-di�erential invariants

[12], and in other cases they are formulated as stable numerical schemes for di�erential

invariants [6, 7]. For example, setting a grid of equally spaced points on the curve, as in

Figure 1a, is the integral equivalent to the Euclidean arclength described di�erentially1 as

dsE =
q
X2
p + Y 2

p . Alternatively, setting a grid such that the area enclosed between edges

and curve segments is equal, as in Figure 1b, is the integral equivalent to the weak-a�ne

invariant arclength dSa = 3

q
XpYpp � YpXpp.

ba

Figure 1: Invariant grids on a curve: a. Euclidean arclength, b. a�ne arclength

1We use the following notations Xp =
dX

dp
, Xpp =

d
2
X

dp2
.
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In this paper we address two problems:

� The simplest parametric curve description is polygons. Polygonal signatures have

been addressed before [5, 9], however, usually one had to resort to assumptions that

are often unrealistic in practical cases. Signatures need to address the situation of

polygonal approximations of smooth curves, rather then the easier case of intrinsically

polygonal shapes. They should not depend on invariant sampling as in [7], and be

robust to non stationary sampling, i.e. di�erent sampling density in di�erent, and

possibly even within the same approximations.

� Both di�erential an non-di�erential descriptors for transformation groups that are more

complicated than the weak-a�ne group are complex and unstable. With the notable

exception of the robust methods by Weiss [19], who �ts canonical curves to discrete

curve segments. This method can however not be implemented for sparsely sampled

curves - i.e. polygons. Another e�ort to approximate complex invariants by simpler

ones [11], is more in the spirit of this paper. Although we do not approximate complex

invariants, but rather accommodate the di�erence between the required invariance and

the available (simpler) signature by a tailored metric.

In the sequel we propose to solve these problems. Speci�cally we propose a re-sampling

method for polygonal shapes that is invariant under weak a�ne transformations. Namely,

two polygonal versions of the same curve, or its weak a�ne transform, with arbitrarily

di�erent sampling schemes can be up-sampled so that the new sampling density on both

curves is similar, see Figure 2. Consequently the polygonal signatures of the up-sampled

polygons are similar. In addition we propose a method to use our weak a�ne signature, to

index or detect symmetries in curves under a�ne and projective transformations.

In the next section we detail the proposed polygonal re-sampling. In Section 3 we present

the second invariant descriptor used for signature value. In Section 4 we propose a metric

for matching two signatures. We start with matching for invariance to weak a�ne transfor-

mations in 4.1, and gradually elaborate to accommodate invariant indexing and symmetry

detection under a�ne 4.2, and projective 4.3 transformations. Section 5 is a brief Summary

of this paper.
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Figure 2: Polygonal up-sampling of arbitrarily pre-sampled curves.

2 Re-Sampling

Calabi et al. [6, 7] have proposed a sampling method for smooth curves that converges

to the weak a�ne arclength. In this section we present a method to sample polygonal

approximations of curves in a manner that is consistent with the weak a�ne arclength.

Note that a curve that has already been sampled in a manner that is consistent with the

weak a�ne arclength may be re-sampled by polygonal up/down sampling. On the other

hand if a curve has been sampled in another manner it can not be simply re-sampled to be

consistent with the weak-a�ne arclength. Speci�cally, it cannot be up-sampled using the

standard weak a�ne invariant sampling methods designed for smooth curves.

It as already been suggested [1, 7] to sample curves in a manner invariant to weak a�ne

transformations by setting sampling points so that the area enclosed between the curve

and line segments connecting them is constant2. The problem is that this and other area

measures proposed previously for weak a�ne arclength are, to the best of our knowledge,

not well de�ned for polygons, particularly for up-sampling purposes.

The solution proposed in this paper is based on the fact that one can use any area that is

de�ned well on the given curve. Speci�cally we propose the following scheme de�ned well

for polygonal shapes as well as smooth shapes, see Figure 3a. Given a point S on the curve,

the next point S 0 is found by �rst determining an anchor point A based on an enclosing area

of prede�ned size � > 0, and then determining S 0 such that the line segment based on A and

sweeping the curve starting at S covers an area of �� for some � 2 [0; 1]. Note that both A

and S 0 are, by de�nition, invariant under weak a�ne transformations.

2The use of the cube root of the area is important only if one needs to preserve the linearity of the arclength. For example,

in order to sample a curve twice as dense, one needs to use an area that is 8 times smaller.
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Figure 3: Polygonal re-sampling invariant to weak a�ne transformations.

When � ! 0 the resulting sub-sample density is proportional to the weak-a�ne arclength,

nevertheless, one can use any prede�nes � > 0 and still keep the invariance to weak a�ne

transformations.

The parameter � is, in a certain sense, a scale parameter, �ltering out small curve pertur-

bations, so that perturbations as in Figure 3b are �ltered out. Since our main interest is

polygonal shapes, it should be noted that polygons have intrinsic artifacts (the vertices),

whose in
uence we need to �lter out. A thumb rule to select � is therefore an area large

enough, so that any boundary segment it delimits contains at least two vertices (note that for

any � > 0 delimited boundary segments contain at least one vertex). Since the re-sampling

needs to be invariant to a wide range of original polygonal approximations, we need to deter-

mine � considering the worst expected sampling density in a given application. Let us note

again that � can be arbitrarily large and still be invariant to weak a�ne transformations. If

for a large � one still needs a dense sub-sampling, one can always resort to small �.

3 Signature Value

In this section we describe the proposed second invariant, the signature value. Like the �rst

invariant used for invariant arclength, the signature value is based on a local application

of global geometric invariants. As already proposed by others, [1] we advance an invariant

curve segment on the curve in both directions, and de�ne the signature value to be the area

of the triangle de�ned by the current, forward, and backward points. Note, that it is not

recommended to use the invariant arclength proposed in the previous section as a measure

for the forward/backward advance unless the invariant distance advanced to either sides is

larger than 1=�. Otherwise, polygon artifacts might in
uence the signature value (e.g. all

the invariant points might be located on the same polygon edge).
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The proposed signature uses the anchor point described in he previous section as the forward

invariant point, and a symmetrically obtained point as the backwards one. The signature

value is the area ratio between the triangle area and �.

Note that:

� The proposed signature value does not approximate the invariant curvature.

� For �! 0 on smooth curves the absolute value of the signature converges to 6, however

since in our implementations � is constrained from below, this is not the usual case

with the proposed signature. The reader is referred to Figure 4 for an example of the

descriptive nature of the signature.

� Like the invariant arclength, the proposed signature value is not full a�ne invariant

because of the need to determine �.

4 Signature Matching

In this section we discuss the metric used to compare signatures. Traditionally, signatures

are compared using the l2 distance or similar measures. We argue that in case of small

perturbations in the original shape (as may be expected in our - pre-sampled curves) one

may have to resort to more complicated distance measures. We also show that it is possible

to use the proposed metric in order to overcome, the otherwise complicated problem, of

invariance to a�ne and projective transformations.

4.1 Weak A�ne

Since our subject is curves that have already been sampled by arbitrary methods, two polyg-

onal approximations of the same curve are, strictly speaking, di�erent curves. Therefore, we

cannot expect their invariant signatures to be identical. Although, if the scale parameter �

is chosen appropriately3, we expect the signature functions of two polygon instances of the

same curve to be similar in both the value and the arclength dimensions.

Value perturbations are trivially dealt with by standard metrics (e.g. l2). However, to deal

with arclength perturbations we will usually have to resort to more complicated metrics.

Figure 4 depicts di�erent polygonal approximations of the same smooth curve, and the cor-

responding weak-a�ne invariant signatures. The �rst (Red) polygon has 276 vertices, the

3See discussion in the end of Section 2.

6



second (Blue) has 125, and the last (Black) has 55 vertices. Notice that the last approxi-

mation is slightly too sparse for the chosen �3, nevertheless, the proposed metric will handle

this case well.

Figure 4: Polygonal approximations of a smooth curve and corresponding weak-a�ne invariant

signatures.

We propose to employ a composite measure based on standard metrics (e.g. l2) both in the

value and in the arclength dimensions. The proposed metric is the well known warp metric4

used in many �elds of engineering, see e.g. [10, 14, 15, 16, 18]. It is based on the following

minimization problem:

Given two signature functions VQ(i); i 2 f1; 2; : : : LQg for the query curve and VT(i); i 2

f1; 2; : : : LTg for the template, we look for the optimal warp or reparameterization function

	 : f1; 2; : : : LQg ! f1; 2; : : : LTg to minimize the composite distance function

D (VQ(�); VT(�)) = min
	

�
�
LQ
i=0 (VQ(i)� VT(	(i)))

2
+ � � (r	(i))

2
�

subject to constraints on 	 (we use: 	(0) = 0, and 0 � r	(i) � 2).

The optimization problem described above is solved in O(LQ � LT) time by the Dynamic

Programming algorithm. Dynamic programming is based mainly on the following recursion5:

Given a series of solutions to the warping problems of a given part of the query signature

VQ(i); i 2 f1; 2; : : : kg, to all the sub-parts of the template signature VT(i); i 2 f1; 2; : : : jg,

with j 2 f1; 2; : : : LTg, we can solve the series of warping problems from a longer part of the

4Known also as Dynamic Warping, reparameterization, and Viterbi algorithm.

5Refer to [15] for a detailed description of Dynamic Programming.
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query VQ(i); i 2 f1; 2; : : : k+1g, to each of the sub-parts of VT(�). Simply select one of the

optimal paths of the given solution, and extend it by a single further match to minimize the

total warp error composed of: (1) The total error at the given path (2) The warp error due

to the required step (3) The additional match. Figure 5 depicts the recursive completion

process.

1

L 2

?
j

k k+1 L

Figure 5: Recursive path extension in Dynamic Programming.

The recursive process is initiated according to the boundary conditions. In our implemen-

tation we assume 	(0) = 0, and thus fVQ(0)g matches fVT(0)g, and none of the other

sub-parts of VT. In real applications one can not take initial matching for granted. A more

realistic initial condition for signatures on S1 is described in [21].

The recursion is terminated similarly, according to the boundary conditions. If we insisted

that 	(LQ) = LT, we would have chosen the resulting match of the full signature of VQ to

the full signature of VT. However, we chose to apply a more relaxed boundary condition, as

in [16], and to select the best match of the full signature VQ to either of the longer sub parts

of VT.

4.2 Full A�ne

The weak a�ne signature is invariant to full a�ne transformations only up to the scale

parameter �. Note that all the other descriptors are derived from � via area ratios, which are

in turn invariant to full a�ne transformations [1]. Thus, representing a plane curve by a set

of signatures representing a range of � values, instead of a single signature corresponding to

a speci�c �0, makes it possible to identify the planar curve under a�ne transformations.

The practical question is naturally, how many signatures to keep ? The range of � should

be determined by the range of scales relevant to the application in mind. Speci�cally, if we

expect the a�ne scale to be in the range of �0:5 to �2 relative to the template, we will
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need signatures with scale parameters in the range 0:25� �0 to 4� �0. As for the number of

� values in the range, they have to be selected so that the signatures of intermediate scales

will be similar to one of the represented signatures.

Although we have not proven the following conjecture, we found out empirically, that sig-

natures change slowly with �. Moreover, the fact that we use a warp metric reduces the

in
uence of arclength deformations, leaving us mainly with the relatively gradual value

changes. Figure 6 depicts the way signatures change with �.

Figure 6: Weak-a�ne invariant signatures for di�erent � values (� = 1100; 1200; 1300.)

4.3 Projective

In this section we show how a modi�ed warp distance can accommodate shape indexing

under projective transformations.

0
BBB@
X̂

Ŷ

1
CCCA =

1

1 + wxx + wyy
A

0
BBB@
X

Y

1
CCCA+

0
BBB@
Vx

Vy

1
CCCA

Given a small neighborhood in the plane the projective transformation can be approximated

by an a�ne transformation with a space varying scale parameter corresponding to

�(X; Y ) =

 
det(A)

1 + wxX + wyY

!2

Note that for continuous curves �(X; Y ) changes continuously on the curve.

Before we detail the proposed projective invariant matching, let us recall the a�ne matching

described in Section 4.2, where we proposed the following procedure:
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Calculate the warp distance from the signature VQ of the query curve to a set of signatures

V �m
T corresponding to the template curve, and a set of � values. The query is considered

an a�ne transformation of the template if at least one of the warp distances is below a

predetermined threshold. Evidently, it is su�cient to consider the smallest warp distance

over all m. Thus, the proposed algorithm is equivalent to an algorithm combining the

dynamic programming algorithms of the di�erent warps to a single algorithm matching

fVQg to a huge set of states fV �m
T (j)g 8j; 8m. Note that:

1. The initialization should facilitate equal conditions for matching fVQ(0)g, to the initial

states fV �m
T (0)g of each of the template's signatures.

2. The recursion should restrict path extension to within the same m.

3. The warp representing the template is the path corresponding to the best �nal state.

Now consider the case of projective invariant matching. The only di�erence to the above

algorithm is the need to enable the recursion step to extend paths across similar scales.

A technical complication related to the projective case is the need to synchronize the actual

location the template's signatures relate to over scales, so that when paths are extended

across scales they will do so at points corresponding to the same location on the curve. In

our implementation we solved this problem by over-sampling the signatures so that V �m
T (j)

corresponds to the same location on the curve for every j, and keeping a map Nm(j), so

that the next signature point after V �m
T (j) is V �m

T (j +Nm(j)) (rather than V �m
T (j + 1)).

Another practical problem is that the number of states, and the corresponding computational

complexity implied by the above description is huge. Here we use a state pruning method

similar to [16] based on a conjecture that the states' values are skewed from the start, and

there is no practical need to keep track of all of them. We therefore reduce the number of

states we track, and prune the states recursively.

Figure 7 describes a match of the signature of a projective transformation of a curve to the

template signature set. The signature of the template has been slightly lowered, otherwise it

would have been di�cult to distinct the two signatures. The values of the template signature

were compiled by tracking the best-path selected by the algorithm, and taken from weak-

a�ne signatures corresponding to di�erent scales. This match quality would not have been

possible had we limited the algorithm to any single scale.
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Figure 7: A weak-a�ne signature of the projectively transformed curve, and the warped template

signature (lowered to allow distinction).

5 Summary

In this paper we have presented a weak-a�ne invariant re-sampling method for polygonal

approximations of smooth curves. The weak-a�ne signature of the resulting polygon is

invariant to the original curve sampling method.

We proposed to use a signature scale space similar to the one described in [4], and argued that

a metric based on a modi�ed Dynamic Programming algorithm accommodates projective

invariant indexing.
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