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Abstract. We present a new architecture for interactive unstructured volume ren-
dering. Our system moves all the computations necessary for order-independent
transparency and volume scan conversion from the CPU to the graphics hard-
ware, and it makes a software sorting pass unnecessary. It therefore provides the
same advantages for volume data that triangle-processing hardware provides for
surfaces. To address a remaining bottleneck – the bandwidth between main mem-
ory and the graphics processor – we introduce two new primitives, tetrahedral
strips and tetrahedral fans. These primitives allow performance improvements in
rendering tetrahedral meshes similar to the improvements triangle strips and fans
allow in rendering triangle meshes. We provide new techniques for generating
tetrahedral strips that achieve, on the average, strip lengths of 17 on representa-
tive datasets. The combined effect of our architecture and new primitives is a 72
to 85 times increase in performance over triangle graphics hardware approaches.
These improvements make it possible to use volumetric tetrahedral meshes in
interactive applications.

1 Introduction

Many interactive 3D graphics applications rely on triangle-based representations and on
hardware support for rendering triangles to achieve interactive speeds. While modeling
applications often use higher-order primitives such as NURBS or subdivision surfaces,
these representations are usually converted to triangles at rendering time to take advan-
tage of hardware acceleration.

Other graphics applications, such as volume rendering, have been slower to achieve
sufficient performance for interactive use. Direct hardware support for volume render-
ing has only recently become available, and only for regular grids at fixed resolutions.
Tetrahedral meshes can serve as a more flexible representation for volume rendering,
providing locally adaptive resolution, integration with polygons, and fitting to complex
boundaries. However, since tetrahedral meshes are more complex than either triangle
meshes or regular grids, they have been used primarily in high-end visualizations and
finite-element simulations.

Recently, however, renderers for tetrahedral meshes have begun to achieve interac-
tive frame rates by using carefully optimized algorithms for visibility sorting and by
taking full advantage of triangle-rendering hardware [20, 23, 17, 26, 29, 30, 19]. While
the most immediate application of these algorithms is visualization, the ability to view



tetrahedral meshes interactively will open up new uses for tetrahedral meshes. Such
uses will include rendering transparent objects and atmospheric effects; allowing richer
forms of volumetric sculpting; and providing visual feedback to accompany simula-
tions of models with accurate density, deformations, and haptic properties. Color Plate
Figure 13 shows some examples of rendered tetrahedral grids.

It is possible to address many of the difficulties of rendering tetrahedral meshes in
the same way similar difficulties have been solved for triangle meshes: using hardware
acceleration for floating-point computations, visibility determination, and rasterization.
In this paper we propose such a hardware-based solution. We base our approach on
Shirley and Tuchman’s projected tetrahedra algorithm [20]. The original algorithm re-
quires first visibility sorting, next classifying the tetrahedra according to their projec-
tions into image space, and then splitting each tetrahedron into triangles. Additionally,
color and opacity must be computed for the split vertex.

Figure 1 describes the steps in our CellFast approach [30], a modified version of
the projected tetrahedra algorithm empirically tuned for fast performance on OpenGL
accelerated desktops. Our previous work used current graphics hardware to accelerate
only Step VI, the scan conversion of triangles. Steps II-V, meanwhile, saturate the host
CPU and leave the graphics hardware running below capacity. The new architecture we
propose here eliminates these bottlenecks by moving steps II-V to hardware in addition
to step VI. This frees the host CPU from a lot of work, and allows tetrahedral meshes
to be rendered as a retained mode display list as follows:

glCallList(globalTetList);
Therefore the host would be lightly loaded, and the primary bottleneck would be

the bus to the graphics accelerator, typically an AGP (Accelerated Graphics Port) bus.
We propose changing the required work of Figure 1 to the display list call above. The
outline of the paper is as follows: In Section 2 we present the new hardware archi-
tecture for rendering tetrahedra directly. In Section 3 we discuss tetrahedral strips and
tetrahedral fans and describe algorithms for generating these. Section 4 discusses the
necessary API to communicate with the graphics subsystem. Section 5 presents results
and Section 6 draws some conclusions and hints at future work.

I. Preprocess dataset
For a new viewpoint:
II. Visibility sort cells

For every cell in sorted back-to-front order:
III. Test plane equations to determine class (1,2,3,4)
IV. Project and split cell unique frontback faces
V. Compute color and opacity for thick vertex
VI. (Hardware) Scanconvert new triangles

Fig. 1. CellFast pseudo-code.

2 Hardware Architecture

Our architecture makes three major changes in how to implement Shirley and Tuch-
man’s algorithm [20, 30]. Figures 2 and 3 show the differences in the dataflow on a
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desktop graphics system. Each figure shows four major hardware components and the
buses between them – the CPU (central processing unit), main memory, the chip set,
and the graphics accelerator. Our architecture changes the system in Figure 2 by mov-
ing the tetrahedral-processing operations to the hardware; by moving the sorting to the
hardware; and by using strips and fans to reduce the load on the bus. Our hardware
solution for sorting is similar in spirit to Carpenter’s software A-buffer [2]; we describe
how arecirculating fragment buffer (R-buffer) [31] may be used to implement order-
independent transparency in Section 2.1.

Figure 2 shows the dataflow for our CellFast implementation of projected tetrahedra
[30] on an OpenGL graphics hardware accelerated desktop. During sorting the tetrahe-
dra require random access for reading and writing. Popular sorts either read and write
sphere data [3, 12, 30] or connectivity and/or BSP data [27, 22, 21, 23, 6]. The sorted
list is then used to read tetrahedra, where they are split into triangles. The triangles are
stored back in main memory, and then finally read into the graphics accelerator. The
data for sorting are read and written as much as necessary to perform the sort. The
tetrahedra are read once from the main memory; In our experiments an average of 3.4
triangles are written per tetrahedron; and then the triangles are read into the graphics
accelerator.

As Figure 3 shows, our new architecture makes the host responsible only for initi-
ating the transfer of tetrahedra to the graphics accelerator. With tetrahedral rendering
in hardware, a display list is used with or without vertex arrays. This is a key differ-
ence, because a projected tetrahedra approach with only triangle rendering hardware
requires immediate mode triangle rendering. The display list would contain all of the
tetrahedra of interest. Figure 3 is a considerable advantage in just the bandwidth over
the currently possible approach shown in Figure 2. While the likelihood of modifying
graphics hardware for the specific application of unstructured volume rendering is low,
many new graphics cards like the NVidia GForce2/GForce3 are programmable [14].
Future programmability might be used to implement the steps necessary for tetrahedral
mesh rendering. In order to understand the features required, we briefly review the pro-
jected tetrahedra algorithm, and where each portion would occur, either the CPU or the
graphics hardware.

Chip set
(AGP/PCI)

Main
Memory

Graphics
Accelerator DisplayCPU 1

unsorted sorted
triangle list

Fig. 2.Dataflow for CellFast.

Chip set
(AGP/PCI)

Main
Memory

Graphics
Accelerator DisplayCPU 1

tetrahedral display list

CPU initiates DMA

DMA tetrahedra

Fig. 3. Dataflow for proposed architecture.

In our experiments with CellFast, we have found that in practice, most of the render-
ing time in the projected tetrahedra algorithm [20] is due to the floating point operations
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needed to process each tetrahedron. These operations depend on the orientation of the
tetrahedron and its projection into screen space. The algorithm must process four cases
(Figure 4). For each case, the operations involved are simple and are already performed
in hardware for other graphics primitives. More precisely, we need to compute the ver-
tex coordinate of the thick or split vertex together with its opacity and color values. A
thick vertex is a vertex of the triangles used to represent a tetrahedron, and falls where
the tetrahedron has its maximum thickness along the view ray [20]. The thick vertex
is labelled for each of the four cases in Figure 4. For example, if the tetrahedron is of
Class 1, we need to perform a ray plane intersection to find the point in the interior of
the back (or front) face. For a tetrahedron of Class 2 we need to find two points, one
point on the front facing edge and one point on the back facing edge. This corresponds
to two line-line intersections. Class 3 requires us to find a point on the front facing edge
(or back facing respectively). Hence again we have to perform a line-line intersection.
Class 4 is a degenerate case with two faces perpendicular to the viewpoint, and no new
vertices are computed.

In order to process the tetrahedra and find the split vertices, we may simply reuse the
existing geometry capability for performing hardware accelerated line plane and line-
line intersections. The same is true for setting up the plane equations for each of the four
faces. These are needed to perform the classification in a prior step. What is left is to
compute the resulting depth integrated opacity and color at the thick vertex. As outlined
in Shirley and Tuchman [20], this is based on Euclidean distances and hence requires
the computation of square roots. This is currently implemented as a look up table in
most hardware designs. Additionally, we need to perform bilinear and linear interpola-
tions. Figure 5 shows the revised CellFast algorithm possible on an enhanced graphics
hardware architecture. The geometry processing to be added to the graphics hardware
would implement the steps numbered III, IV, and V. Step II is implemented using the
R-buffer discussed in the next section. Steps III, IV, and V use standard floating point
operations, and therefore on architectures like HP’s fx hardware [13] one only needs to
modify the firmware to implement them. Obviously hardwired geometry engines would
require hardwired control changes.

class 1 class 2 class 3 class 4

split vertex
split vertex split vertex

split vertex

Fig. 4. Classification of projected tetrahedra

III. (Hardware) calculate 4 plane equation values
IV.1 (Hardware) switch on class type
for each class determine thick vertex and draw triangles
IV.2/V.1 (Hardware) class 1A, class1Color()
IV.3/V.2 (Hardware) 1B, class1Color()
IV.4/V.3 (Hardware) class 2, class2Color()
IV.5/V.4 (Hardware) class 3A, class3Color()
IV.6/V.5 (Hardware) 3B, class3Color()
IV.7/V.6 (Hardware) class 4, class4Color()

VI. (Hardware) scanconvert resulting triangles

II. (Hardware) R-buffer sorts fragments

Fig. 5. Hardware CellFast rendering.
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2.1 Recirculating fragment buffer (R-buffer) for depth sorting

We have developed an invention that we call therecirculating fragment buffer, (R-
buffer) that computes order-independent transparency with any number of levels eco-
nomically in hardware [31]. A fragment is a sample representing a pixel on the screen
consisting of typically theRGBAZ, and is the terminology used in OpenGL. AnR-
buffer is a buffer, separate from theZ buffer and frame buffer, that stores fragments.
We are proposing that all of these buffers reside in the same off-chip memory of the
graphics accelerator. By the addition of theR-buffer, additional comparison and control
logic, and a few bits and an extraZ per pixel, we can compute order-independent trans-
parency. Once fragment sorting is supported in hardware, this relieves the host of the
requirements for any topological cell sorting, and also eliminates problems often found
with cell cycles, sliding interfaces, or concavities.

TheZ buffer is simple and fast in hardware. It has dominated graphics architec-
tures for nearly two decades. But Z buffering is aread modify write, and so an actual
sort is not being done. Therefore, order-independent transparency cannot be computed
efficiently on a Z buffering architecture.

Improved methods for correct transparency have been investigated by Mammen
[16], Carpenter [2], Winner et al. [28], Torborg and Kajiya [25], Jouppi and Chang
[11], Farias et al. [6, 7], and Lee and Kim [15]. The proposed techniques are either
software only [2, 6, 7, 25], require multiple passes of rendering the geometry [28, 16],
require use of pointer based linked lists in hardware [15, 25], and/or only render a fixed
number of transparent levels correctly [28, 11]. Transparency is a challenging problem
to solve in hardware.

Color Plate-Figure 15 on the bottom row shows what happens in OpenGL, when
rendering three transparent squares of red, green, and blue. A different image results
from each different drawing order, even though the three squares have a fixed Z depth
location. On the top row of Color Plate-Figure 15, different drawing order does not
impact the visual appearance. This shows the results of order-independent transparency,
using the R-buffer architecture.

This approach can be economically implemented in hardware [31]. We have in-
vestigated the R-buffer for supporting transparency and antialiasing, and seek here to
evaluate it for unstructured volume rendering. Essentially, a frame buffer is used for
storing the closest opaque fragment, or the furthest transparent fragment if there are not
any opaque fragments. For pixels with additional fragments, those fragments are sent
to the buffer along with theirX andY location. Because current graphics accelerators
(2001) use custom ASICs with large off-chip memory, the required memory for the R-
buffer and extraZ-locations is already available. For spring 2001 consumer graphics
cards have 64 MB of on card memory. This memory can be used for texture data, frame
buffer, or intermediate off-screen buffers.

We propose to use the memory for the fragments that are not either the closest
opaque or furthest transparent.

In successive passes, the fragments are considered, and composited [18] (Porter and
Duff) into the frame buffer. Only 1 pass is needed for processing the geometry, so no ex-
tra storage is needed for geometry, and a single R-buffer is shared for the entire screen.
This amortization of the extra storage over the entire screen allows unique savings over
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techniques with large per pixel dedicated storage [2, 11, 15, 28]. This means that, there
is one buffer for the entire screen, and it is FIFO (first-in-first-out) accessed. Using stor-
age for the whole screen instead of large per-pixel storage is particularly important for
tetrahedral meshes, since irregular grids may have a wide variation in the number of
fragments per pixel. With our system, the storage and processing are independent of
the screen coverage of any particular transparent fragment. The processing is the same
if all of the transparent fragments land on one pixel, across a thousand pixels, or are
distributed over the whole screen.

Our R-buffer is flexible and efficient for the calculation of proper transparency with-
out multiple passes of the geometry. Many fragments are culled and eliminated with
Z. Experiments show the required memory to support order-independent transparency
with highly detailed CAD models to be from 2.1 to 3.6 times higher than a traditional
Z buffer (’57 chevy, helicopter, spheres) [31]. Experiments with unstructured datasets
show that more memory is required, but the amount is reasonable (Section 5.1). Dur-
ing unstructured volume rendering, texturing does not need to be used, leaving 54 MB
available off-chip memory of 64 MB when rendering to 1280x1024 screen resolution.
This factor of 5 X times the frame buffer storage in current hardware supports an aver-
age depth complexity of 10 fragments per pixel. Because screen resolutions are fixed,
and memory densities are growing, using an off-chip memory is economical and will
continue to grow at an exponential rate. Large unstructured data sets could be accom-
modated by increasing the off-chip memory, and paging the R-buffer if it overflows to
main memory.

Figure 6 shows how a Z-buffer is augmented with an R-buffer to support order-
independent transparency for an arbitrary number of layers. The architecture is a stan-
dard graphics pipeline, with geometry processing (G), and rasterization (R). We add an
R-buffer, and a 2nd Z storage to the frame buffer.

pixel state

Z-buffer and
Color buffer

2nd Z-buffer

X,Y,Z,RGBA
X,Y,Z,RGBA
...

Rasterization
(R)

Fragment 
compare and
compositing

R-buffer

Geometry 
Processing
(G)

memory

logic

Fig. 6. Graphics architecture

Framebuffer 
Storage

Rasterization
(R)

Fragment compare
logic and
compositing

X,Y,Z,RGBA
X,Y,Z,RGBA
...

R-buffer

Fragment

multiplexor

address 
   update

state extra-Z

discard 
fragment

fragment

Fig. 7. Interface to R-buffer and frame buffer.

Figure 7 shows more details where a fragment coming from rasterization or from
the R-buffer is multiplexed into the R-buffer comparison and control. The R-buffer is
considered to be a circular first-in-first out (FIFO) queue. Depending on the fragment’s
opacity, depth, and the previous state of the frame buffer at that location, a fragment may
be stored on the R-buffer, composited into the frame buffer, or discarded. The R-buffer
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comparison and control is where the z-buffering comparison typically takes place. The
z-buffering is now augmented and revised to provide true transparency. Further details
may be found in our paper [31].

3 Traversing Tetrahedral Meshes

The hardware changes presented above already provide a significant data reduction.
However, the bandwidth needed can be reduced even further by compressing the data.
A typical uncompressed vertex sent to hardware may require as much as 52 bytes of
data including geometry coordinates,RGBA values for color, texture coordinates, and
a normal vector. For tetrahedral meshes, the cost of transmitting vertices to hardware
incurs an overhead as each tetrahedron must be approximated by three or four triangles.
This means that rendering tetrahedra with current graphics hardware requires more than
three times the bandwidth than for rendering triangles. If the hardware supports a tetra-
hedral primitive, as we are proposing, then the cost is less, requiring only four vertices
per tetrahedron to be sent. Further reduction in bandwidth is achievable by using stripi-
fication which we discuss next.

3.1 Triangle Strips and Triangle Fans

The bandwidth problem has been addressed for triangle meshes in various ways. Cur-
rent graphics APIs address this problem by using vertex caches and multiple-triangle
primitives such as triangle strips, triangle fans, and indexed vertex arrays. Here, the idea
is to reuse vertices from adjacent triangles. A triangle strip is a sequence of triangles
which are linked pairwise by shared edges. A sequential or alternating triangle strip is a
triangle strip whose triangles alternate left-right, so that their shared edges form a sin-
gle line without branches (Figure 8 left). A generalized triangle strip is a triangle strip
whose triangles may follow any sequence of left and right turns without constraints
(Figure 8 middle).

sequential
triangle strip

generalized
triangle strip

triangle
fan

Fig. 8.Triangle strips.

A triangle fan is a special case of a triangle strip in which all the triangles in the
sequence share one vertex. The triangles are arranged in clockwise or counterclock-
wise order around the common vertex (Figure 8 right). Current graphics APIs such as
OpenGL provide primitives for both triangle fans and sequential strips that use three
vertices to specify the first triangle of a strip and each subsequent vertex to specify a
new triangle. Although they do not directly support generalized strips, one may simu-
late a generalized strip by duplicating a vertex in the vertex stream. Therefore, the cost
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of transmitting a mesh to hardware in strip form depends on both the total number of
strips and the number of swaps or duplicates necessary to indicate the strip directions.

In practice, systems using strips and fans can achieve transmission rates of 1.2-
1.3 vertices per triangle. This can result in bandwidth savings of over 50%. Deering [4]
presents a compression scheme that uses a 16-entry vertex cache to provide 0.65 vertices
per triangle. Hoppe [9] shows how similar savings may be achieved with indexed vertex
arrays and transparent caching, if the model-triangle representation is rendered with
knowledge of the cache size. Furthermore it is possible to include strips, fans, and vertex
arrays in precompiled display lists for extremely fast processing.

Many of those solutions, however, cannot be applied to tetrahedral meshes. Since
the decomposition of tetrahedra into triangles is view-dependent, we cannot use stati-
cally computed triangle strips, generalized triangle meshes, or even display lists when
changing the viewpoint from frame to frame [30]. One must therefore address the band-
width problem in a manner specific to tetrahedral meshes. In [30, 26] it has been shown
that using a triangle fan for each projected tetrahedron can lead to a speedup in render-
ing of tetrahedral meshes (see Table 6). Even with this approach, however, renderingN

tetrahedra requires 50-60% more bandwidth than renderingN individual triangles.

3.2 Tetrahedral Fans and Tetrahedral Strips

We address this problem by introducing two new primitives for rendering unstructured
volume data, the tetrahedral strip and the tetrahedral fan. These primitives are the first
methods documented in the literature for reducing the bandwidth required for rendering
tetrahedral meshes. We will show that we can achieve transmission rates approaching
1.2 vertex per tetrahedron.

Note that we designed the primitives for use in conjunction with either a full or
partial implementation of the hardware-rendering system proposed in Section 2. While
such hardware is not yet available, the face and vertex orderings introduced by these
strips may also be used to compress unstructured datasets for storage and transmis-
sion with only local information needed. Such stripification may improve vertex cache
management when rendering tetrahedral meshes on existing graphics cards that support
vertex caching and updatable vertex arrays.

To make these primitives useful, we present the algorithms for generating tetra-
hedral strips from an input tetrahedral mesh. Our algorithms are as simple, efficient,
and easy to implement as existing algorithms for triangle strip generation. On tetrahe-
dral meshes, however, our results suggest that tetrahedral simplification compresses un-
structured data more than triangle stripification compresses surface meshes. We provide
experimental results demonstrating both the strip lengths achieved and their predicted
impact on rendering efficiency.

Compared to triangle meshes, it is more difficult to describe the connectivity of
tetrahedral meshes. There are several reasons for this:

1) The left-right alternation of sequential triangle strips does not apply to tetrahedra,
which lack obvious notions of ‘left’,‘right’, or ‘alternating’.

2) There is no simple way to orient the tetrahedra which are incident to a given vertex.
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3) The neighborhood of a single vertex in a tetrahedral mesh may be as complex as
an entire triangle mesh. This can easily be seen by considering a triangulation of
the sphere, adding a vertex at the center of the sphere, and computing the result-
ing Delaunay tetrahedralization. A tetrahedral mesh may therefore contain vertices
whose neighborhoods are impossible to traverse in a single strip without leaving
the neighborhood.

Some of the triangle strip algorithms using a cache [4], [9], achieve transmission rates
below 1 vertex per triangle by seeking traversal orderings in which the complete neigh-
borhood of a vertex is visited soon after the vertex enters the cache. In a typical triangle
mesh, this situation happens frequently, since a strip often refers to vertices still in the
cache. For a tetrahedral mesh however, an average vertex may commonly be incident
to 15-20 tetrahedra which are defined by 8-10 other vertices or more. This means that
tetrahedral strips need a cache holding 8-10 or more vertices just to hold the neighbor-
hood of a single vertex in cache.

The key insight in dealing with the added complexity of tetrahedral meshes is to
consider simplicial complexes in general. It is true thatk-dimensional subcomplexes of
ann dimensional simplicial complex are equivalent for varyingk andn provided that
n�k is constant. Hence a vertex of a triangle (k = 0; n = 2) is equivalent to an edge of
a tetrahedron (k = 1; n = 3) - the same is true for edges and faces. Just as every edge in
a triangle mesh is incident to two triangles, every face in a tetrahedral mesh is incident
to two tetrahedra. Just as the triangles incident to a vertex in a triangle mesh form a
simple cycle around that vertex, the tetrahedra incident to an edge in a tetrahedral mesh
form a simple cycle around that edge. Hence we use edges not vertices as basic element
for constructing tetrahedral strips and fans and for describing an oriented traversal of a
tetrahedral mesh.

Tetrahedral Fans We define a tetrahedral fan as a sequence of tetrahedra which share
a common edge (Figure 9.) Unlike a triangle fan, such a fan does not include the entire
neighborhood of any one vertex. Rendering a tetrahedral fan comprisingN tetrahedra
requires the transmission of onlyN + 3 vertices - a substantial savings over the4N
vertices needed to render the sameN tetrahedra separately.

1

2

3

4

5
6

7

8

Fig. 9.A tetrahedral fan.

3

4

1 2

5

6

7

8

9

Tetrahedral Strip

Fig. 10.A sequential tetrahedral strip.
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The tetrahedral fan is a fairly simple structure, but its syntax must be defined care-
fully to make it clear which vertices are being reused. To be consistent with the triangle
fan notation, we adopt the convention that the first two vertices being sent make up
the edge being shared. The third and fourth vertices complete the first tetrahedron. The
fifth vertex defines a second tetrahedron that consists of vertices 1, 2, 4, and 5; the sixth
vertex defines a third tetrahedron, with vertices 1, 2, 5, and 6; and so on until the end of
the fan is reached.

Tetrahedral Strips We define a tetrahedral strip as a sequence of tetrahedra that are
connected by shared faces, but not all of them necessarily share one common edge
(Figure 10). An application transmits a tetrahedral strip to hardware by sending the
four vertices of the first tetrahedron, and sending a single vertex for each subsequent
tetrahedron. We define a sequential strip as a strip in which the new vertex always
replaces the least-recently-used (LRU) vertex of the previous tetrahedron. We define a
generalized strip as a strip in which there are no constraints on the direction of the next
tetrahedron (in other words the vertices may be replaced in any order). For a generalized
strip, the application must also send a flag indicating which of the four vertices should
be replaced by the following vertex (see Section 4). We assume that a tetrahedral strip
is generalized unless otherwise stated.

To use strips, it may be necessary to compute a correctly-ordered list of vertex
replacements from a list of the tetrahedra in each strip. One may do so by identifying
the common edges shared by sequences of three or more adjacent tetrahedra in the
strip. We call the union of a strip’s common edges anedge chain. For a fan, the edge
chain has a single, shared edge, and the vertex ordering may be computed by ordering
the remaining vertices clockwise or counterclockwise around the shared edge. For a
sequential strip, the edge chain has no branches and no edges shared by more than three
consecutive tetrahedra. A sequential strip’s edge chain visits all but the first and last
vertex of the strip in the correct transmission order. A generalized strip’s edge chain,
meanwhile, has a branch or shared edge for each replacement that does not follow LRU
order.

3.3 Generating Strips and Fans

We have experimented with a variety of tetrahedral strip algorithms. Each algorithm
uses an adjacency data structure identifying the four face neighbors of each tetrahedron.
We mark each tetrahedron with a flag indicating that it has not been visited, and with
an integer that indicates how many unvisited neighbors it has. We store the adjacency
information in an array whoseith row contains integers identifying the four neighbors
of tetrahedroni. We use the convention that a tetrahedron referred to by the first element
in theith row is the tetrahedron opposite the first vertex of tetrahedroni.

The baseline is a greedy algorithm that selects the first unvisited tetrahedron from
the array as the start of the strip, chooses one of its neighbors as the next member
of the strip, and repeats until no unvisited neighbors remain. Once all neighbors have
been visited, we reverse the strip and seek to extend the strip by starting again at the
very first tetrahedron. In the tetrahedral case, this algorithm produces stripifications for
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our sample meshes with mean strip sizes of 9-14 tetrahedra each, corresponding to a
transmission rate of 1.20-1.33 vertices per tetrahedron. Color Plate-Figure 13 shows an
example of a strip generated from the Langley Fighter data set.

In search of better strip quality, we have tried several heuristics to improve the sim-
ple greedy algorithm. These heuristics center around the selection of the next unvisited
tetrahedron. We experimented with the following criteria:

– Method 1) Greedy: choose the first unvisited neighbor tetrahedron.
– Method 2) choose the neighbor tetrahedron with the fewest unvisited neighbors
– Method 3) choose a sequential order first, if no more tetrahedra can be added switch

to 2.)
– Method 4) attempt to create a fan first, then switch to variant 2.)

Method 2 is typically the most effective, since it helps to avoid leaving isolated single-
ton strips in the mesh. This boosts the average strip length up to 49 tetrahedra. This
algorithm can be viewed as the tetrahedral equivalent of the greedy algorithm for trian-
gle strip generation used by Akeley et al. [1] and Evans et al. [5].

3.4 Encoding Stripifications

Compressing 3D representations including triangle meshes and tetrahedral meshes has
been a subject of extensive research, motivated by the need to transmit and store large
datasets efficiently over the Internet and other networked systems. It may therefore be
important to encode the stripification of tetrahedral meshes along with their connectiv-
ity. Both Deering [4] and Isenburg [10] provide compressed formats for triangle strips
which involve using the triangle strips to guide the encoding. Deering’s Java3D com-
pression method encodes ageneralized triangle mesh which may be computed from a
collection of triangle strips, with additional codes to indicate vertices pushed and pulled
from the cache. Isenburg encodes triangle strips by marking which edges in a triangle
mesh are internal to strips; he observes that it is sufficient to know the internal edges to
recover the stripification.

The two algorithms that have been introduced for encoding the connectivity of tetra-
hedral meshes, Grow and Fold [24], and the cut-border machine [8], allow for free-
dom in constructing the order of their tetrahedron spanning trees. Either algorithm may
therefore be used to encode tetrahedral strips by following the order defined by the
trees. Generalizing Isenburg’s method, we may then use additional bits to mark the
strip-internal faces that indicate where the different strips start and stop.

3.5 Hardware Support for Tetrahedral Strips

The minimum hardware requirements for supporting tetrahedral strips are a buffer that
can hold the four vertices of the current tetrahedron and the additional, fifth vertex
sometimes created by the Projected Tetrahedra algorithm, and the ability to swap the
vertices in the buffer as necessary to follow the direction of the strip. Even greater sav-
ings may be achieved by caching information that the Projected Tetrahedra algorithm
must compute for each edge and face. Depending on the classification of the current
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tetrahedron (see Section 2), the algorithm may need some or all of a tetrahedron’s edge
lengths and face area. Since each length and area value computed requires a square root,
running time and complexity may be reduced by storing these values for the edges and
faces that will be reused by the next tetrahedron in a strip.

4 Application Programming Interface (API)

In this section we propose an extension to the OpenGL API to support tetrahedral fans
and strips. We add a primitive GLTET FAN EXT. Users would call glBegin(GLTET
FAN EXT), and then make glVertex and glColor calls. If we then pass verticesv 0,
v1, v2, : : : ; v6 for example then the tetrahedrav0v1v2v3, v0v1v3v4, v0v1v4v5, and
v0v1v5v6 are rendered. This is a straightforward generalization of a triangle fan. In
the case of tetrahedral strips we propose two extensions. The simpler primitive is the
GL SEQUENTIAL TET STRIP EXT. In this case the first 4 vertices specify the
first tetrahedron, each following vertex replaces the first vertex of the previous tetra-
hedron; see Figure 11. The primitive GLGENERAL TET STRIP EXT requires
more programmer intervention but is more flexible. Here we explicitly describe which
vertex should be replaced. So we have to introduce flags GLREPLACEVERTEX
EXT 1, 2, 3, 4 (see Figure 12). An added OpenGL entry point glReplaceVertexEXT(),

would be needed to know which vertex was to be replaced. This allows the most flexi-
bility, however there is an added expense for transmitting 2 bits for the flag. We use the
convention that the new vertex is always vertex 4 similar to IrisGL triangle strips.

glBegin(GL_SEQUENTIAL_TET_STRIP_EXT);
glVertex(v1);
glVertex(v2);
glVertex(v3);
glVertex(v4); // draws tet v1-v2-v3-v4
glVertex(v5); // draws tet v2-v3-v4-v5
glVertex(v6); // draws tet v3-v4-v5-v6
glVertex(v7); // draws tet v4-v5-v6-v7
glVertex(v8); // draws tet v5-v6-v7-v8
glEnd();

Fig. 11.Code example for sequential strips

glBegin(GL_GENERAL_TET_STRIP_EXT);
glVertex(v1); // stored in slot 1
glVertex(v2);
glVertex(v3);
glVertex(v4);
glReplaceVertexEXT(REPLACE_VERTEX_EXT_1);
glVertex(v5); // goes into slot 1, draws
// tet v2-v3-v4-v5

glReplaceVertexEXT(REPLACE_VERTEX_EXT_1);
glVertex(v6); // goes into slot 1,
// drawing tet v3-v4-v5-v6

glReplaceVertexEXT(REPLACE_VERTEX_EXT_3);
glVertex(v7); // goes into slot 3
// replacing v5, draws v3-v4-v6-v7

glEnd();

Fig. 12. Code example for generalized
strips

5 Results

We have evaluated the architecture by simulating the R-buffer hardware [31], imple-
menting the stripification algorithms in MatLab, and experimenting with optimization
of CellFast [30]. A complete hardware and software system implementation is a large
project. Whether such features are commercially viable is not yet clear, but the support
of new functionality to support unstructured rendering in desktop graphics accelera-
tors is practical and efficient with our proposed architecture. We present results on the
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R-buffer processing of unstructured data, on the compression, and then a “back of the
envelope” performance evaluation based on bottleneck analysis. The graphics accel-
erators cannot exceed the speed by which data can be sent to them. We believe the
performance estimates to represent the possible gains, 72-86 speedup for unstructured
rendering, and are currently working on implementation issues.

5.1 R-buffer Results

We ran our R-buffer architectural simulator on seven datsets ranging in size from 12
thousand to 2.4 million tetrahedra. The data sets shown in Figure 13 have sizes as pro-
vided in Table 6. We used a trace of fragments generated by our CellFast implementa-
tion [30] on each data set as input to a behavioral simulator. Table 1 shows the results
of processing these datasets, and Figure Color Plate 13 top row shows the rendering
of CellFast in OpenGL. Figure Color Plate 13 bottom row shows the actual output of
the architectural simulator. The number of recirculating fragments passes ranges from
52 to 552, and average depth complexities of covered pixels range from 9.98 to 201.55
fragments per pixel. All images were rendered to a 512x512 framebuffer.

Our simulator actually produces better results than the several OpenGL implemen-
tation tested, because of the use of unassociated color storage with associated com-
positing. The difference can be seen on the phoenix dataset, where there are greatly
reduced triangle artifacts at the edges of the model. The ratio ofZ bandwidth, meaning
the amount of bandwidth used to simply read-modify-write, to the R-buffer bandwidth
is provided, and ranges from 13.7 to 135.1. The statistics depend upon the viewpoint.
The number of passes is related to the worst case depth complexity of any pixel. The
torso and head datasets were culled by a semiautomatic classification algorithm, Table
6, and also rendered with no culling. The memory ratios for the proposed architecture
range from 1.8 to 48.7 for these datasets. Because the torso full and head full datasets
result in such high average depth complexity, 154.5 and 201.6, users would likely use
simplification, hierarchical models, or culling to regions of interest. Our results show
the memory remains reasonableO(Nd), but the run time complexity does depend upon
the average depth complexity squared,O(Nd2). HereN is the number of pixels, and
d is the average depth complexity over those pixels. For small average depth complex-
ities, the sorting is reasonable as shown by the tot/Z bandwidth provided in Table 1
for the first five datasets. Front-to-back compositing with adaptive opacity threshold
termination would also be an effective way to limit the amount of layers to be sorted.

5.2 Stripification Results

We ran our stripification algorithms on five test data sets, ranging in size from 3,000
tetrahedra to 240,000 tetrahedra. The datasets ‘bracket’ and ‘arm’ are small data sets
containing 3398 and 3157 tetrahedra. Using Method 2 above, we achieve the best results
with mean strip lengths of 29 tetrahedra per strip and median lengths over 10 tetrahedra
per strip. Method 2 is followed by Method 4 ( mean 15.4), then by Method 1 (mean
11.4), and last is Method 3 (mean 10.9). Results are presented in Tables 2, 3, 4, and
5. The columns are defined as:nstrips - number of tetrahedral strips;tmean - mean
number of tetrahedra in each strip;tmed - median number of tetrahedra in each strip;
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data set frags depth comp.passestot/Z mem tot/Z

1000’s pixels band MB mem

phoenix 1022 27.6 66 17.4 14.9 6.6
langley 624 31.5 83 22.5 10.4 4.6
f117 75 10.0 83 14.9 4.1 1.8
torso 214 48.8 255 32.5 5.7 2.5
head 105 19.2 52 13.7 4.5 2.0

torso full 5416 154.5 552 120.5 65.2 29.0
head full 9287 201.6 475 135.1 109.5 48.7

Table 1.R-buffer statistics.

data setnstrips tmeantmed tstd tmax vpert

phoenix 1000 12.9 4 20.5 182 1.23
langley 4745 14.8 3 29.1 370 1.20
f117 22203 10.8 6 17.7 404 1.28

bracket 367 9.3 2 27.1 440 1.32
arm 349 9.1 3 18.5 301 1.33

Table 2.Results for Method 1.

tstd - standard deviation of the number of tetrahedra in each strip;tmax - the maximum
number of tetrahedra in a strip;vpert - the number of vertices per tetrahedra.

data setnstrips tmeantmed tstd tmax vpert

phoenix 441 29.4 10 46.4 347 1.10
langley 1432 49.0 13 86.8 865 1.06
f117 6504 36.9 10 80.5 1472 1.08

bracket 222 15.4 5 23.7 119 1.20
arm 225 14.1 5 26.9 232 1.21

Table 3.Results for Method 2.

data setnstrips tmeantmed tstd tmax vpert

phoenix 1231 10.5 3 37.2 962 1.29
langley 4907 14.3 4 66.7 3486 1.21
f117 20578 11.7 3 71.6 6238 1.26

bracket 398 8.6 3 18.4 188 1.35
arm 340 9.3 3 24.4 301 1.32

Table 4.Results for Method 3.

data setnstrips tmeantmed tstd tmax vpert

phoenix 882 14.7 4 32.4 293 1.20
langley 3763 18.6 5 44.6 676 1.16
f117 10030 23.9 6 62.9 2229 1.13

bracket 349 9.8 3 17.0 148 1.31
arm 313 10.1 4 17.8 159 1.30

Table 5.Results for Method 4.

data setculled tets f/sec HW f/sec Speedup

phoenix 0% 12,936 2441 33.6 72.6
langley 20% 70,125 592 7.2 82.2
f117 36% 240,122 212 2.47 85.7
torso 81% 1,293,238 120 1.53 78.3
head 99.6% 2,443,013 2724 11 247.7

Table 6. Projected and measured perfor-
mance.

Since the purpose of our algorithm is to improve rendering performance, our success
cannot be completely measured by the length of the strips we produce.

To take full advantage of volume rendering with tetrahedral strips requires the new
architecture we have proposed. But, using middleware much of the advantages may be
retained by storing datasets on disk and in memory in strips. We have experimented
with schemes that check and update strips on the fly to ensure the visibility ordering
remains correct.

Some software algorithms for tetrahedron visibility sorting, such as the MVPO [27]
and BSP-XMPVO and ZSweep [23, 6] algorithms, generate adjacency information for
the sorted tetrahedra. These representations could be used directly to group tetrahedra
for transmission to hardware as relatively short strips.
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5.3 Performance Estimates

We present here performance estimates for our architecture. The system supports tetra-
hedral rasterization, R-buffer sorting, and tetrahedral stripping as just described (See
Figure 3). The system bus bottlenecks determine peak performance. Bottleneck analy-
sis is a key tool for system architects and designers, as it allows accurate speed limits
to be defined. For example, H.P.’s Visualize fx graphics hardware has targeted the sus-
tained throughput of AGP, AGP2X, and AGP4x in order to match the capabilities of
the platform. Other factors come into play, such as fill rate when more sophisticated
features such as multitexturing are used. Therefore an application may often be slower
than the bottleneck, but it shall never exceed the predetermined system bottlenecks. An
optimal system may go no faster than the peak transfer rate of the graphics bus, cur-
rently AGP (accelerated graphics port) 4X. AGP 4X has a peak rate of approximately
1000MB/sec. Each tetrahedra that would be sent to the graphics hardware would have
vertex location datavx, vy, andvz, as well as color datar, g, b, a. If we take all 7 values
to be floats to avoid any difficulties with opacity precision for classification, then we
have 7 floats/vertex. (Our simulator uses the 8 bit components for RGBA from Mesa.)
The following equation determines how many bytes per tetrahedra there are:

(
7 floats
vertex

)� (
4 B
float

)(
4vertices

tet
) = 112

B
tet

(1)

Now using the AGP 4X rate, we can compute the expected rendering rate which
AGP cannot exceed:

(
1000MB
second

)� (
1tet
112B

) = 8:9
Mtet

second
(2)

The tetrahedra/second rate of an optimized projected tetrahedra implementation is
400,000 tet/second (See Table 6). A rate of 8.9 Mtet/second is a 20X improvement.

Note that this performance improvement of 20X is based on just rendering tetrahe-
dra from a display list or retained mode. The sorting on the host, as well, as the floating
point processing on the host would be removed, instead one would pass the display list
to the hardware. Adding stripification, the improvement would be even greater, as the
amount of bandwidth consumed per tetrahedra drops dramatically. Assuming the av-
erage rate of 17 tets/strip averaging the average stripification over all datasets shown,
the amount of data is 20/17 vertices/tet or 1.18 vertices/tet. If we assume a begin/end
overhead of 24 bytes for each strip on AGP from handshaking, signaling, and OpenGL
commands to the hardware, we get the following:

(
28B

vertex
20verts

strip
+

24B overh
strip

)� (
1strip
17tets
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B
tet

(3)

or using the AGP 4X rate,
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Computing with this rate, provides 34.35 Bytes/tet, which improves performance
by an additional 3.3X. The expected tetrahedral rate is 29 million tet/second. This
formidable rate makes even unculled datasets truly interactive. For the expected per-
formance, the frame rates can go up by this 72X to 86X improvement, for example as
shown by 5 available datasets in Table 6. Table 6 provides actual CellFast measure-
ments on an fx10 HP PC for the 5 datasets, as well as projected performance with the
new architecture, and the calculated speedup of the new architecture over CellFast. The
frame/sec HW is the frame rate with the proposed hardware architecture and stripping,
while the f/sec is with CellFast implementation using hardware triangle rasterization.
Note that the number of tetrahedra that are rendered is the number of tetrahedra in
the data set minus the number of tetrahedra culled. The head data set is so large, that
it causes cache problems, even when running on the 99.6% culled version, which pro-
vides a slower run time than for data sets that are smaller. This exaggerates the expected
speedup calculated to 247X. While our claim of a potential for 29 million tetrahe-
dra/second may seem high, current graphics cards achieve millions of triangles/second,
and polygon improvement rates have been beating Moore’s Law. Since our architec-
ture is designed to leverage consumer graphics hardware development, we believe such
estimates to be a reasonable goal.

6 Conclusion and Future Work

We have shown that addition of tetrahedral primitives moves much of the work from the
host CPUs to the graphics hardware. While it is no surprise that this can improve perfor-
mance, it is surprising that the possibility exists to improve performance by over 70X.
The advantages of our architecture are to unburden the host from performing the sorting
or splitting. The sorting per fragment is exact, and also very fast in hardware, as each
pixel now requires a reduced amount of sorting versus the per primitive sort required
without our architecture. By adding tetrahedral primitives, data are more compact than
being split into triangles. An additional 3.3X factor resulted from tetrahedral stripifi-
cation. While nearly a direct analog to triangle stripification, the gains are greater than
expected. Our results show that tetrahedral stripping may be inherently more efficient
than triangle stripping. Future work is to perform stripification on the culled datasets
to get the greatest advantage. A representation that allows dynamic classification, and
generation of triangle strips would be ideally suited for our architecture. Several heuris-
tics were demonstrated and evaluated, and results with an average strip length of up to
50 tetrahedra were achieved.

A drawback of our approach is that since it is based on Shirley and Tuchman’s
projected tetrahedra algorithm, it suffers some of the inaccuracies that algorithm may
produce. But, the linear approximation is the easiest to place into hardware. The linear
interpolation involved in the projected tetrahedra algorithm, for example, can produce
mach banding. Rottger et al. [19] propose using texture mapping as a method to pro-
duce higher-order interpolation effects for projected tetrahedra. Their method would be
interesting to integrate with ours.

Another disadvantage is that although our system can be used to render a variety of
complex, transparent models, none of the current algorithms for rendering of tetrahedral
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meshes may be easily adapted to support refraction. Refraction would require sampling
the irregular grid with refraction rays at a variety of directions which could not be
sampled accurately without resorting the tetrahedral mesh from a different viewpoint.

Finally, the tetrahedral API support is simple, an analog of triangle and triangle strip
primitives. The amount of changes in hardware to support the tetrahedral primitives is
small, especially for those graphics architectures with microcoded geometry accelera-
tion. What we have presented is a novel and powerful approach to make unstructured
volume rendering truly interactive.
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Fig. 13. Color Plate: Unstructured volume rendering of the example data sets Phoenix (left),
NASA Langley Fighter (middle), and F117 (right). The top row shows CellFast output to HP
OpenGL, and the bottom row shows the proposed architectural simulator’s output.

Fig. 14.Color Plate: Tetrahedral strip from the Langley data set

Fig. 15. Color Plate: Top row, R-buffer, same appearance. From near to far, the squares are or-
dered Blue, Green, Red. Bottom row, conventional Z-buffer, different every time.
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