[cickano

Bridging the Gap between Application Semantics
and Group Communication Protocols

Fernando Pedone, Andre Schiper, Aad van Moorsel
Software Technology Laboratory
HP Laboratories Palo Alto

HPL-2000-119

September 21st, 2000*

E-mail: {pedone, aad} @hpl.hp.com, Andre.Schiper@epfl.ch

application Group communication protocols have received great attention
semantics, over the past years. From a practical viewpoint, several
generic middleware systems have implemented the group
broadcast, communication abstraction; from a theoretical viewpoint, a
efficient sound theory underlying group communication has been
protocols, atomic developed and minimal solvability conditions have been
broadcast, identified. So far, however, group communication protocols have
consensus not taken application semantics into account, and, in some
cases, the guarantees offered by group communication protocols
are stronger than necessary for application correctness. In this
short paper, we claim that exploiting application semantics is a
promising direction for future research on group
communication protocols, and discuss Generic Broadcast, an
example of a group communication protocol that allows
applications to express their message ordering needs.
* Internal Accession Date Only Approved for External Publication

o) Copyright Hewlett-Packard Company 2000

Bridging the Gap between Application Semantics

and Group Communication Protocols

Fernando Pedone* André Schiper! Aad van Moorsel*

*Software Technology Laboratory fCommunication Systems Department
Hewlett-Packard Laboratories Swiss Federal Institute of Technology
Palo Alto, CA 94304-1126, USA CH-1015 Lausanne, Switzerland

{pedone, aad}@hpl.hp.com Andre.Schiper@epfl.ch

Abstract

Group communication protocols have received great attention over the past years. From a
practical viewpoint, several middleware systems have implemented the group communication
abstraction; from a theoretical viewpoint, a sound theory underlying group communication
has been developed and minimal solvability conditions have been identified. So far, however,
group communication protocols have not taken application semantics into account, and,
in some cases, the guarantees offered by group communication protocols are stronger than
necessary for application correctness. In this short paper, we claim that exploiting application
semantics is a promising direction for future research on group communication protocols,
and discuss Generic Broadcast, an example of a group communication protocol that allows

applications to express their message ordering needs.

Keywords: application semantics, generic broadcast, group communication protocols,

atomic broadcast

1 Introduction

Group communication protocols were introduced in the mid-80’s as a way to handle groups
of processes as individual entities. Group communication protocols have received great atten-
tion over the past years from both practical and theoretical perspectives. A well-known group
communication system is Isis [BSS91], and several other group communication-like systems have
been built since. Furthermore, trends in middleware systems seem to confirm the important role
played by group communication protocols [Gro98]. From a theoretical point of view, a sound the-
ory underlying group communication has been developed, and minimal conditions under which
Atomic Broadcast is solvable in the context of crash failures have been identified [CT96, CHT96].

According to the guarantees provided, group communication protocols can come in several
different flavors, such as causal, atomic, and total order message delivery [BSS91]. For example,
Atomic Broadcast enables to send messages to a set of processes with the guarantees that the
destinations agree on the messages delivered, a property known as agreement, and on the order
according to which the messages are delivered, a property known as total order.

Several works have advocated the use of group communication protocols to propagate re-
quests in replicated systems (e.g., it has been shown that Atomic Broadcast is sufficient to
solve Active Replication [Sch90]). However, so far, group communication protocols have treated
messages in a purely syntactic basis, that is, without considering the semantic meaning of mes-
sages in the application context, and from the application’s viewpoint, the guarantees offered by
group communication protocols are, in some cases, stronger than necessary for correctness. As
a consequence, the application ends up paying the cost of ensuring guarantees it does not need.

In this short paper, we claim that exploiting application semantics is a promising direction
for future research on group communication protocols. We support our claim with Generic
Broadcast, an example of a group communication protocol that allows applications to express

their message ordering needs.

2 Semantics-Aware Group Communication Protocols

To illustrate the use of semantic information in group communication protocols, we present

a simple replicated database system where replication is controlled by a direct application of

the state machine approach [Sch90]. The database system is composed of individual database
sites, ¥ = {DB1, DBy, ..., DB, }. Each site DB; stores a copy of all data items. Clients submit
requests to the system using an Atomic Broadcast primitive, and wait for the first response to
come back from the database sites. Requests are single SQL statements, and can be queries
(e.g., SELECT-like statements) or updates (e.g., UPDATE-like statements).

The agreement and total order properties of the Atomic Broadcast primitive and some de-
terministic assumptions about the behavior of the database sites guarantee that clients perceive
the replicated database sites as a single highly-available database site (i.e., the replicated sys-
tem is one-copy-serializable). However, since SELECT requests commute, ordering such requests
is not necessary for the correctness of the system.! This is a simple observation; however, un-
til recently, no group communication protocol fully exploited it, and any attempts toward this

direction relied at best on ad hoc mechanisms.

2.1 Generic Broadcast

Generic Broadcast is a group communication specification that takes message semantics into
account to enforce the order necessary (and not only sufficient) for the correctness of the appli-
cations. Generic Broadcast was introduced in [PS99] as a generalization of Atomic Broadcast.
It uses the notion of message conflict to re-define the order property of Atomic Broadcast. Mes-
sage conflict is based on a conflict relation C which depends on the semantic of the messages,
defined by the application. Taking C into account, the total order property of Atomic Broadcast
is replaced by the following order property.

e If processes p; and p; both deliver messages m and m' and (m,m') is in C, then p; delivers

m before m' if and only if p; delivers m before m/.

Thus, Atomic Broadcast is a special case of Generic Broadcast where all messages conflict
with each other. Back to the example presented before, commutable SELECT requests can now

be exploited by Generic Broadcast with a conflict relation expressed as

C = {(m,m') : m = "UPDATE ...” or m' = "UPDATE ..."},

'Requests also commute if they do not access the same records, but we do not elaborate on this point.

meaning that any two messages m and m' conflict (i.e., have to be ordered with respect to one
another) if and only if at least one of them contains an UPDATE request.

Generic Broadcast can also be used in more general cases. For example, propagating lock
requests with an Atomic Broadcast primitive can avoid distributed deadlocks in a replicated
database, a serious problem that may happen if requests are sent using single message pass-
ing [GHOS96]. However, Atomic Broadcast orders all requests, even though only a portion of
the database is responsible for the problem (e.g., the hot spots). Generic Broadcast is an elegant
and efficient way of propagating lock requests: it is cheaper than Atomic Broadcast, and does

not lead to distributed deadlocks.

3 Solving Generic Broadcast

In the following, we present the ideas behind two algorithms that solve Generic Broadcast, GB
and GB+. Both algorithms can deliver non-conflicting messages without using Consensus, and
rely on Consensus [CT96] when conflicts are detected. GB+ improves the performance of GB by

allowing, in some cases, conflicting messages to be delivered without Consensus.

3.1 The GB Algorithm

The GB algorithm assumes that less than a third of processes can crash. In cases where Con-
sensus is not necessary, processes executing the GB algorithm can deliver messages after two
communication steps, and in cases where Consensus is necessary, after four communication
steps (best case). This is a tradeoff with respect to known Atomic Broadcast algorithms that
order messages in three communication steps (best case): if few messages conflict, GB performs
better than known Atomic Broadcast algorithms, if many messages conflict, it performs worse.

Executions of GB are decomposed in a sequence of stages, divided into two phases: the first
phase lasts as long as no conflicting messages are received, and the second phase handles the
delivery of conflicting messages with help of Consensus. When a process p; starts some stage
k, p; is initially in phase 1. Phase 1 terminates at process p; iff p; receives two messages that
have to be ordered. In phase 11 of stage k, process p; executes a Consensus algorithm to decide
on the delivery order of these messages. When Consensus terminates, p; proceeds to phase 1 of

stage k + 1.

Processes determine whether two messages have to be ordered in phase 1 of stage k by
evaluating a local order(m,m') predicate. The order(m,m') predicate holds at time ¢ on p; iff
(1) p; in stage k has received messages m and m’, but (2) p; has not delivered any of these
messages in some previous stage k' < k, and (3) (m,m’) is in the conflict relation C. Therefore,
whenever order(m,m') holds, p; relies on Consensus to order messages m and m' in stage k.
The GB algorithm ensures that if p; does not crash and starts a Consensus execution at stage
k, then every process p; that does not crash also starts Consensus at stage k. Finally, before
a process p; executes Consensus, p; has to gather some information from the other processes
about which messages might have been delivered in phase 1. This reason is that if m and m'

conflict, and some process has delivered m in phase I, no process should deliver m' before m.

3.2 The GB+ Algorithm

The GB+ algorithm is similar to GB but based on a weaker order predicate than the one used
by GB, in the sense that in some cases, even conflicting messages can be delivered without
Consensus. The order predicate for GB+ holds at time ¢ iff (1) p; in stage k has received
messages m and m’, but (2) p; has not delivered any of these messages at time ¢, and (3) (m, m')
is in the conflict relation C.

To understand the difference between the two order predicates, consider an execution in
which only two conflicting messages m and m' are broadcast, and assume that m is delivered by
some process p; in phase I of stage k. Assume that later, but still in phase 1 of stage k, process
p; receives m’. In this case, with GB, process p; evaluates the order predicate to true, and starts
phase 11 to terminate the current stage. However, this is not necessary as the Consensus decision
is known beforehand: m must be delivered before m'! So, while p; executing GB proceeds to
phase 11, with GB+, process p; remains in phase I and may delivers m' in phase I, even though
(m,m') is in C. As delivering a message in phase 1 is cheaper than delivering it in phase 11, GB+

improves GB.

4 Final Remarks

There is little doubt that using application semantics leads to powerful group communication

primitives. However, exploiting this dimension faces two challenges. First, it is not clear how

primitives should be specified to take application semantics into consideration (e.g., the conflict

relation of Generic Broadcast allows applications to define their message ordering needs). Sec-

ond, such specifications can be very hard to implement efficiently. Moreover, addressing the first

issue certainly requires keeping an eye on the second. Generic Broadcast has shown that this

can be done, and hopefully, it will pave the way to other semantics-aware group communication

protocols.

References

[BSS91] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic group multicast.
ACM Transactions on Computer Systems, 9(3):272-314, August 1991.

[CHT96] T.D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving consen-
sus. Journal of the ACM, 43(4):685-722, July 1996.

[CT96) T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.
Journal of the ACM, 43(2):225-267, March 1996.

[GHOS96] J. N. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication and a solution.
In Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data,
Montreal (Canada), June 1996.

[Gro9g] Object Management Group. Fault tolerant CORBA using entity redundancy. Request for
proposal, Object Management Group, Framingham Corporate Center, Framingham (USA),
April 1998.

[PS99] F. Pedone and A. Schiper. Generic broadcast. In Proceedings of the 13th International
Symposium on Distributed Computing (DISC’99, formerly WDAG), September 1999.

[Sch90] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A

tutorial. ACM Computing Surveys, 22(4):299-319, December 1990.

