

Two Topics in Hyperelliptic Cryptography

Florian Hess, Gadiel Seroussi, Nigel Smart
Information Theory Research Group
HP Laboratories Palo Alto
HPL-2000-118
September 19th, 2000*

hyperelliptic
curves,
cryptography,
Weil descent

In this paper we address two important topics in hyperelliptic
cryptography. The first is how to construct in a verifiably
random manner hyperelliptic curves for use in cryptography in
generas two and three. The second topic is how to perform
divisor compression in the hyperelliptic case. Hence in both
cases we generalize concepts used in the more familiar elliptic
curve case to the hyperelliptic context.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2000

TWO TOPICS IN HYPERELLIPTIC CRYPTOGRAPHY

F. HESS, G. SEROUSSI, AND N.P. SMART

Abstract. In this paper we address two important topics in hyperelliptic

cryptography. The first is how to construct in a verifiably random manner

hyperelliptic curves for use in cryptography in generas two and three. The

second topic is how to perform divisor compression in the hyperelliptic case.

Hence in both cases we generalize concepts used in the more familiar elliptic

curve case to the hyperelliptic context.

1. Introduction

Elliptic curve cryptography was co-invented in 1985 by V. Miller [9] and N.

Koblitz [7]. Cryptography based on elliptic curves is especially attractive due to

the supposed difficulty of the discrete logarithm problem in the group of rational

points on an elliptic curve. In 1989 Koblitz generalized this concept to hyperelliptic

curves [8]. In hyperelliptic cryptography the hard problem on which the security is

based is the discrete logarithm problem in the divisor class group of the curve.

Whilst elliptic curve cryptography is starting to become commercially deployed,

hyperelliptic cryptography is still at the stage of academic interest. This is mainly

due to the greater complexity of the underlying arithmetic and the fact that the

protocols have been less standardized. One main problem in the hyperelliptic case,

as argued in [10], is that it is currently very hard to generate hyperelliptic curves

for use in cryptography which do not have any added extra structure. Another

problem is that the supporting algorithms which exist in the elliptic curve case

have not been fully developed in the hyperelliptic case. In this paper we generalize

Key words and phrases. hyperelliptic curves, cryptography, Weil descent.

The first author would like to thank J. Cannon for his support while this work was in

preparation.

1

2 F. HESS, G. SEROUSSI, AND N.P. SMART

two such techniques from the setting of elliptic curve cryptography to the setting

of hyperelliptic curves.

In the Þrst we give a method to produce hyperelliptic curves in genus two and

three which are generated in a veriÞably random manner. In the second we give a

method to perform divisor compression.

The Þrst contribution is needed to produce suitable curves in a trusted manner.

In elliptic curve cryptography, one way to choose a curve is to generate curves at

random until one satisÞes the correct security requirements. However, someone

else then using the system needs to trust that you did not construct a special curve

which has some weakness that only you know about. To overcome this problem

various standards bodies, e.g. [1], have proposed that the curve is generated in the

following manner:

1. Generate in any manner a 160 bit string, S.

2. Using SHA-1 on this string generate some elliptic curve, E, in a known de-

terministic manner.

3. Compute the group order, N , using the Schoof-Atkin-Elkies algorithm.

4. If the curve passes the known security checks then publish the triple (S,E,N),

otherwise return to the Þrst step.

Under the assumption that SHA-1 is a one-way function the above method of curve

generation prevents the choice of special elliptic curves with secret weaknesses. An

elliptic curve chosen in the above way is said to have been chosen �veriÞably at

random� since any third party given the triple (S,E,N) can check very quickly

that not only is the group order n correct but that the curve could not have been

created with a known weakness since it would have been computationally impossible

to reverse engineer the value of S which gave E using the above algorithm.

We show how the above algorithm can be used to generate veriÞably random

hyperelliptic curves in characteristic two for use in cryptography. Our method does

TWO TOPICS IN HYPERELLIPTIC CRYPTOGRAPHY 3

not produce random hyperelliptic curves taken from the totality of all hyperelliptic

curves but produces hyperelliptic curves which have veriÞably been constructed in a

random manner from a certain subset. In other words it is computationally infeasi-

ble for us to have created a special curve with some hidden weakness. However, we

stress that since our method produces random hyperelliptic curves from a special

family it is possible that the curves constructed by our method have a weakness

which we are not aware of.

Our second contribution is to give a method in all characteristics to perform

divisor compression. In the elliptic curve case it is common practice to use a

technique called point compression to reduce the sizes of the public keys being

transported by Þfty percent. This is particularly important when deploying ECC

in an environment where bandwidth is constrained. We will show that the elliptic

curve point compression techniques can be naturally generalized to the hyperelliptic

setting.

2. Producing Hyperelliptic Curves

Our technique of producing hyperelliptic curves veriÞably at random is based on

the method of Weil restriction of scalars as outlined in [6]. In this technique one

takes an elliptic curve, E, over the Þeld K = Fqn , where q is a power of two and

then one constructs a hyperelliptic curve, H , over the subÞeld k = Fq. Since the

groups E(K) and Jack(H) are related by a group homomorphism one can easily

compute, in certain cases, the group order of Jack(H), thus overcoming a major

obstacle to the adoption of cryptographic systems based on hyperelliptic curves.

To Þx notation we are trying to generate a hyperelliptic curve H over the Þeld

Fq, of genus g and of group order N = 2lp, where p is a prime. Before giving our

technique for the generation of hyperelliptic curves we need to summarize the main

security requirements for our curve.

4 F. HESS, G. SEROUSSI, AND N.P. SMART

� p > 2160. This is to protect against Pollard-rho and Baby-Step/Giant-Step

attacks.

� g < 4. This is to protect against the method of Gaudry [4].
� q = 2r, where r is prime. This is to protect against using Weil descent on

JacFq(H).

� The smallest s ≥ 1 such that qs ≡ 1 (mod p) should be greater than twenty.
This is to protect against the Tate-pairing attack [3].

In [6] a method is given for Þnding a group homomorphism from an elliptic

curve deÞned over Fqn to a hyperelliptic curve, H , deÞned over Fq. The technique

given is completely deterministic, although the resulting model for H is slightly

complicated, an issue which we shall return to below. The method of [6] uses a set

of Artin-Schreier extensions, the number of distinct extensions being given by an

integer m, which satisÞes 1 ≤ m ≤ n. For the exact deÞnition of m see [6], all that

we shall require is that m is almost always of the order of n and that the genus of

the resulting hyperelliptic curve is either 2m−1 or 2m−1− 1. In our applications we
are able to control precisely when we obtain genus 2m−1 or genus 2m−1 − 1.
Since we wish to produce hyperelliptic curves with Jacobians of the same group

order as E(K) we need to choose elliptic curves so that the values of n and m are

related by qn = qg. In other words we require

n = 2m−1 or n = 2m−1 − 1.

Since one of our security requirements on g is that it should be less than four, these

later conditions are easy to satisfy.

For cryptographic purposes it is advantageous to produce a model for the hy-

perelliptic curve of the form

H : Y 2 +H(X)Y = F (X)

TWO TOPICS IN HYPERELLIPTIC CRYPTOGRAPHY 5

where degH(X) ≤ g and degF (X) = 2g+1. Such a model will be called �reduced�
and we shall now explain a deterministic method to turn the hyperelliptic model,

produced by the method of [6], into a reduced model.

Assume that a Þxed representation has been chosen for the Þnite Þelds of size qn

and q. Using this Þxed representations we can deÞne (lexicographical) orders in the

Þnite Þelds, hence orders on polynomials, matrices etc. Utilizing normalization of

polynomials, polynomial division, Hermite normal forms and other such reduction

techniques we are then able to always consider the smallest (or the same) object

having a desired property.

Taking the model for H produced by the method in [6] we then move a well

deÞned desingularized, over P1, ramiÞed point to inÞnity. A reduced hyperelliptic

equation is then obtained by computing the minimal polynomial over the rational

subÞeld of a function of smallest odd pole order at inÞnity and with no other poles.

Since the algorithm, outlined above, to proceed from an elliptic curve to a re-

duced model for a hyperelliptic curve is completely deterministic, all we need do

to produce a veriÞably �random� hyperelliptic curve is to Þnd an elliptic curve

veriÞably at �random� with the required properties.

2.1. Genus Two. Take a Þnite Þeld of the form K = Fq2 where q is 2 raised to

a prime exponent. We construct, using the technique from [1] a veriÞably random

elliptic curve of the form

Y 2 +XY = X3 + aX2 + b

where a, b ∈ K, with group order equal to 2p where p is a prime number. Note that
since p is a prime number and q is �large�, in the Weil descent we almost always

obtain m = 2 and so the resulting hyperelliptic curve will have genus two. Then

using the technique of Weil descent we can construct a hyperelliptic curve over the

Þeld k = Fq which, with overwhelming probability, has group order divisible by p.

6 F. HESS, G. SEROUSSI, AND N.P. SMART

Indeed we would be extremely surprised if the group order was not divisible by p,

since then the map

φ : E(K)→ Jack(H)

constructed in [6] would have kernel divisible by p, which is highly unlikely.

Lemma 1. If q ≥ 25 and p divides the order of Jack(H) then the Jacobian of the

hyperelliptic curve of genus two constructed above has group order exactly 2p.

Proof. The Hasse-Weil Theorem tells us that the group order of a Jacobian of a

curve, C, of genus g over a Þeld of q elements satisÞes

(
√
q − 1)2g ≤ #Jack(C) ≤ (√q + 1)2g.

We apply this to the elliptic curve and the hyperelliptic curve under consideration

to obtain

(
√
q − 1)4 ≤ #Jack(H) ≤ (√q + 1)4

and

(q − 1)2 ≤ #E(K) = 2p ≤ (q + 1)2.

We know that the order of the Jacobian is divisible by p, hence the cofactor, c,

must satisfy

2

µ
(
√
q − 1)2
q + 1

¶2

≤ c = #Jack(H)

p
≤ 2

µ
(
√
q + 1)2

q − 1
¶2

.

But this implies that the cofactor must be equal to two if q ≥ 25.

TWO TOPICS IN HYPERELLIPTIC CRYPTOGRAPHY 7

2.2. Genus Three. For genus three we need to proceed in a slightly different way.

First we choose a Þnite Þeld of the form K = Fq3 where again q is 2 raised to a

prime exponent. Then we take an random 160-bit string and pass it through SHA-1

to obtain a Þeld element, v ∈ Fq3 , using the methods of [1]. Setting b = v + vq we

see that

TrK/k(b) = 0.

We then compute the elliptic curve

Y 2 +XY = X3 +X2 + b

and its group order. This is repeated until we Þnd a group order equal to 2p where

p is a prime. Then using the arguments of [6] we will obtain a hyperelliptic curve of

genus three. With high probability the group order will be divisible by p. Although

we are not choosing elliptic curves completely at random from all elliptic curves

deÞned over K, we are choosing them uniformly at random from a subset of size

q2.

Lemma 2. If q ≥ 28 and p divides the order of Jack(H) then the Jacobian of the

hyperelliptic curve of genus three constructed above has group order 2p.

Proof. Arguing as before we Þnd that the cofactor, c, must satisfy

2

µ
(
√
q − 1)3

q3/2 + 1

¶2

≤ c = #Jack(H)

p
≤ 2

µ
(
√
q + 1)3

q3/2 − 1
¶2

.

Which implies that the cofactor is equal to two, as long as q ≥ 28.

Our technique for constructing hyperelliptic curves for use in cryptography

is dominated by the time needed to apply the Schoof-Elkies-Atkin SEA algorithm

to a set of elliptic curves, until one with the correct cryptographic properties is

determined. The step of transforming the elliptic curve into a hyperelliptic curve

only takes a few minutes. Hence to compute a single hyperelliptic curve of genus

8 F. HESS, G. SEROUSSI, AND N.P. SMART

two with the correct cryptographic properties takes, for a Jacobian of size roughly

2190, on the order of a few tens of minutes. The main computational task is to

repeatedly apply the SEA algorithm until a suitable elliptic curve is found. Of

course, exact times depend strongly on the details of the SEA implementation

In [5] a Þrst attempt at an analogue of the SEA algorithm for hyperelliptic curves

of genus two is reported on. The authors manage to compute the order of a random

hyperelliptic curve of genus two of group order roughly 2126. However, this takes

them many days of computing time. In practice one would need to repeat their

method a large number of times before a suitable curve for use in cryptography

was determined. Whilst the method in [5] is to be preferred over ours, it can only

be used when (and if) the algorithms become sufficiently fast. Our method on the

other hand, as we have already stated, is practical using today�s knowledge and

technology.

At the end of the paper we will give some example hyperelliptic curves con-

structed with our method at various security levels.

3. Divisor Compression

As noted previously point compression in the elliptic curve case is an important

tool used to save around Þfty percent of the bandwidth in transferring/storing

public keys and in Diffie-Hellman key exchange. Before describing our analogous

method in the hyperelliptic setting we shall explain the exact data format normally

used for divisors on hyperelliptic curves. For more details on what follows the

reader should consult the papers by Cantor [2] and Koblitz [8]. In this section we

shall work with arbitrary characteristic Þelds.

A hyperelliptic curve of genus g, over a Þeld k of characteristic p, we can assume

is given by an equation of the form

Y 2 +H(X)Y = F (X),

TWO TOPICS IN HYPERELLIPTIC CRYPTOGRAPHY 9

where H(X), F (X) ∈ k[X], degH(X) ≤ g and degF (X) = 2g+1. For applications
it is common to assume that either p is very large or equal to two. If p is large

we usually assume that H(X) = 0. Notice that in characteristic two the ramiÞed

places lying above p(X) ∈ k[X] are exactly those for which p(X) divides H(X).
The group elements, upon which our cryptographic protocols operate, are ef-

fective reduced divisors of degree less than or equal to g. Such a divisor can be

represented by the pair

D = (a(X), b(X)),

where a(X), b(X) ∈ k[X], deg b(X) < deg a(X) ≤ g, a(X) is monic and

b(X)2 +H(X)b(X)− F (X) ≡ 0 (mod a(X)).

The zero in the group is represented by the pair (1, 0). That the divisor is reduced

means that no ramiÞed place occurs in the support of D with multiplicity greater

than one, and that if a place, p, occurs in the support of D then the image of

p under the hyperelliptic involution does not. In many protocols one needs to

transmit divisors, naively this requires at most g elements of k to represent a(X)

and at most g elements of k to represent b(X).

However, given a(X) there are only a small number of possible values for b(X)

which could correspond to a(X). We shall show how one can recover the correct

b(X) from only a(X), and at most an additional g bits of information.

Our Þrst task is to decide a canonical order on the irreducible polynomials of

degree less than or equal to g, which are deÞned over k. This is done by Þxing a

Þeld representation and using the lexicographic order used for a similar purpose in

Section 2.

When we are either compressing or decompressing we Þrst factorize a(X) into

its irreducible factors and order them. Since factorization of polynomials can be

performed in random polynomial time, and in applications the degree of a(X) will

10 F. HESS, G. SEROUSSI, AND N.P. SMART

be quite small (usually less than four) this factorization stage is no barrier to our

method.

For example when g = 2 we need to factorize a degree two polynomial. This fac-

tors either when a certain trace is zero, for the even characteristic case, or when the

discriminant is a square, for the odd characteristic case. In either characteristic we

can easily deduce the factorization when the polynomial is reducible using standard

techniques for solving quadratic equations over Þnite Þelds. Similar considerations

apply when g = 3.

Each irreducible factor, p(X), of a(X) will correspond to at most two prime

divisors on H :

Dp = (p(X), q(X)) and D
0
p = (p(X),−q(X)−H(X)).

Since the divisor we are compressing or decompressing is reduced we know that

only one of these two possibilities is in the support of D. Hence for each prime

divisor of a(X) we need only specify one bit of information to determine whether

Dp or D
0
p is in the support of D. The only questions remains as to how to produce

this bit and how to recover the correct value of b(X), given a(X) and the resulting

bits.

3.1. Compression. The basic idea is to execute the following steps for every dis-

tinct irreducible factor p(X) of a(X), this gives the bits βp.

1. If p(X) is ramiÞed in k(H) set βp = 0.

2. If the characteristic of k is odd then let βp denote the parity of the smallest

non-zero coefficient of b(X) mod p(X).

3. If the characteristic of k is even then we set

t(X) = b(X)/H(X) (mod p(X)),

TWO TOPICS IN HYPERELLIPTIC CRYPTOGRAPHY 11

notice that the inversion of H(X) modulo p(X) can be accomplished since

p(X) is unramiÞed and so gcd(p(X), H(X)) = 1, We then let βp denote the

least signiÞcant bit of the constant term of t(X).

Hence the compressed form of the divisor D is {a(X), s} where s is the bit string
containing the βp for each irreducible factor of a(X). The bit string is ordered with

respect to the ordering on the distinct irreducible factors of a(X).

3.2. Decompression. Suppose p(X)k exactly divides a(X), then if we can recover

b(X) modulo p(X)k for all irreducible factors p(X) of a(X) we can then recover

b(X) either via the Chinese Remainder Theorem or by adding together the local

components for each prime p(X).

Since (a(X), b(X)) is a reduced divisor, we know that if p(X) is ramiÞed then

the value of k above is one, and recovering b(X) is trivial.

We now turn to the case where p(X) is not ramiÞed. Then recover b(X) modulo

p(X)k, is trivially done once we know b(X) mod p(X). This recovery of b(X)

modulo p(X)k from b(X) mod p(X) can be accomplished in one of two ways:

1. Using Hensel�s Lemma.

2. By multiplying the divisor (p(X), b(X) mod p(X)) by k.

So we have reduced the decompression problem to determining the value of

b(X) mod p(X)

given p(X) and the bit βp.

Since p(X) is irreducible, the algebra k[X]/p(X) is a Þeld and we can apply well

known techniques to solve quadratic equations in a Þeld to determine a candidate

value b(X) for b(X) mod p(X). To check whether b(X) is the correct value we

compute the value of the bit βp assuming that b(X) is correct. If this value agrees

with the supplied value then we know that b(X) = b(X) mod p(X), otherwise we

set b(X) = −b(X)−H(X) mod a(X).

12 F. HESS, G. SEROUSSI, AND N.P. SMART

4. Example Curves

In this section we detail some sample hyperelliptic curves at the more common

security levels used in elliptic curve cryptography. These curves have been generated

veriÞably at random using the methods described above from the given seed. All

numbers are in hexadecimal and the Þeld elements are also presented in hexadecimal

via a polynomial basis. So for example the hexadecimal number C1 corresponds to

the polynomial w7 + w6 + 1.

In each example we state the seed, S, used as input to SHA-1 to generate the

original elliptic curve, we give the coefficients a and b of the elliptic curve

Y 2 +XY = X3 + aX2 + b

and the polynomials, H(X) and F (X), deÞning the hyperelliptic curve

Y 2 +H(X)Y = F (X).

The group order, M = #E(K) is also the order of Jack(H).

4.1. Genus Two Curves. We give genus two curves with Jacobians of order 2n

and n = 166, 194, 226 and 262.

n=166

Elliptic Curve : K is deÞned by w166 + w37 + 1 = 0

S = E4D1C989A8999ED0EF8AC7D691E5D8ADDAD481F5,

a = 3951AD54028E7E3CF2D437A4186CCB53BF5DD39196,

b = 140463F3747C98BAE9D9D31EAF3FCE65ADF80AEA26,

M = 3FFFFFFFFFFFFFFFFFFFF730032E01F3184452AA1A.

TWO TOPICS IN HYPERELLIPTIC CRYPTOGRAPHY 13

Hyperelliptic Curve : k is deÞned by t83 + t7 + t4 + t2 + 1 = 0.

H(X) = 6C935CFDD963AD086B738X2 + 103FEA81D67CBF0210A96X

+47242588808C36BFBE701,

F (X) = 660212F23F5C16AE899A9X5 + 6CAEC90C545CF269FE5B1X4

+5A55B3786562759A427E0X3 + 32C4479705A4CEBF1FEA3X2

+7F018AAEC622917758194X + 2BDCB9CD696E5142054C8.

n=194

Elliptic Curve : K is deÞned by w194 + w87 + 1 = 0

S = AA9FC28B87B2A2D0AA95A5B4AC9EE0ADE5D6ADA0,

a = 81BC952B017495E8B1807B4AA574E524ECB12CE8E9E4387E,

b = 3C0F65F65581DFB6CE5A21102E237C842D94024905C75ED58,

M = 3FFFFFFFFFFFFFFFFFFFFFFFF18F079C41289ACB120C215C2.

Hyperelliptic Curve : k is deÞned by t97 + t6 + 1 = 0.

H(X) = 149796762314F692E3F3EEA4DX2 + 1944326D60DFD0FD6F6E696AAX

+E908518062B93E70585EC591,

F (X) = B10EE5F4BB33655EF095DBE0X5 + 1641BD0286ED64103DC3F50FBX4

+C17F4A4C3961E0406B68C066X3 + 17E4E7D97DCCAC15AC63B4229X2

+182DF59B655945E1E4B1641F8X + CC0E399704CD9AC4F0094EED.

14 F. HESS, G. SEROUSSI, AND N.P. SMART

n=226

Elliptic Curve : K is deÞned by w226 + w10 + w7 + w3 + 1 = 0

S = A1D5F6C7DC8CEDFDF2D6B89ABA93A38AE0FBC3C3,

a = B1CD3A3E29B8428DA3B86828D5EA138C465CEBF89ED4165CF380EA5F,

b = 321B9F1124BD9B22EA5CDFFCF9ABF66BE33F31E5AEDD13BEAEA349873,

M = 3FFFFFFFFFFFFFFFFFFFFFFFFFFFD3B2DCF29D06A58FED740B404BB62.

Hyperelliptic Curve : k is deÞned by t113 + t9 + 1 = 0.

H(X) = 1B5A5782D31DA829803D3365DC15EX2

+1F28CB3189BA156399280BCE271F4X

+159CD5FDA29548A15A06272CE4B0B,

F (X) = 51457BE87B4A3133F3B51DDABE43X5

+8B940A6D93A2A2874D2C4DAA1D36X4

+15714056482481E43C7F11C9A9355X3

+657AB671CEF1290A18E0C12E819CX2

+1AB833169678385B131E2B6119D30X

+2A71B7A5C6671246166463011980.

TWO TOPICS IN HYPERELLIPTIC CRYPTOGRAPHY 15

n=262

Elliptic Curve : K is deÞned by w226 + w9 + w8 + w4 + 1 = 0

S = C58AE5A8CBAB9EDD95FA8096F692B5B291C5B386,

a = C23AC1AC0E0A88F7FD20783B2BDEA62FFFF0DAECF24122050E/

D1AB7C84731E070,

b = BB76781355AD2D36A6615FA46A9C68615B1576EF92C9776087/

EFC93BD6A0F82AB,

M = 3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF854DB3A0C367649B4/

5CDD0BF03758617E.

Hyperelliptic Curve : k is deÞned by t131 + t8 + t3 + t2 + 1 = 0.

H(X) = 531DF454AD40EFDC0D6CAE356D574810FX2

+3561FA9336C3CA3F080AB1FEE1F789636X

+2D82C28316120279E55BF01B0AD476DC5,

F (X) = 138BE9EF56BA5C72A8CE09AA4C3590B9X5

+DB308DD57C16D90670C4A311DB298F43X4

+4FEB32114979B67F1CF2D5B73B57ABCAEX3

+63A3FD1EB41F004DD75D7E1E485C07AA4X2

+5593CEF38C79C53D1B7A7B81AAF39E4D0X

+57D20BB08FC9578EB750D98A07C6D94AB.

4.2. Genus Three Curves. We give genus two curves with Jacobians of order 2n

and n = 177, 201, 237 and 267.

16 F. HESS, G. SEROUSSI, AND N.P. SMART

n=177

Elliptic Curve : K is deÞned by w177 + w8 + 1 = 0

S = A2D3EF84C3CD9DE7E8A4EBE9CF81C0DC92E488C4,

a = 1,

b = 10A13C356FC1212A7780A7CA494E3CE42CB0E6DBBACCF,

M = 1FFFFFFFFFFFFFFFFFFFFFF8431733BB181468D02301A.

Hyperelliptic Curve : k is deÞned by t59 + t6 + t5 + t4 + t3 + t+ 1 = 0.

H(X) = 2E021A0D701ADC9X3 + 562330334BC51C7X2

+124777399E2FAA2,

F (X) = 786803CC8D4D20EX7 + 2E44AE68BD54D17X6

+37DF6AAB97CC8CDX4 + 61C22C071609547.

n=201

Elliptic Curve : K is deÞned by w201 + w14 + 1 = 0

S = D5D4D8EDD6EBA383A9AB92DDF3BC85C8D8D7BEC8,

a = 1,

b = 1A0C67092AB0B363A288279BA6B0A65AFA57ED9E4624EEE1358,

M = 200000000000000000000000005727A4589AB0525E0001B0BAA.

Hyperelliptic Curve : k is deÞned by t67 + t5 + t2 + t+ 1 = 0.

H(X) = 672BB042402989BX3 + 53AAE688D693DF191X2

+609476A07FDB2FA7E,

F (X) = 44DD976EF0F210BX7 + 1A2DB0DC0237D92D0X6

+2D1C3C376FE08E58X4 + D46DEB5D69EF944B.

TWO TOPICS IN HYPERELLIPTIC CRYPTOGRAPHY 17

n=237

Elliptic Curve : K is deÞned by w237 + w7 + w4 + w + 1 = 0

S = 9DBBDAE4F5B5F3D9EBD4E1B5EAFAB3A6E199FDB1,

a = 1,

b = B11CE3F9136BC525AD77CCCE9608DCA23619AD828C9838E62CA/

10B0364F,

M = 1FFFFFFFFFFFFFFFFFFFFFFFFFFFFF5BE38FDD498C109D91B20/

E75FCB93A.

Hyperelliptic Curve : k is deÞned by t79 + t4 + t3 + t2 + 1 = 0.

H(X) = 5B45F0F64275AE179E37X3 + 4E313CF5E14C45B36104X2

+68409FFBBDB22D3969BB,

F (X) = 140E7C3F318B01FA5AEX7 + 15B5ACDD2212CA7D1AF4X6

4D3546602448A9A7A77X4 + 387A45FB2BEE81D1A11.

n=267

Elliptic Curve : K is deÞned by w267 + w8 + w6 + w3 + 1 = 0

S = 8EB484A8C3D1F19CEAE5C4ED80B6D5C2BF9FA6FA,

a = 1,

b = 5FB577F643EECD115F3956BDCB0E8755E026643CEB9C746BFA8152/

74255330FD4B4,

M = 80000000000000000000000000000000032A40944ACCF29A0E0EDC/

1B1124FD8767A.

18 F. HESS, G. SEROUSSI, AND N.P. SMART

Hyperelliptic Curve : k is deÞned by t89 + t6 + t5 + t3 + 1 = 0.

H(X) = 189F584408D596D69AE5015X3 + 1E933270BE6442A3A855237X2

+4AB66724640D71C637E249,

F (X) = EC0E5CE5E20F1C1C2E5AA5X7 + 13B16E7B233A186EE2A038X6

+8ADDA1A2FEEA1E3D06BB45X4 + 114EAC4498DAB441F9D5828.

References

[1] X9.62 Public Key Cryptography For The Financial Services Industry: The Elliptic Curve

Digital Signature Algorithm (ECDSA). American National Standards Institute, 1999.

[2] D.G. Cantor. Computing in the Jacobian of a hyperelliptic curve. Math. Comp., 48, 95—101,

1987.

[3] G. Frey and H.-G. Rück. A remark concerning m-divisibility and the discrete logarithm

problem in the divisor class group of curves. Math. Comp., 62, 865—874, 1994.

[4] P. Gaudry. A variant of the Adleman—DeMarrais—Huang algorithm and its application to

small genera. In Advances in Cryptology, EUROCRYPT 2000, Springer-Verlag LNCS 1807,

19—34, 2000.

[5] P. Gaudry and R. Harley. Counting points on hyperelliptic curves over finite fields. To

appear ANTS-IV.

[6] P. Gaudry, F. Hess and N.P. Smart. Constructive and destructive facets of Weil descent on

elliptic curves. Preprint, 2000.

[7] N. Koblitz. Elliptic curve cryptosystems. Math. Comp., 48, 203—209, 1987.

[8] N. Koblitz. Hyperelliptic cryptosystems. J. Crypto., 1, 139—150, 1989.

[9] V. Miller. Use of elliptic curves in cryptography. In Advances in Cryptology, CRYPTO -

’85, Springer-Verlag LNCS 218, 47—426, 1986.

[10] N.P. Smart. On the performance of hyperelliptic cryptosystems. Advances in Cryptology,

EUROCRYPT ’99, Springer-Verlag, LNCS 1592, 165—175, 1999.

TWO TOPICS IN HYPERELLIPTIC CRYPTOGRAPHY 19

School of Mathematics and Statistics F07, University of Sydney NSW 2006, Aus-

tralia.

E-mail address: florian@maths.usyd.edu.au

Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA. 650-857-1501,

USA.

E-mail address: seroussi@hpl.hp.com

Department of Computer Science, Woodland Road, Bristol University, Bristol, BS8

1UB, UK.

E-mail address: nigel@cs.bris.ac.uk

