

Managing Next Generation
E-Services

Akhil Sahai, Vijay Machiraju, Klaus Wurster
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2000-120
September 21st, 2000*

E-mail: {asahai|vijaym|kwurster}@hpl.hp.com

Internet, web,
management,
e-services, XML

The ever-widening reach of Internet has led to the
proliferation of e-services. These e-services are
sprouting in the form of portals and e-business web
sites. Some of these e-services interact amongst
themselves and undergo service composition to offer
other complex services. Next generation e-services
would undertake dynamic service composition because of
the multiple benefits this model of operation provides.
In addition, these e-services have varied
implementations which makes managing these e-services a
challenging task. These web based e-services also
operate on line and would need continuous monitoring
and control. This paper proposes and describes an
e-service management solution itself as a web based
e-service that enables remote management of e-services
in a uniform platform independent manner.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2000

Abstract- The ever-widening reach of Internet has led to the

proliferation of e-services. These e-services are sprouting in the
form of portals and e-business web sites. Some of these e-services
interact amongst themselves and undergo service composition to
offer other complex services. Next generation e-services would
undertake dynamic service composition because of the multiple
benefits this model of operation provides. In addition, these e-
services have varied implementations which makes managing
these e-services a challenging task. These web based e-services
also operate on line and would need continuous monitoring and
control. This paper proposes and describes an e-service
management solution itself as a web based e-service that enables
remote management of e-services in a uniform platform
independent manner.

Index terms—outsourced/remote management, Internet, Web,

e-services, e-service management, XML

A. INTRODUCTION

An e-service is a service available via the Internet that

completes tasks, solves problems, or conducts
transactions. An e-service drives new revenue streams or
creates new efficiencies in the Internet economy. These
e-services can be distinguished by the following
characteristics:

1. They are accessible via the Internet at a particular

URL.
2. They could be composite in nature. An e-service

may depend on other e-services. This composition
could be static or dynamic. The dynamic nature of
composition of e-services makes their
management a challenging task.

3. Their implementations could be vastly different in
nature. They could be based on CORBA [5],
BizTalk [4], COM, E-speak [3] or on other
platforms. The diversity in their implementations
makes it difficult to manage them.

4. They need to agree upon document exchange
protocols to communicate and interoperate with
each other.

By simplifying composition, e-services faciliatate
businesses to focus on their value-added business logic
while outsourcing other aspects. Such outsourcing could
be done by composing e-services offered by other
businesses. For example, a business that is interested in
selling books could focus on that aspect while
outsourcing other aspects such as shipping and payment
handling. While these other aspects are very important
to the overall business, outsourcing them is usually more
profitable for various reasons – economies of scale,
reduction in labor, specialization in one business aspect
rather than multiple ones, and rapidly changing
technologies to name a few. Management of services is
one such aspect that requires resources (financial and
human). Traditional management solutions are
unsuitable for outsourcing. They need time to setup and
thereafter would need continuous upgrade to keep pace
with the fast changing technology behind the e-services.
There is also an inherent risk of losing the heavy
investment, if the solution is not meeting the e-service
management needs.

E-service management involves monitoring and

controlling the behavior of e-services. An e-service has
usually four different stages: creation, deployment, user
access/information transfer, and withdrawal. Each stage
of the service needs to be managed. One way to
facilitate management is to design the e-services in such
a way that they can be managed at a certain level of
abstraction.

This paper proposes a solution that visualizes e-

service management itself as an URL based e-service
(management portal), that communicates with the
managed e-service using a management protocol. This
approach enables e-businesses to outsource management
of e-services to the portal. It minimizes the risk and
investment of the e-services. The scalability issues (as
the business grows) and continuous upgrades would be
taken care of by the portal. Also the long term
usefulness is guranteed by the nature of operation as e-
businesses can go to other management portals in case a
particular portal fails to meet their requirements.

Akhil Sahai, Vijay Machiraju, Klaus Wurster
 E-services Solutions and Management Department

{asahai|vijaym|kwurster}@hpl.hp.com
HP Laboratories, 1501 Page Mill Road, Palo-Alto, CA,

 Managing Next Generation E-Services

There is thus a need to outsource 1e-service
management. However to enable this model, valid
mechanisms and infrastructure must be designed.
Proper mechanisms for discovery/registration of e-
services, configuration and monitoring of e-services,
diagnosis and correction of problems with these e-
services need to be implemented.

B. REMOTE MANAGEMENT

Before exploring the details on how remote

management could be accomplished, let us look at the
various players and their roles (Figure 1):

Service Provider (ISP/ASP)

 The service provider co-ordinates the
creation/updation and maintenance of an e-service.

Client

 A client could be a human user that uses an e-
service. An e-service could also be client to another e-
service.

E-Service

 The e-service is the entity that can be accessed.
Clients interact with e-services by sending documents
that encapsulate requests to the e-service.

Management Service Provider

The service provider that creates, deploys and
maintains the management e-service

Management e-service/E-service manager

 The e-service manager manages the service
instances and interacts with the e-service. Since the e-
service manager is implemented as an e-service by itself,
we also refer to this as the Management e-service.

 Administrator

The human behind the e-service manager.

In either the outsourcing model or the simpler

enterprise model, the management portal mentioned in
section A could be viewed as the front end to the e-
service manager. It provides customization of the
management views and access to the actual management
functionality.

1 A simpler variation of the model could be an enterprise wide service

manager that manages the multiple e-services being provided by the same
enterprise.

Figure 1. A managed service services interfaces with the e-service
managers through the management interface

There are three important components to the remote

management solution:
a. Instrumentation of e-services to provide the

necessary management information and control
points.

b. Management Vocabulary to communicate that
information with the e-service manager.

c. E-service Manager that uses the raw management
data to manage the e-service.

Each of these components is described in detail in the
rest of this section.

1st. E-service Instrumentation

To enable proper functioning of the e-service

manager, the managed services should provide the
necessary information and control hooks to it through a
set of pre-defined interfaces. Instrumentation is the term
that is commonly used to refer to the infrastructure that
has to be included in the managed service in order to
support integration with a management system (Figure
2).

Figure 2: E-Service instrumentation

Instrumentation consists of implementation code that

has to be included with the managed service (either
invasively or non-invasively) in order to collect and

ServiceClient

E-Service Manager
remote/local

Service provider/ User

Administrator

Operation interface

Management Interface

Management
System

Managed
Service

Monitor

Control

Instrumentation

E-service
Manager

Managed
Service

Managed
Service

Monitor

Control

Instrumentation

export models and raw measurements, to signal and
throw interesting events, and to implement control
interfaces for use by the management system. In this
section, we examine different instrumentation
techniques for e-services and present some of the
standard approaches used to provide end-to-end view.

1) Instrumentation Standards
There are several instrumentation standards such as

ARM, SNMP, and CIM, that are used by network,
system, and application developers to expose models,
events, measurements, and control interfaces to the
corresponding management systems. ARM (Application
Response Measurement) is an API that defines function
calls used to instrument an application for transaction
monitoring. An ARM agent collects these calls and
correlates them to construct the overall response time of
composite transactions spanning over multiple services,
as shown in Figure 3.

E - Service 1 T1 E - Service 2 T2 E - Service 3 T3

E - Service 1 E - Service 2 E-Service 3

ARM API
Measurement

Agent
ARM API

Measurement
Agent

ARM API

Measurement
Agent

Start T1 Stop T1 C1 Start T2
Corr C1 Stop T2 C2 Start T3

Corr C2 Stop T3
C3

T1, C1 T2, C2

Management
System

E - Service 1 T1 E - Service 2 T2 E - Service 3 T3
E - Service 1 T1 E - Service 2 T2 E - Service 3 T3

E - Service 1 E - Service 2 E-Service 3

ARM API
Measurement

Agent
ARM API

Measurement
Agent

ARM API

Measurement
Agent

Start T1 Stop T1 C1 Start T2
Corr C1 Stop T2 C2 Start T3

Corr C2 Stop T3
C3

T1, C1 T2, C2

E-service
manager

Figure 3: Using ARM instrumentation to correlate end-to-end

transaction views.

SNMP (Simple Network Management Protocol) is a

standard protocol used to exchange network and some
system information in a simple tabular representation
called MIB (Management Information Base). Each
application can define its own MIB. SNMP gained wide
popularity because of its simplicity. However, this
simplicity prohibited defining more complex data and
expressing relationships between data elements. CIM
(Common Information Model) came to the rescue, with
rich syntax for representing management information
and relationships between managed objects.

In our designs, we used CIM to model the managed
services and its workflow, and to represent transactions

and metrics. We also used ARM-like mechanism to
instrument the services and collect transaction
measurements from all involved services, as described
in Section 5.
2) Instrumentation Options

Instrumentation techniques fall under two main
categories: invasive and non-invasive (Figure 4).
Invasive techniques require adding instrumentation code
within the applications that make up the service. This is
usually done at design time and provides the highest
level of control over the amount and kind of information
provided to the management system. Non-invasive
techniques are external components that are bolted in
after the service is implemented, which allows
instrumenting legacy applications and services. ARMing
the application is an example of invasive
instrumentation, while adding components that intercept
transactions, extract the required information, and send
it to the management system is an example of non-
invasive instrumentation.

Figure 4: E-Service instrumentation options

In the invasive case, the instrumentation code could

be added by service developers at design time. However,
programmers tend to ignore adding these calls, as long
as it is not enforced or clearly stated in the design
requirements. Another way to add instrumentation is by
providing development environments and tools that
would automatically insert the required calls into the
code. This approach may require initial setup and
configuration to select the right insertion points.

The instrumented e-services are termed well behaved
services, if they can be discovered by the e-service
manager, can be configured to collect the necessary
data, and can be asked to download proper
instrumentations for service diagnosis and recovery in
case of problem.

Management
Service

Managed
Service

Suppliers

Customer

Management
ServiceManaged

Service

Suppliers

Customer

Observer

(a) Invasive Instrumentation (b) Non-invasive Instrumentation

Management
Service

Managed
Service

Suppliers

Customer

Management
ServiceManaged

Service

Suppliers

Customer

ObserverObserver

(a) Invasive Instrumentation (b) Non-invasive Instrumentation

The management portal interacts with e-services in a
management vocabulary. The e-service manager can
provide instrumentation APIs for new e-services, that
enables them to converse. For legacy applications,
instrumentations in the form of interceptors may be
deployed to perform this task in a non-intrusive manner.

2nd. Management Vocabulary

Once instrumented, the managed service has to send
instrumentation messages to the management system.
Similarly, the management system has to send control
messages back to the managed service. There are two
basic models of communication for such exchange of
messages to occur:

Network Object Model (NOM): where the
communicating parties define and agree on certain
interfaces and call methods on each other.

Document Model (DM): where both parties agree on
certain message formats and send documents to each
other.

The NOM approach requires both the management
system and managed service to define instrumentation
related interfaces and their methods at construction time,
which makes them strongly bound to each other. On the
other hand, the DM approach allows the management
system and the managed service to be loosely bound to
each other and leaves more room for evolution of
messages over time. In this work, we adopted the
Document Model and defined certain message schemas
to facilitate the exchange of instrumentation messages
that are understood by both the parties. This work is
based on standard agent communication languages such
as KQML [13], ACL, and FLBC [11].

The first step in defining the management vocabulary
is to identify the types of messages that should flow
between the managed service and the E-service
manager. One such classification is explained below:

Information: Informational messages about the
service models, measurements collected, and events
generated. Service models are used to represent the
dependencies between services, permitted state
transitions within the service, and workflow of the
supported transactions. Examples of measurements
include measurements collected whenever transactions
are started and stopped at service and sub-service
boundaries, availability heartbeats, contract and offer
details, and lifecycle state changes. Events are the
asynchronous messages sent whenever errors or
important incidents occur within the service.

Requests: Requests from the managed service to
provide computed metrics or to change a management

policy. Requests could also be sent by the e-service
manager to the managed service to improve its behavior.

Replies: These are messages that are sent in response
to the requests described above.

The second step in defining the management
vocabulary is to express the various categories of
management information, requests, and replies as
documents. We developed the E-Management
Vocabulary (EMV) as a collection of all such terms and
documents that are commonly used in the context of
enterprise and outsourced e-service management.

XML [1] is used as the representation mechanism for
the terms and documents. In order to define the DTDs or
schemas for specifying the XML documents, we used a
model-based approach. Models were designed to
represent the various portions of the management
information and their relationships with each other. For
example, models were designed to express services,
their dependecies, configuration parameters,
transactions supported by services, workflow and state
transitions, and the metrics generated by services. We
used UML (Unified Modeling Language) to define these
models. From these models, we can use XMI [10] to
generate the required XML schemas and DTDs, or
xmlCIM (a DMTF standard) [11] to generate CIM-
compliant XML documents that could be exchanged
with other CIM agents. Figure 5 illustrates this
approach.

Figure 5: Generating E-Management Vocabulary from CIM models.

The messages that the e-service manager receives are

either information, requests or replies which are
described in the EMV as follows.

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT Message ANY>

<!ELEMENT ManagementMessage (
ManagementMessage.Information|
ManagementMessage.Request |
ManagementMessage.Reply
)>

<!ELEMENT ManagementMessage.Information (
ServiceType |
ServiceTypeComposition |
ServiceInstance |
ServiceInstanceComposition |
TransactionType |
TransactionInstance |

+Name : string
+Description : string
+Caption : string

EMV_Service

EMV_ServiceComponent EMV_ServiceDependency

XMLCim

XMI XML DTDs
Schemas, and
Documents+Name : string

+Description : string
+Caption : string

EMV_Service

EMV_ServiceComponent EMV_ServiceDependency

XMLCim

XMI XML DTDs
Schemas, and
Documents

TransactionTypeComposition |
TransactionInstanceComposition
)>

<!ELEMENT ManagementMessage.Request (
MetricRequest
)>

<!ELEMENT ManagementMessage.Reply (
MetricReply
)>

<!ENTITY % ServiceTypeRef "(#PCDATA)">

<!ENTITY % ServiceInstanceRef "(#PCDATA)">

<!ENTITY % TransactionTypeRef "(#PCDATA)">

<!ENTITY % TransactionInstanceRef "(#PCDATA)">

The information messages contain information about

the ServiceType and in case of composite services
information about the ServiceTypeComposition. A
service instance is an instantiated service of a particular
ServiceType while a ServiceInstanceComposition is an
instance of a composite service.

<!-->
<!—ServiceType �

<!-->

<!ELEMENT ServiceType (
ServiceType.Name,
ServiceType.Description?
ServiceType.Caption?

)>

<!ELEMENT ServiceType.Name (#PCDATA)>

<!ELEMENT ServiceType.Description (#PCDATA)>

<!ELEMENT ServiceType.Caption (#PCDATA)>

<!-->
<!—ServiceTypeComposition �

<!--->

<!ELEMENT ServiceTypeComposition (
ServiceTypeComposition.Parent,
ServiceTypeComposition.Child

)>

<!ELEMENT ServiceTypeComposition.Parent
%ServiceTypeRef;>

<!ELEMENT ServiceTypeComposition.Child
%ServiceTypeRef;>

<!-->
<!-- METAMODEL CLASS: ServiceInstance �

<!-->

<!ELEMENT ServiceInstance (
ServiceInstance.Name,
ServiceInstance.Description?,
ServiceInstance.Caption?,
ServiceInstance.ServiceType?,

)>

<!ELEMENT ServiceInstance.Name (#PCDATA)>

<!ELEMENT ServiceInstance.Description (#PCDATA)>

<!ELEMENT ServiceInstance.Caption (#PCDATA)>

<!ELEMENT ServiceInstance.ServiceType
%ServiceTypeRef;>

<!--->
<!-- ServiceInstanceComposition �

<!--->

<!ELEMENT ServiceInstanceComposition (
ServiceInstanceComposition.Parent,
ServiceInstanceComposition.Child

)>

<!ELEMENT ServiceInstanceComposition.Parent
%ServiceInstanceRef;>

<!ELEMENT ServiceInstanceComposition.Child
%ServiceInstanceRef;>

E-services undertake a set of transactions. These

transactions have to be monitored and controlled. These
Transactions are of certain type.

<!--->
<!-- METAMODEL CLASS: TransactionType �

<!--->

<!ELEMENT TransactionType (
TransactionType.Name,
TransactionType.Description?,
TransactionType.Caption?

)>

<!ELEMENT TransactionType.Name (#PCDATA)>

<!ELEMENT TransactionType.Description (#PCDATA)>

<!ELEMENT TransactionType.Caption (#PCDATA)>

<!--->
<!-- METAMODEL CLASS: TransactionInstance �

<!--->

<!ELEMENT TransactionInstance (
TransactionInstance.Id,
TransactionInstance.TransactionType?,
TransactionInstance.ServiceInstance?,
TransactionInstance.StartTime?,
TransactionInstance.StopTime?,
TransactionInstance.Success?

)>

<!ELEMENT TransactionInstance.Id (#PCDATA)>

<!ELEMENT TransactionInstance.TransactionType
%TransactionTypeRef;>

<!ELEMENT TransactionInstance.ServiceInstance
%ServiceInstanceRef;>

<!ELEMENT TransactionInstance.StartTime (#PCDATA)>

<!ELEMENT TransactionInstance.StopTime (#PCDATA)>

<!ELEMENT TransactionInstance.Success (#PCDATA)>

The E-service manager also receives request and reply

messages. The request messages are to obtain
management information from the e-service manager
and are of type MetricRequest while the replies from the
e-service manager are of type MetricReply.

<!-->

<!-- METAMODEL CLASS: MetricRequest -�
<!-->

<!ELEMENT MetricRequest (
MetricRequest.MetricName,
MetricRequest.ServiceInstance,
MetricRequest.TransactionType,
MetricRequest.StartTime,
MetricRequest.EndTime,
MetricRequest.Duration

)>

<!ELEMENT MetricRequest.MetricName (#PCDATA)>

<!ELEMENT MetricRequest.ServiceInstance
%ServiceInstanceRef;>

<!ELEMENT MetricRequest.TransactionType
%TransactionTypeRef;>

<!ELEMENT MetricRequest.StartTime (#PCDATA)>

<!ELEMENT MetricRequest.EndTime (#PCDATA)>

<!ELEMENT MetricRequest.Duration (#PCDATA)>

<!-->
<!-- METAMODEL CLASS: MetricReply -�
<!-->

<!ELEMENT MetricReply (
MetricReply.MetricName,
MetricReply.ServiceInstance,
MetricReply.TransactionType,
MetricReply.StartTime,
MetricReply.EndTime,
MetricReply.Duration,
MetricReply.Value

)>

<!ELEMENT MetricReply.MetricName (#PCDATA)>

<!ELEMENT MetricReply.ServiceInstance
%ServiceInstanceRef;>

<!ELEMENT MetricReply.TransactionType
%TransactionTypeRef;>

<!ELEMENT MetricReply.StartTime (#PCDATA)>

<!ELEMENT MetricReply.EndTime (#PCDATA)>

<!ELEMENT MetricReply.Duration (#PCDATA)>

<!ELEMENT MetricReply.Value (#PCDATA)>

3rd. E-Service manager

The E-service manager manages e-services remotely.

An E-service manager is a logical entity and can actually
be distributed physically over multiple machines. For
scalability purposes multiple e-service managers can be
connected to each other to handle requests.

The E-service manager is composed of a number of
loosely-coupled components such as a router, a simple
directory, and a set of FCAPS manager components
(Figure 6). In addition, the e-service manager also has a
publish-subscribe bus for communication between
components, and a model for persistent storage of
management information.

E-service manager components register themselves
with the directory as and when these components are
initialized. They also subscribe with the publish-
subscribe bus for messages of their interest. All the
management components have access to the model . The
management components add/modify and update the
model object.

Figure 6: E-service manager

The E-service manager has a well known address (URL)
in a particular protocol. All messages sent to this URL
are first received by the router. It validates the messages
it receives to check whether they conform to
management vocabulary. These messages are of type
Request, Inform or Reply. The router initates a request
handler to handle a particular request. The request
handler in turn routes the message either in a point-to-
point manner in case of a request message or publishes it
on the bus. The model manager builds the service
model depending on the messages it receives. This
model could be partial or complete in nature.

Protocol adapters (Figure 7) provide the E-service
manager a well known address in a particular protocol.
By default the E-service Manager has a http and a tcp
protocol adapter. The http adapter enables e-services to
connect to the e-service manager through http while tcp
adapter enables e-services to connect through tcp. The
former would be interesting in the outsourced model of
operation while the latter is important for the enterprise
mode of operation.

In addition, e-services would have varied set of
implementations. These e-services could be either
Biztalk, E-speak, or CORBA, Jini [2] or other Message

Router

Directory
service

Security
Manager

Model
Manager

Perf.
manager

Fault
Manager

Acct.
Manager

Config.
Manager

publish-subscribe bus

oriented Middleware based. They would need message
adapters to convert the messages sent by e-services to
comply with the management vocabulary. These are
termed message adapters that act as the bridge between
the the e-service and the e-service manager and route
valid messages to the E-service manager through the
chosen protocol adapter.

Figure 7: E-Service manager adapters

C. SAMPLE APPLICATION

Figure 9: The Accidental tourist sample application

To demonstrate the feasibility of the proposed

approach, we built a web-based e-service manager,
which provides aggregate views of the end-to-end

transaction response time for other services. It utilizes
the EMV and communication protocols described, and
provides web-based views through a management portal,
which include, among other things, different remote
management and information services. Figure 8 shows
an overview of the managed service, which is called the
“Accidental Tourist” service.

Airline companies can use the accidental tourist

service whenever one of their flights is cancelled to
secure accommodation and transportation to its
passengers if they have to stay overnight for the next
available flight. The accidental tourist service uses
several external services such as a hotel broker service,
car rental services (e.g., Hertz, Avis, etc.), and a
payment service (e.g., Veriphone). Each of these e-
services is implemented on e-speak.

Figure 9: The web based E-service manager

The scenario starts by the managed service sending its
service model to the management service followed by a
configuration document specifying the required
management features. The management service sets the
required configuration and starts collecting low-level
measurements and events in the form of XML
documents from the managed service. The management
console, which provides web-based customizable views
to the managed service, updates its views by requesting
the necessary information from the e-service manager.
The e-service manager may also receive low-level
measurements from some of the managed services’
suppliers and consumers, based on their contractual
agreements. This will provide the end-to-end view of the
state of the overall service.

Figure 9 shows a screen shot of the management
console, displaying various response time metrics of the
accidental tourist service broken down by car rental

Message Adapters
E-Service Manager

TCP
Adapter

HTTP
Adapter

E-speak
Adapter

Biztalk
Adapter

Protocol Adapters

E-speak based E-services

Biztalk based E-services

Management
Service

XML/HTTP

Alamo Avis

Transaction

Sub-transactions

Accidental Tourist

United
Airlines

Hotel
Broker

Managed Service

Customer

Suppliers

2-Mar 3-Mar 4-Mar 5-Mar 6-Mar 7-Mar 8-Mar

0

10000

20000

30000

40000

50000

60000

Date

Accidental
Tourist
Service

Payment
Service

Hertz

Car
Rental

Management
Console

Management
Service

XML/HTTP

Alamo Avis

Transaction

Sub-transactions

Accidental Tourist

United
Airlines
United
Airlines

Hotel
Broker
Hotel

Broker

Managed Service

Customer

Suppliers

2-Mar 3-Mar 4-Mar 5-Mar 6-Mar 7-Mar 8-Mar

0

10000

20000

30000

40000

50000

60000

Date

2-Mar 3-Mar 4-Mar 5-Mar 6-Mar 7-Mar 8-Mar

0

10000

20000

30000

40000

50000

60000

Date

Accidental
Tourist
Service

Payment
Service

Payment
Service

Hertz

Car
Rental

Car
Rental

Management
Console

services, hotel broker services, and by the payment
service. As a further level of drilldown, one can see the
average response times for each of the car rental
services - Hertz, Alamo, and Avis.

D. RELATED WORK

Several efforts have been undertaken to address

various issues of service management in general. These
service management solutions have however mostly
targetted internet services by providing solutions for
managing the web server, application servers and/or the
network, middleware behind the Internet services.

Mamba [6] by Luminate.Net is a real time status and
alert monitor for NT/2000, webservers, email, sql
server, oracle and SAP R/3. Once installed, Mamba
sends key performance information to its hosted
intelligence center to automatically look for fatal
problems. The system administrator is informed of
problems via email. Although Mamba provides solution
for managing certain platforms, it does not provide any
generic solution for e-service management. The
messages sent are proprietary and do not provide for
cross platform e-service management.

E.M [14] by Manage.com is a similar solution. It
accesses eCommerce transaction performance data from
a wide range of data sources, including HTTP, HTTPS,
DNS, Windows NT perfmon, SNMP and correlates top-
level eCommerce service views with systems and
network infrastructure performance. It however does not
provide a cross platform e-service management solution
based on a generic vocabulary.

Orbix [7] provides management library for
instrumenting manageable CORBA services. Once
instrumented with these management libraries the
management information can be visualized at the Orbix
Manager. This solution although satisfactory for
CORBA services does not address the problem of e-
service management in general.

Cisco NetSys Connectivity Service Manager [8]
coupled with Service Level Management Suite provides
mechanisms to establish service level policies for
connectivity, reliability and security of network services.
It monitors actual network configuration data and
verifies the availability of key network services. The
CISCO service manager monitors the networking
aspects of the Internet service and does not deal with the
e-service management issues as such.

E-speak service management [9] provides
management libraries to instrument e-services. These
libraries genrate management data which can be used for
managing them. These e-speak events adhere to a
proprietory format. E-speak service management

although addresses the problem of managing e-speak
based services, does not provide a generic remote
management solution.

E. ACKNOWLEDGEMENT

We would like to thank Mohamed Dekhil, Martin
Griss and Fukiko Hidano for their inputs on this paper.

F. CONCLUSION

E-service management is a relatively new area of
research. It is also quite challenging in nature because of
the federated, varied and dynamic nature of e-services.
We discussed the e-service management vocabulary and
e-service manager architecture that would enable remote
management of e-services in a generic manner.

G. REFERENCES

[1] XML at World Wide Web (WWW) Consortium.

http://www.w3.org/xml

[2] K. Arnold, et. al. The JiniTM Specification, Addison-Wesley, June
1999.

[3] Hewlett-Packard Corporation. E”Speak Architecture Specification.

Version Beta2.2. December 1999.
 http://www.e-speak.net/library/pdfs/E-speakArch.pdf.

[4] D. Rogers, BizTalk service framework. Microsoft Corporation

http://www.biztalk.org

[5] CORBA Specification by OMG.
 http://www.omg.org

[6] Mamba by luminate.Net

http://www.luminate.com/company/luminate_net.html

[7] Orbix by Iona technologies
 http://www.iona.com

[8] Cisco Netsys Service Manager
 http://www.cisco.com/univercd/cc/td/doc/pcat/nesvmn.htm

[9] E-speak service management
 http://www.e-speak.hp.com/media/beta22/sysmgmt.pdf

[10] XML metatdata Interchange format by OMG

http://www.omg.org

[11] XML CIM by Desktop management Task Force (DMTF)

http://www.dmtf.org/download/spec/xmls/CIM_XML_Mapping20.htm

[12] Formal Language for Business Communications. University of

Michigan
http://www-personal.umich.edu/~samoore/research/flbc/

[13] Knowledge Query manipulation Language
http://www.cs.umbc.edu/kqml/

[14] E.M by Manage.com

 http://www.manage.com

http://www.w3.org/xml
http://www.e-speak.net/library/pdfs/E-speakArch.pdf
http://www.biztalk.org/
http://www.omg.org/
http://www.luminate.com/company/luminate_net.html
http://www.iona.com/
http://www.cisco.com/univercd/cc/td/doc/pcat/nesvmn.htm
http://www.e-speak.hp.com/media/beta22/sysmgmt.pdf
http://www.omg.org/
http://www.dmtf.org/download/spec/xmls/CIM_XML_Mapping20.htm
http://www-personal.umich.edu/~samoore/research/flbc/
http://www.cs.umbc.edu/kqml/
http://www.manage.com/

	INTRODUCTION
	Remote Management
	E-service Instrumentation
	Instrumentation Standards
	Instrumentation Options

	Management Vocabulary
	E-Service manager

	Sample Application
	Related Work
	ACKNOWLEDGEMENT
	Conclusion
	References

