

Gam e s and Ph ysics:
De sign Issue s

Colin Low
Inte rn e t and Mobile Syste m s Laboratorie s
H P Laboratory Bristol
H PL-2000-124
Se pte m b e r 28th , 2000*

E-m ail: colin_low @h p.com

gam e s, ph ysics,
sim ulation,
rigid-body,
m ode lling

Th e us e of ph ysics sim ulation in gam e s is an im portant
ste p th at incre ase s th e ove rall le ve l of re alism , but
it is a sign ificant incre ase in com ple xity. Th is pape r
provide s an ove rvie w of sim ulation issue s th at a gam e s
de sign e r sh ould b e aw are of b efore planning an
am bitious use of ph ysics.

* Inte rnal Accession Date Only Approved for Exte rnal Publication
 Copyrigh t H e w le tt-Pack ard Com pany 2000

Copyright Hewlett Packard Ltd. 1

Games and Physics: Design Issues
Colin Low

Hewlett Packard Laboratories,
Stoke Gifford,

Bristol BS34 8QZ
colin_low@hp.com

25th. July 2000

Abstract
The use of physics simulation in games is an important step that increases the overall level of
realism, but it is a significant increase in complexity. This paper provides an overview of
simulation issues that a games designer should be aware of before planning an ambitious use of
physics.

1. Introduction
A computer game is a form of simulation, but in many games physical accuracy is not
a primary requirement. The introduction of physics simulation into games means that
physics has to compete with graphics, audio, multiplayer group communication, and
non-player AI for a heavily constrained time budget. The choice of how much or how
little physics to use is an issue for the game designer, who is likely to rank
entertainment above realism in his or her list of design goals.

Part of the process for creating a good design is a broad grasp of what is possible in
several different areas, deciding for example, whether better physical simulation
would lead to unacceptable non-player AI, whether stacking boxes provides more
entertaining game play than an atmospheric 3D audio environment. To place this in
context, a cautionary postmortem on an ambitious use of physics simulation in the
game Trespasser can be found at [16].

This paper reviews design and algorithm issues in simulating rigid body physics.
Rigid body physics is the base level of what a physics simulation is likely to provide.
It is appropriate for jointed polygonal models of people and animals, vehicles,
furniture, etc. Flexible materials, deformable materials, and fluids are not discussed.
The goal is to equip the game designer, the architect, and the technical lead with the
background to ask critical questions about physics simulation.

2. Control Model
A dynamics controller uses the physical attributes of objects in a scene to compute
new positions and orientations for objects at each simulation time step. The basic
input to the controller is the set of objects subject to physical modelling, and the
attributes defined for each object. These attributes will include geometry, density,
elasticity, friction coefficients, constraints, and external forces and torques.

Copyright Hewlett Packard Ltd. 2

A constraint restricts the motion of an object. A typical constraint would be the joint
connecting the upper arm to the lower arm on a humanoid figure. The motion of an
object is defined by external forces and torques, and by internal forces and torques. A
good way to imagine internal forces is to imagine two skaters on ice holding hands.
External forces are generated using their ices skates. Internal forces can be felt
directly as the force they have to exert through their hands in order to remain together.

We cannot model the behaviour of each skater by knowing only the external forces; it
is necessary to solve for the internal forces. The dynamics controller uses a module,
the constraint solver, to discover these internal forces so that dynamics of an object
can be calculated as if it was moving in isolation without a constraint.

The equations of motion for rigid bodies can be derived from Newton’s laws, and are
second order differential equations. These are solved using a general Ordinary
Differential Equation (ODE) solver, which integrates the equations of motion using a
succession of small timesteps.

When a new position for an object is computed, it may turn out that it has collided
with another object. Because the Dynamics Controller uses a discrete time step, the
object may have penetrated the second object, and so the Dynamics Controller has to
back up, and use a series of smaller time steps to find the instant of the collision. It
then uses a Collision Solver to work out the impulsive forces due to the collision, and

Dynamic
Geometry

Static
Geometry

Geometry

Constraint
Solver

ODE
Solvers

ColliderCollider

Collision
SolverDynamics

Controller

Physical
Attributes

Constraints

External
Forces&
Torques

Objects

Copyright Hewlett Packard Ltd. 3

adds these forces to any external and constraint forces. It then continues the
simulation, and after a certain number of simulation time steps it updates the attributes
of each modelled object. In particular, it will update the position and orientation of
each object. An excellent overview of each of these steps can be found in [1].

The Dynamics Controller is unlikely to be the only controller updating the geometry
of a scene. Games are pragmatic, and it is likely that there will be an Animation
Controller for keyframe and motion capture animation, and perhaps an Inverse
Kinematics (IK) Controller for directed motions. There will be an Input Controller for
mouse, keypad, joystick or keyboard input. There may be a Skin&Bones Controller
with direct control over vertex geometry. The game programmer will want direct
control at certain points in the game play. This has the potential to greatly complicate
matters, particularly where Physics, Animation, IK, and Skin&Bones are purchased as
third-party subsystems.

The difficulty is in establishing a common representation for scene geometry that is
optimal for the rendering pipeline and is consistent with the different controller
subsystems. One solution is to convert geometry into the private internal
representations of each subsystem, and use callbacks to update the primary scene
information. This is not efficient, becomes progressively less efficient as more
subsystems become involved, and is particularly acute in the case of collision
detection.

3. Collision Detection
Games can often use simple heuristics to avoid the complexity of full collision
detection. A simple method is to divide scene geometry into two parts: a relatively
small number of dynamic objects, and a static and potentially massive “world” which
is normally zoned or spatially filtered to limit the number of polygons in the view
frustrum. Collision between objects can be detected using bounding spheres or boxes,
and with the world by using ray-casting.

Certain types of game, such as space and vehicle games, may be able to continue with
simplified collision models, but there are conceptually simple physics problems, such
as stacks of boxes, where the accuracy and efficiency of the collision detector is an
important factor in determining the realism and scalability of physics simulation.

Lin and Gottschalk provide a comprehensive review of collision detection approaches
in [10]. Algorithms appropriate to games assume polygonal objects, or polygon soups,
and to achieve scalability they are structured into a broad phase and a narrow phase.
The broad phase uses a computationally cheap method such as dimension reduction
[8] to decide whether objects might collide. The narrow phase uses a computationally
more expensive but exact method, such as the Lin-Canny [11] or V-Clip [12]
algorithms, to discover whether objects do in fact intersect. By exploiting temporal
and geometric coherence (objects do not move much in a simulation time step) it is
possible to reduce a problem of N pairwise comparisons to a problem linear in N.

A third-party rigid body physics SDK will come with an internal collision detector.
This collision detector will need to have access to a set of polyhedral objects, or to a
polygon soup, and given the trend towards graphical photo-realism in games, it will
probably be dealing with reduced-polygon models (see section 8 on Physics LOD
below). This has a strong impact on object modelling and run-time representation, as
the physics engine and the rendering pipeline are handling different models.

Copyright Hewlett Packard Ltd. 4

If there is a set of objects in the scene which are not being physically modelled, but
for which collision detection is important, then one can imagine a situation where two
collision detectors are running in the same application – the physics detector running
on its own private set of models, and an open detector used for all other purposes.

An answer would be to have a single collision detector as a general resource used by
the physics engine and other game sub-systems. The question then is what models it
uses – high-resolution models used for graphical rendering, or low-resolution models
used in physics simulation.

Another issue concerns scalability for large-scale environments. A number of
techniques, such as zoning or BSP trees, are used in games to make large level or
terrain environments tractable. The level designer uses an intuition about visual
complexity as a guide in deciding what to add to the level. The addition of physics,
and the need to carry out collision detection among objects and terrain, adds a new
level of complexity that may or may not be correlated with visual complexity.
Whatever method is used for scaling the visual complexity has to be applicable to the
collision complexity, or some additional zoning or spatial filtering specifically for
collision detection will need to be added.

4. Collision Response
When two objects collide the result is determined by the physical properties of the
objects as embodied in a collision/contact response model. There are two regimes for
solving the collision problem: with and without friction. There are three common
methods: impulse-based [13], analytic or constraint-based [2], and penalty force [5].
There are also multiple friction models which have been implemented.

Analytic algorithms for multiple objects with multiple static or sliding contacts in the
presence of friction can be very complex, and require advanced numerical methods
skills [3][4], although Baraff presents an algorithm [2]which circumvents some of
these difficulties.

It is tempting to use penalty force methods, and many simulations have done, but
Baraff provides warnings in [5] which are fully confirmed by the experiences of the
implementers or Trespasser [16]. Collision response in games does not need to be
totally realistic, but it does need to be stable and efficient. Despite these caveats,
penalty force methods continue to be used because they are conceptually simple and
potentially robust – see [14] for a recent example.

5. Stability
The equations of motion for rigid body dynamics are second-order differential
equations that are solvable using a number of generic ODE solvers. The most
common methods are the Euler method, Midpoint method, a variety of Runge-Kutta
methods, and implicit methods, with or without adaptive stepsize control [15]. The
choice of method is often a matter for experiment, as the simpler methods can become
unstable due to modelling inaccuracy, and the more accurate methods can require
much more computation.

Instability in a simulation is easy to spot, because energy is not conserved. Objects
coupled by springs vibrate with larger and larger amplitudes. Colliding objects gain
energy. A ball hits a wall, whizzes into a chair, the chair flies into the pile of boxes,
and within seconds everything in the scene is flying about as if demonically possesed.

Copyright Hewlett Packard Ltd. 5

A key consideration is stiffness. This can be visualised simply. Any spring has a
characteristic frequency. Strong springs vibrate at higher frequencies than weak
springs. To simulate a strong spring with a higher frequency, we must use a
simulation time step smaller than its characteristic period. The time step of a
simulation is governed by the characteristic frequency of the strongest spring. Another
way to think about stiffness is that the topography of the multi-dimensional energy
landscape is dominated by the deep gullies of stiff equations. Technically, stiff
equations are characterised by very different scales of independent variable, for
example, strong springs and weak springs.

Simulated springs are common in rigid body dynamics. One application is to prevent
colliding bodies from penetrating each other by using a spring restoring force. This is
the penalty force method for enforcing the non-penetration constraint. Another
application is the use of springs as constraints to join objects together. In both cases
the constraint is met most precisely when very strong (i.e. stiff) springs are used.

The worst effects of strong springs can be countered by using implicit methods [15].

The simplest way to implement a rigid body simulator is to use penalty force methods
and an Euler or Runge-Kutte integrator. This is not a good combination and is likely
to exhibit instabilities.

6. Constraints
A rigid body in unconstrained motion has 6 independent degrees of freedom (DOF):
three translational DOFs and three rotational DOFs. Any collection of N bodies with
less than 6*N DOFs has dependent DOFs and is constrained.

Two objects connected at a point with a full rotational joint should have 12 DOF, but
3 translational DOF are lost because of the joint, leaving 9 DOFs: 3 translational (the
two bodies must move together) and 6 rotational (there are no rotational constraints).
The loss of degrees of freedom results in internal forces (and torques) at the joint.
Common constraint types are point-to-point, point-to-nail, and point-to-path [7]. It is
possible to treat objects as unconstrained if the internal forces at joints can be
computed; each object trajectory is then the trajectory of a ballistic object with known
external forces and torques.

Two methods commonly used to compute internal forces are the Penalty Force
method [5] and the Lagrange Multiplier method [6]. The Penalty Force method
introduces a deviation metric that is differentiable and non-zero when a constraint is
not met. A restoring force (or torque) is computed from this metric. This method is
essentially similar to adding internal springs to the system that exert restoring forces
in such a way that deviations from constraints are minimized. The Lagrange
Multiplier method solves for the unknown forces directly. In both cases a set of linear
equations have to be solved for the unknown forces.

A major difference between the two methods is that the internal forces in the
Lagrange Multiplier method are chosen in such a way that they do no work. That is,
no energy is going into or out of constrained DOFs. For example, if a bead is sliding
on a wire, the constraint force is always normal to the wire, and so the constraint force
can never do work when the bead slides along the wire. This is not true of penalty
forces.

In a penalty force system, a constraint force is zero when the constraint deviation is
zero, and so constraint forces imply non-zero deviations. These non-zero deviations in

Copyright Hewlett Packard Ltd. 6

the opposite direction to restoring forces store energy, so they are not neutral in their
impact on the dynamics of the system.

In order to enforce constraints accurately, penalty forces need to be large relative to
other forces in the system. This is exactly the situation that produces a stiff set of
ODEs as described in the Section 5.

Another issue is that the relationship between deviation and penalty force is
determined by a proportionality constant. If this value is too small, constraints will not
be met accurately, and if too large, may cause instability in the ODE Solver. The size
of this constant has to be determined by experiment, and will usually vary from
constraint to constraint. This dependency on experimentally determined “fudge
factors” is a significant drawback.

7. Inverse Kinematics
One desirable (stretch) goal in games is to make Non Player Characters (NPCs)
autonomous, intelligent and interesting. Adding physics simulation to an environment
makes it possible to think of NPCs more as software robots than scripted automata:
that is they sense and interact with their environment in a physically plausible way. A
large body of inverse dynamic and kinematic algorithms [9] become available from
the robot control literature.

Inverse kinematics is particularly interesting for controlled and directed motions, such
as taking a step, reaching for an object, pressing a button and so on. That is, a goal is
specified, and the controlled object moves to satisfy the goal. This can provide an
excellent simulation of the way a human being reaches out to pick up an object.

A simple but useful way to provide this is by using pseudo-forces. The controlled
object (end effecter) is attracted towards the goal by using a pseudo force that
vanishes as the goal is satisfied. Instead of making acceleration proportional to force,
velocity is proportional to force, to produce a smooth motion that terminates at the
goal. This algorithm shares everything with a Newton-Euler rigid body simulator
except the equation of motion, and there is value in combining inverse kinematics
with dynamics in the physics engine. For example, an arm can be used to reach out for
something, or to punch. The reaching motion is not designed to transfer energy and
momentum, whereas the punching motion is designed to collide with significant
energy and momentum. The punch simulation could use a goal behind the object to be
hit, and switch from kinematics to full dynamics collision response at the moment of
contact.

This raises the larger question of how animation controllers in general are integrated
with physical simulation. There are many ways to specify a motion, and it is desirable
that all controllers maintain a consistent, shared view of position, velocity and
acceleration so that valid physical properties are maintained at all times regardless of
how the motion is incurred.

8. Visual Rendering and Physics Models
A polygonal model suitable for visual rendering will in most cases be much more
detailed than is required for physical simulation. It is possible to use a reduced
polygon model purely for physics modelling to minimise the considerable cost of
collision detection – that is, there would be a detailed model for graphical rendering,
and a reduced polygon model used by the physics engine which would be

Copyright Hewlett Packard Ltd. 7

approximately coincident with the visual rendering model. The discrepancy between
the two models may become apparent during collisions, when the visual surface may
not coincide with the collision surface. One would like to be able to use visual models
to generate reduced-polygon physical models automatically during off-line modelling.

If this approach is used, there is the increased memory cost of maintaining two
polygonal models, one for the visual rendering pipeline, and the other for the physics
engine.

9. Modelling
The physical properties of a set of objects are sufficiently complex that it is useful to
be able to specify properties such as shape, density, joints and joint constraints,
springs and dampers, collision properties etc. using a visual modelling tool.

The complexity arises when using multiple modelling plugins are combined in a tool
such as 3D Studio Max. In an ideal world there would be a single export format which
combined every object property – visual appearance, transformation hierarchy, object
and world coordinate systems, vertex control for skinning, physics level of detail,
physical properties, constraints and so on. This is so far from being the case the
situation often seems somewhere between comic and tragic. Even where the quality of
individual plugins is irreproachable, this does not mean that merging the exports into
a unified run-time model is easy, or that the result will be compact and efficient.

10. Conclusions
Games are mass market products. They need to be robust, compact, efficient and
predictably responsive even with large game environments. Physics simulation is a
natural extension to the increasing realism of games, but it needs to be approached
with a degree of caution. Algorithmic complexity increases very rapidly for even
simple problems such as stacks of objects, and short-cutting the complexity by using
simple algorithms can lead to unpredictable instabilities. That this can happen in
practice as well as theory is demonstrated by the published post-mortem on the game
Trespasser [16].

Collision detection is a computationally demanding requirement that needs to be
thought through in the same way as visual scaling. Games designers may have to
rethink scaling approaches for large environments. Although collision complexity and
visual complexity are correlated, the used of reduced polygon physics models means
that there is considerable scope for achieving high visual complexity and good
physics modelling. Lastly, the addition of physics to the modelling process is a
significant new step, and unifying physics models with traditional modelling (which
can include new capabilities such as skin and bones, IK etc) can be non trivial.

11. References
[1] Baraff, David, Witkin, Andrew and Kass, Michael, Physically Based

Modeling Course Notes, Course 36 SIGGRAPH 99, http://www-
viz.tamu.edu/courses/viza659/00spring/s99-course36.pdf

[2] Baraff D., Fast contact force computation for nonpenetrating rigid bodies.
Computer Graphics Proceedings, Annual Conference Series: 23-34 at
http://www.cs.cmu.edu/~baraff/papers/

Copyright Hewlett Packard Ltd. 8

[3] Baraff D., Coping with friction for non-penetrating rigid body simulation.
Computer Graphics 25(4): 31-40, 1991 at
http://www.cs.cmu.edu/~baraff/papers/

[4] Baraff D., Analytical methods for dynamic simulation of non-penetrating
rigid bodies. Computer Graphics 23(3): 223-232, 1989 at
http://www.cs.cmu.edu/~baraff/papers/

[5] Baraff, D., Non-penetrating rigid body simulation, in State of the Art Reports,
Eurographics '93, Barcelona, Spain, September 1993 at
http://www.cs.cmu.edu/~baraff/papers/

[6] Baraff, David, Linear Time Dynamics using Lagrange Multipliers, Computer
Graphics Proceedings, SIGGRAPH 96 1993 at
http://www.cs.cmu.edu/~baraff/papers/

[7] Barzel, Ronen, Barr, Alan H., A Modelling System Based on Dynamic
Constraints, Computer Graphics, Vol. 22 No.4 August 1988

[8] J. Cohen, M. Lin, D. Manocha and K. Ponamgi, I-COLLIDE: An Interactive
and Exact Collision Detection System for Large-Scaled Environments,
Proceedings of ACM Int. 3D Graphics Conference , pp. 189-196, 1995 at
http://www.cs.unc.edu/~lin/papers.html

[9] Featherstone, R., Robot Dynamics Algorithms, Kluwer Academic Publishers,
1987, 2nd. Printing 1998

[10] M. Lin and S. Gottschalk, Collision Detection between Geometric Models: A
Survey In the Proceedings of IMA Conference on Mathematics of Surfaces
1998 at http://www.cs.unc.edu/~lin/papers.html

[11] Lin, M. and Canny, J., A fast algorithm for incremental distance calculation,
IEEE Conference on Robotics and Automation, pages 1008-1014, 1991

[12] Mirtich, Brian, V-Clip: fast and robust polyhedral collision detection;; ACM
Trans. Graph. 17, 3 (Jul. 1998), Pages 177 – 208 at
http://www.merl.com/people/mirtich/pubs.html

[13] Mirtich, Brian, & Canny, John, Impulse-Based Simulation of Rigid Bodies,
Proc. of 1995 Symposium on Interactive 3D Graphics, pp. 181-188, April
1995 at http://www.merl.com/people/mirtich/pubs.html

[14] Mirtich, Brian, “Timewarp Rigid Body Simulation”, to appear in SIGGRAPH
00, July 2000, at http://www.merl.com/people/mirtich/pubs.html

[15] Press, William H., Teukolsky, Saul A., Vetterling, William T., Flannery,
Brian P., Numerical Recipes in C, Cambridge University Press, Second
Edition 1992

[16] Wyckoff, Richard, Postmortem, Dreamworks Interactive’s Trespasser, Game
Developer’s Magazine, June 1999, now at
http://www.gamasutra.com/features/19990514/trespasser_03.htm

