

A Web-Based Nomadic
Computing System

Tim Kindberg, John Barton
Internet and Mobile Systems Laboratory
HP Laboratories Palo Alto
HPL-2000-110
August 24th, 2000*

E-mail: timothy@hpl.hp.com, john_barton@hp.com

Web presence,
nomadic
computing,
location-aware
computing,
ubiquitous
computing,
resource
discovery

CoolTown offers a web model for supporting nomadic users,
based on the convergence of web technology, wireless networks
and portable devices. This paper describes how CoolTown ties
web resources to physical objects and places, and how users
interact with resources using the information appliances they
carry, from laptops to smart watches. Enabling the automatic
discovery of URLs from our physical surroundings, and using
localized web servers for directories, we create location-aware
but ubiquitous systems. On top of this infrastructure we
leverage device connectivity to support communication services.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2000

Version of July 10, 2000 1

A Web-Based Nomadic Computing System
Tim Kindberg and John Barton

Internet and Mobile Systems Laboratory
Hewlett-Packard Laboratories

1501 Page Mill Road
Palo Alto, CA 94304, USA

timothy@hpl.hp.com, john_barton@hp.com

Abstract

CoolTown offers a web model for supporting nomadic users, based on the convergence of web technology, wireless
networks and portable devices. This paper describes how CoolTown ties web resources to physical objects and
places, and how users interact with resources using the information appliances they carry, from laptops to smart
watches. Enabling the automatic discovery of URLs from our physical surroundings, and using localized web
servers for directories, we create location-aware but ubiquitous systems. On top of this infrastructure we leverage
device connectivity to support communication services.

Keywords

Web presence; nomadic computing; location-aware computing; ubiquitous computing; resource discovery.

1. Introduction

This paper describes work belonging to a research project at Hewlett-Packard Laboratories called CoolTown.
CoolTown combines web technology, portable devices, and wireless communications to explore new kinds of
systems, systems similar to nomadic [21] or ubiquitous [31] computing systems. Here we will show how a system
created from elements of the CoolTown project form a basis for nomadic computing.

CoolTown operates from the premise that the Web and the technologies behind the Web provide a sound basis for
pervasive nomadic computing. This premise is based on the web’s potential to realize ubiquitous access, its
lightweight software requirements, and its ability to operate locally as well as on a global scale. We start with a
discussion of these properties.

Ubiquitous access. The Web supports pervasive computing because it is accessible in a large and rapidly
growing number of places. This growth is a consequence of its design. The Web relies on a simple standard,
the HTTP protocol [13], which can be implemented on a vast variety of devices. This includes devices that the
user carries: general-purpose devices such as personal digital assistants (PDAs) and laptops, and information
"appliances" dedicated to a specific function, such as digital cameras and printers [11]. Furthermore, the Web
supports mobile users through its flexible global addressing scheme, allowing them transparent access to
resources outside their current environment. Finally, the web addressing and communications model can be
bridged in to devices that do not support TCP/IP.

Just enough middleware. The diversity of the devices that mobile users may carry and encounter argues against
specific software based on device type or even application type. It also argues against assuming that all devices
will run a form of middleware, such as Java or CORBA, that is heavy on the commitments it imposes at the
application, language, or resource level. Rather we believe that the Web standards of HTTP and URLs [4] have
proven themselves to support adaptation to diversity. The form of interaction with particular devices and other
entities should be encoded using XML [12] documents and MIME types, not binary formats and language-
specific interface signatures. Our demonstrations include a variety of digital devices that we can integrate with
minimal additional software.

Locality. We will demonstrate how to deliver web resources to nomadic users as they encounter new
environments, without requiring a global wireless connection like a cell-phone, and without necessarily
requiring any networking access beyond the immediate surroundings. This has the advantage of minimizing
how much of the infrastructure needs to be up and running in order for users to interact with local services. For
example, a mobile user should be able to print a document at a nearby printer without necessarily having to

Version of July 10, 2000 2

contact any global services. A local web server should be enough, and sometimes even a simple peer-to-peer
interaction will suffice. Moreover, the user can discover and access these local resources without having to
reconfigure their devices as they move from place to place.

While we believe these properties to be necessary for a pervasive computing solution, they are not sufficient to
support nomadic users. Among the problems are:

• The Web grew out of the need for electronic document exchange, whereas nomadic users require information
and interaction based around the physical entities in their environment.

• The Web relies on verbal or text-exchange of addresses for “resource discovery”. For example, one Web user
will tell another “look at cooltown.hp.com”. Nomadic users will need new resource addresses continually and
may not have easy access to keyboards: the Web model for resource discovery is not adequate.

• URLs are too bulky and volatile for routine use as identifiers.

• The Web is largely a read-only system supporting “browsers”; most content is placed on the Web through non-
web avenues that therefore do not have its pervasive properties.

The CoolTown project seeks to expand the web model to support pervasive non-desktop computing and nomadic
users in particular. We call the representation of physical entities on the web “web presence”; [20] describes our
initial efforts to build and maintain web presence. We discuss the other three issues in this paper.

2. Nomadic computing model

CoolTown builds on HP Labs' experience in the development of embedded web servers [11] and systems of
communicating appliances [19]. Our approach to nomadic users extends work on mobile web browsers ("wireless
web") to support the augmentation of physical entities in the environment with web resources. In this way we see
our work as combining the physical information systems work of Xerox PARC [27, 29] with the Web.

Our work describes an approach to system development based on assumptions about the hardware and
communications resources available. To start then we need to layout those assumptions.

Nomadicity. Our first assumption is that users will be mobile: they will use computing resources in their
homes, at work, as they shop and as they play.

Handy devices. Nomadic users carry some electronic devices with them: systems must support them.

Wireless communications. Nomadic users of portable devices expect them to employ simple, fast cableless
I/O.

Heterogeneity. Nomadic users carry a diversity of devices, diverse by function – digital cameras, phones, and
PDAs – and by communications – infrared, short range radio, cell phone.

Fixed resources. Nomadic users with communicating portable devices expect to use electronic resources –
printers, kiosks, teller machines, Internet access points, and so on – wherever they encounter them.

Wired backbone. Nomadic users expect fixed resources to be strongly networked and they expect their
devices to "use the web" in all locations, pervasively.

The CoolTown work is not on the devices or wireless communication layers, but rather on the layer of infrastructure
that is needed to support nomadic users with portable devices. We work at the "web server" level and we see our
work as extending web models to new arenas.

As a consequence of the above assumptions, most of our demonstration scenarios use a sensing mechanism, like a
barcode reader or a short-range networking subsystem such as infrared, combined with long-range or wired web
access. The sensor is used to obtain addresses (URLs) to access web resources. So we imagine our nomadic users
carrying devices like:

• PDAs with 802.11 network access and barcode or other sensors, or

• Cellular telephones with additional short-range networking, or

• Cameras with short-range networks that interact with Internet-connected kiosks.

Version of July 10, 2000 3

These are heterogeneous handheld devices with wireless connectivity to a web infrastructure. One such example is
shown in Figure 1.

Present-day users of portable wireless devices view them as either adjuncts to larger desktop or workstation
computers or as portable communications devices (phones or for e-mail). We view them as portable viewers of web
pages and as sources of content, or as clipboards for URLs pointing to discovered content. Then we add support for
obtaining location-dependent web pages and for moving content between mobile and fixed but online devices.
Figure 2 shows how this support is organized.

The critical element of the system is the movement of URLs acting as Internet pointers. Components in the lower
parts of the diagram provide addresses used in the upper layers. Keyboards and beacons provide URLs directly; tags
on objects in the physical world are “resolved” to produce URLs. This layer is discussed in Section 3. The resolution
of identifiers into URLs is context dependent and some of the URLs sensed in the environment lead to web servers

Figure 1. A palm-sized personal digital assistant (PDA) and an infrared beacon [15]. URL text
stored in the beacon can be accepted through the PDA’s infrared port then used to bring up a

location-specific web page in the PDA’s browser.

Content & URL
Exchange

ID resolution

tag

Places

URL
sensing

Text
URLs

ID sensing

Context

URLs

http://cooltown.hp.com

beacon

Figure 2. Component relationships. Sources of URLs, including keyboards, beacons, and resolved
tags point to context or content.

Version of July 10, 2000 4

that act as context for the resources in an environment; this is discussed in Section 4. URLs provide a means for
accessing and directing content and they themselves can be part of content. Content exchange, discussed in Section
5, is critical to nomadic users as they require information on their environment and its resources or as they seek to
modify that environment or its resources. Section 6 discusses our design in relation to related work. Section 7
concludes.

3. Sensing

In this section, we describe the bottom layer of our infrastructure, which enables the user to acquire URLs from their
surroundings or from the physical entities in their surroundings. An obvious mechanism, with equally obvious
drawbacks, is to write the URL on a label and attach it to the object. The user reads the label and types the URL into
their browser.

Rather than being forced to use that cumbersome method, users should be able to identify conveniently what it is
that interests them in their surroundings and obtain the corresponding URL automatically. To achieve this, their
PDA is equipped with at least one short-range device that allows them to read URLs and other identifiers associated
with places and individual objects in their surroundings, by pointing or positioning the device. We call this URL
sensing.

Some options for sensing include:

• IR & RF. The infrared transceiver available on most PDAs and laptops can sense by communicating with a
small, low-power ‘beacon’ device mounted at the place or on the object. Our beacon emits the identifier in
infrared packets in the form of XML specifying a URL [15]. IR beacons can be configured to have a range of
several meters. Similarly, short-range RF could be used.

• Barcodes. Barcode scanners are increasingly found integrated into PDAs, and are available as wands and other
hand-held formats. Many objects are manufactured with barcodes – both generic ones and ones encoding their
serial number; where they do not, barcodes can easily be printed and attached to objects.

• Electronic tags. A variety of small electronic tags exist containing a unique identifier with ~100 bits. All are
available at relatively low cost. RFID tags can be read from a distance of about 10 cm with a hand-held reader.
There are also tags such as iButtons [18] that are read on contact, which can be advantageous if tags lie close
together.

• Optical recognition. The user's device may have a camera attached, in which case the identifier can be encoded
in a form such as a 'glyph' [23] or digital watermark that is amenable to recognition software.

In direct sensing, the beacon or tag directly presents the URL of a web resource. In indirect sensing, it presents an
identifier such as an ISBN or a UPC barcode. Then to obtain a URL we need a resolver, a service that returns a URL
when given an identifier.

Direct sensing is the most concrete: it requires no resolver. An advantage of indirect sensing is that the same
identifier can be looked up in different resolvers with different, context-dependent results. For example, sensing a
book's ISBN barcode could lead to the local library’s entry for the book, if the resolver for the ISBN is the local

Cool app

browser
IR

Barcode / iButton
/ RF tag reader...

RF

Cool app
Sensing
events

IR beacon

RF network

ID

URLs
ID

URL

PDA

Multiplexor/
event generator

Figure 3. A sketch of a PDA equipped for sensing URLs and identifiers.

Version of July 10, 2000 5

library. It could lead to a catalog entry if resolved with the user’s favorite bookseller’s resolver. Or it could lead to
the publisher’s description of the book if resolved at the publisher’s resolver.

Despite the variety of sensing technologies and resolution options, the implementation of URL sensing need not
require significant software on handheld devices.

Figure 3 sketches a PDA with several sensing mechanisms (IR, barcode and RF) similar to prototypes we have
developed in the CoolTown project. The device runs a web browser, and one or more CoolTown applications. The
latter are simple applications that obtain URLs and present them as links, using the standard browser to display the
corresponding web resources. As the figure shows, URLs and identifiers that are read by one or other of the sensing
devices are multiplexed and announced within the device as standard 'sensing events', bearing the URL or other
identifier and its source. The applications consume the events and handle them in various ways. All have a capacity
for storing URLs and other identifiers as a record of what the user has physically encountered while engaged in their
current activity, so that users can 'retrace their steps'.

One of those CoolTown applications provides indirect sensing. It can be configured to use any resolver of the user's
choosing, but in particular it can automatically discover which is the local resolver when the user has designated
which is the local context (see next section). When the user scans a tag such as a barcode, the application handles the
sensing event by constructing a URN [3] from the identifier (if it is not in that form already). It uses the standard
THTTP protocol [8] to request the local resolver to turn the URN into the URL of a resource. This URL is then
made available to the browser.

4. Context and Physical discovery

By attaching beacons or tags to easy-to-find points on physical entities or in physical places and by storing
appropriate URL values in them (or in the resolver for them), we can create a connection between the entity or place
and a web page. When a user approaches a beacon or tag they can use their device to find the corresponding web
page. The user has “discovered” an electronic representation. This physical discovery involves the user in physically
designating which places and things are of interest, a technique explored at PARC [29] and MIT [32].

Representation of places will be of particular interest to nomadic users. Web pages for places can help users orient
themselves, providing maps or directions to nearby physical locations. But representation of places also provides
context: virtual collections of related resources. Contexts provide organization: the desktop on the PC is an example
of this idea. Our contexts take the form of web pages and a namespace for looking up web resources
programmatically. We shall describe how place contexts are defined, discovered and used.

Exhibition hall
Acme

Zenith

Peak

DHCP

Internet
www.acme.com

Place Manager

Place: directory/resolver &
web pages

802.11

beacons &
barcodes

Figure 4. An exhibition hall ‘place’ containing the Acme stand and other places.

Version of July 10, 2000 6

Places are distinguished from other types of context only by the fact that they are based on an underlying physical
domain. The idea is for the place context to be made accessible when the user enters or nears the corresponding
physical domain. Places may be fine-grained – for example, individual cubicles, exhibition stands and stores within
a mall.

To get an idea of some of the issues in defining place contexts, imagine that Acme Software Inc. sets up a stand at
the Wireless Web World exhibition (Figure 4). Acme has to define its own context within the exhibition, which it
uses to provide information, printing, purchasing and other services to users who walk up to the stand. Visitors must
be able to discover the Acme context when they walk up, distinguish it from that of neighboring exhibits, and,
through their devices, these visitors must be able to browse and access the resources that Acme provides within that
context. We are mainly interested here in resources that are based around the physical entities found at the exhibition
stand. When the visitor reads a barcode attached, say, to a printer or a guest book on display, they are automatically
shown the Acme web page offering them a service connected with it.

Some of the issues and our approach to them for place contexts include:

Discovery: Discovery is the acquisition of contexts and resources within contexts. Places are discovered in
much the same way as individual physical objects, although they are typically extended and so may require
several beacons or tags. Prominent “You Are Here” beacons or barcodes (or any other type of tag) attached to
the Acme exhibition stand enable the user to pick up that place’s context. The user points the device at the
beacon or scans the barcode. The result is the URL of the place: a set of web pages containing information and
services that the user can browse on their device, and which devices can query.

Hierarchy and context overlap: Just as there may be many objects in their surroundings, there may be several
place contexts to choose from: the user is by an exhibition stand, but there are others nearby; all are within the
entire exhibition and, in turn, in a city. The web is a natural medium for presenting information to nomadic
users because of its hypertext structure. The web pages for a place can include links to nearby places. The
exhibition stand's context may contain links to resources that are not local to the stand itself – for example, to
pages on the main Acme web site, and to the context of the entire exhibition.

Simple bootstrapping: To support nomadic computing, the system must take the user from switching on the
device to obtaining a link to (i.e. the URL of) an Acme resource, with no user intervention except selection of
which of the available places and resources interests them. Therefore, at least the root context for the exhibition
appears directly as a URL that can be accessed once the device has fetched its IP configuration from a DHCP
server. All other contexts (e.g. the Acme stand), and hence resources, can be discovered automatically from
that root.

Scope: We re-emphasize that users are not forced to use the local place context when discovering the web
resources associated with an object found in that place. Recall our example of looking up the ISBN for a book:
the Acme Software resolver for ISBN might lead to special offers on Acme books, but a user should be able to
use the ISBN with another resolver to see how special that offer really is. The user can choose any context in
which the book's identifier will be looked up. The point of a place is to provide locally relevant resources, not
necessarily all relevant resources.

Place Managers

Our implementation of place context is as a web server with appropriate content describing the place [6]. The points
of web presence of the designated objects will appear as links in the place’s web pages. They will also be
discoverable programatically, using lookup by identifier, and lookup by service type and other attributes. The 'local
resolver' that we described in the previous section is an example of a resource that can be looked up automatically
from the place's context.

A place manager provides access to and configuration of the data associated with one or more places. In the
example of the exhibition hall, we shall assume that there is one place manager, which holds data about all the
places within the exhibition hall. Different places are managed as separate objects. If this is not satisfactory from a
security point of view, then the operators of a stand can supply their own manager for their place.

The place manager has the following functions:

• It maintains directories of the resources in each place, and provides an interface by which resources may be
added, queried and removed.

• It acts as a resolver for each place, for looking up resources from their identifier.

Version of July 10, 2000 7

• It acts as a web server, providing information about each place's resources in the form of HTML (for user
browsing) and XML (for programmatic access).

Returning to the Acme Software convention stand example, the objects to be added to the Acme-stand place include
samples of Acme-manufactured devices, a printer and a guest book. The Acme devices offer points of web presence
that provide information and simple ways of interacting with them. The printer is for the convenience of visitors
wanting to take material away with them. Visitors can write in the guest book in the conventional way but it also has
a web presence, for those who prefer to fill in a web form.

Physical registration: defining a place

Physical registration is the dual of physical discovery: it is the mechanism for those who define the contents of
places (“place masters”) rather than those who visit them. This involves physically designating what is to be bound
in the place's context and where, physically, that context is deemed to be relevant.

Returning to the Acme Software exhibit booth example, consider the issues that face the Acme place master as she
defines the place:

1) Instantiation: She must create a new place context at the Place Manager. She may wish to define a custom look
and feel for the web pages that users will see when they browse the place.

2) Physical linkage for the place: On learning the URL for addressing this place context locally, the place master
configures beacons or prints barcodes with the URL, and places them around the exhibition stand for the
visitors to read.

3) Collection: She uses her PDA with an integrated barcode scanner to sense the identifiers of the Acme products,
printer and guest book, whose web presences she wants to bind in the place's context.

4) Resolver configuration: As the place context does not yet exist, the identifiers sensed at the booth must be
resolved elsewhere to obtain their web presences. In a mature environment, Acme will have a resolver to look
up identifiers in an Acme “inventory” context, which contains an entry for every object in the Acme
corporation's inventory. There are two resolvers in this process: the inventory resolver, and the place resolver.
The former is accessible only by the place master (and other Acme employees). The latter is accessible by
visitors to the place.

5) Registration: The collection of URLs is inserted into the newly instantiated place context. These are the URLs
that will appear on the place’s web page.

6) Rendezvous (presence-tying). The place master next links the two points of web presence for each of the
devices such as the printer. The printer runs a web server, which provides a web page enabling users to read its
status, set its configuration and print. That web page is additional to the one that is hosted on an Acme server,
and which was looked up in the inventory context in step 2. The problem to be overcome here is that the URL
of the web page supplied by the printer depends on whatever IP number was assigned to it in the current
environment: the Acme server has no way to predict its value and hence it cannot get a URL for the printer’s
server.

Our goal for physical registration is simple operation. For most of the steps we have good solutions. The place
master can initiate the place with a web-based form. The form processing can return a barcode to be printed and
attached to her booth. She walks up to a series of objects with her PDA, reads their barcodes, and binds them in the
new place. She can even include nearby objects that are not strictly within the physical extent of the exhibition stand
– for example, a public printer in the exhibition hall. She does not have to be concerned with network topologies:
she physically determines the resources in the place.

One of the most difficult problems is rendezvous (presence-tying). We have devised and are investigating three
approaches to this problem. In one, the place master 'squirts' the URL of the place into an IR port on the printer. The
printer then registers its attributes, including the URL, in the place's directory, where the place-definition application
finds it. In the other, the printer has a barcode with its unique MAC identifier. The place-definition application
multicasts a query for that identifier (in the manner of service discovery protocols), which the printer, and only that
printer, responds to. In the third approach, the printer was configured with the URL of a global web presence where
it registers its current IP address. The printer’s tag enables the place-definition application to retrieve the printer’s IP
address, and thus obtain the URL of the point of web presence hosted on the printer itself.

Version of July 10, 2000 8

5. Content exchange

Up to this point we have described how a nomadic user can enter a new place, obtain the address of the place
context, and then browse the resource there. The level of function provided by (read-only) browsing is adequate for
some nomadic tasks, but other tasks require more interactions with resources. In this section we discuss content
exchange, a simple approach to interaction.

Content exchange supports the opposite of browsing: the nomadic user can push content into the pervasive
infrastructure rather than just pulling content from it. The effect of pushing content can be varied. We shall discuss
some of these various effects, then an application-level protocol approach that ties these together, ending with a
discussion of some practical issues.

Direct content post

Pushing (or ‘posting’) content works between a source of content and a sink for content. Consider a nomadic user
entering a conference room with a camera, photographing the content on a white board, then printing the image on
the room's printer. The camera is the source for the image content; the printer is its sink. We could view this
interaction as "printing from the camera". However, imagine the same user with the same camera and image, but
interacting with the room's electronic projector. Or, perhaps the room is equipped with an electronic picture frame
and the user wishes it to display the image. Or, the image is on the user's PDA instead of the camera, but is still sent
to the same sink devices. In a pervasive computing environment, we need all combinations that users imagine should
work to work. All of these scenarios can be handled similarly: the image just needs to be transferred from source
device, the camera or PDA, to a sink device, the printer, projector, or picture frame.

To accomplish direct content transfer we need only have a simple push interaction: the content source opens a
connection to the sink and writes the content (See Figure 5a). The only agreement we need between sources and
sinks is the format of the data. Many imaging devices support JPEG format: it serves as the common format for
images today. Since devices may use other common formats and since formats do evolve, effective interaction
requires some introductory content preceding the data that identifies its format. The format of this introductory or
"meta-" data has to be widely agreed upon and stable over time; our approach is to use an ASCII encoded XML
format carried in a MIME [14] entity. Should the source attempt to transfer a type of content that the sink cannot
handle, such as sending audio to a printer, the response indicates this error. We should also allow “content-
negotiation”, that is the source and sink should be able to exchange information on the formats they support to select
a common and appropriate one [19].

Indirect content post

In addition to direct content like the image from a camera, we can also post content containing hypertext links to
other content. One example is pushing multimedia: replace "image" in the example above with "hypertext
multimedia document". For example, the content transferred from the PDA to the projector may be HTML that links
images. As the projector (or the projection service that manages the projector) renders the HTML it resolves and
fetches linked content (see Figure 5c). If the links point back to the PDA, it must act as a server for images; if the
links point on to a network or the open Internet, the projector must have network or Internet access and fetch the
images. This works similarly for sending the multimedia document to the printer or picture frame.

Another example is our IR beacon transmitting a simple kind of "document" containing a single URL. The beacon
acts as a broadcast source of this URL; a PDA that picks up the beacon acts as a sink for the content, but it can also
dereference the link – as the user views the indicated place, for example.

Transferring a URL instead of direct content has the advantage that the sink may be able to render the content with
higher quality than the device that possesses the URL. For example, if a PDA transfers a link to a printer, then the
printing service can download and print the document at a high resolution. This can be a distinct advantage over
downloading the content to the PDA, rendering it on a tiny screen, and then printing the result.

Figure 5b shows indirect content exchange where the transmitted link refers to a third-party origin server.

Devices as 'clipboards'

One of the aspects of nomadic computing that we want to support is the use of appliances as 'clipboards' of content,
or 'intermediaries'. Note that when a PDA is used to transfer an image to a projector, it is probably acting as an
intermediary. That is, the original source of the image might have been a camera or a scanner or an online Web

Version of July 10, 2000 9

server rather than the PDA. The PDA is usually viewed as a temporary storage device for human input and output,
but it can be used as a temporary storage device that ferries content from sources to sinks.

Link content is particularly interesting: because link content is small, small devices like wristwatches and key fobs
can carry it. Thus we can consider a pervasive computing world in which nomadic users carry URLs in their watch
pointing to their presentations. When they arrive at a meeting they "squirt" the URL into a projector which pulls the
presentation down. Similarly, a user can use their watch to pick up the URL of the music currently being played on
an 'Internet radio' with a beacon attached [22]. They can then take it to a friend's house and play the same piece on
their Internet radio by pushing the link to it using their watch.

Setting options on the sink

Transferring image content from a camera to a printer has a seemingly obvious consequence: the image gets printed.
This obvious consequence must occur in a pervasive computing world that works intuitively. Sometimes we may
want to alter the details of printing. Often users can accomplish this by front-panel settings on the printer.
Alternatively we can use a “soft”, “remote” approach to changing the sink device operation. To maintain the
intuitive nature of the operation, we should look for ways of changing the printing settings that does not disturb the
simplicity of transferring an image from a camera to a printer. Thus we want something like "settings-enhanced"
content-post: we would like to send the image from the camera to the printer together with some printer settings.
Using a single operation like HTTP-POST ensures that correct settings are bound to a given content and it closely
resembles the approach we use for cameras sending content to printers without settings.

A simple approach to settings-enhancement is to encode the setting values as XML in the transmitted web page.
This allows a simple integration with web forms as we discuss next.

In a pervasive computing environment we cannot rely on preconfiguration of a camera with the available printer
settings. We need some way for the camera to set the configuration of the printer in a device-independent manner.
We can apply the technique used so successfully with web browsers: we have the printer provide a device-
independent description of its device-dependent features as a web form and then render this description for the user
on the user interface of the camera. For example, we can have the camera issue a GET to the printer's web server
and have the printer return an XML or HTML form listing the possible options. Once the camera user has selected
the settings, the new settings and the image can be transferred to the printer (see Figure 5c).

Post content
& state

Ok/error

Get state

state

SinkSource

Post content

Ok/error SinkSource

A) Direct Content Post

C) Content Post with Device Settings

Post link

Ok/error
SinkSource Get content

content
Origin
server

B) Indirect Content Post

Figure 5. Some content-post component interactions. The arrows indicate application-level messages; dotted
arrows are replies whose delivery does not affect the post processing at the sink. (A) Direct content post. (B)

Indirect content post where the posted content links web content on a third-party origin server. (C) Direct
content post with concurrent post of device settings; the settings would typically be modifications of previous

settings obtained by a GET from the device.

Version of July 10, 2000 10

Exactly the same approach can apply to the interaction between the camera and the projector. The projector will
send device-type dependent values to the camera for user selection that are different from those sent by the printer.
However, the process of getting those options into the camera, rendering them for view, and sending them back to
the projector are not dependent upon projection: the camera is acting like a web client with content to upload and the
projector is acting like a web server ready to read content. This approach allows the camera-user to see devices like
projectors, picture frames, and printers as pervasively available.

A detailed proposal for a content-post protocol with the properties described is described elsewhere [2].

6. Discussion and related work

Place contexts

In general, place contexts can be defined not only in terms of the physical domain but also in terms of other factors,
such as the time of day, the identity of the user, the user's device, and the user's current activity. Some of these
factors have been explored in tourist guides [9] and other applications such as overviews of working groups and
meetings [26].

Section 4, for the sake of simplicity, shows only how places are defined irrespective of factors such as time of day.
In fact, the data supplied by the Place Manager can be made a function of those factors [6]. Both the HTML and
XML forms of web presence as supplied to the client are dynamically generated using annotations that the place
manager provides. The annotations select which content to hand to the user according to attributes such as the
current time and the user's identity.

Another aspect of places is that they may be active, and not the passive providers of web resources that we have
described. For example, if a user from Nottingham enters a place, then those who are interested in meeting people
from this, their home town, could be notified by the place. Stanford's iRoom [13] has such an event-based
architecture. The CoolTown project is also investigating the possibility of active place contexts, which can alert
users via a variety of means, such as on their mobile phone or pager. Users may have a point of web presence
associated with their activities in a particular place, and the devices that they carry. This can be used to determine
how to communicate with the user. It can also take account of the history of the user's involvement with the place
when presenting it to them. For example, a repeated visitor to a café can be presented with suggestions based on
their previous orders.

Other types of context

The resolver technology that we have been developing also supports contexts that are not tied to any physical
domain. An individual entity such as a painting may possess a point of web presence not only in the context of the
gallery where it currently hangs, but also in a variety of virtual art catalogues. It may even have a point of web
presence in a private context shared by a group of art students and teachers, which they use to provide comments for
one another. That context could contain an entry for each painting in any gallery in the world that students in the
class have found interesting. When a student looks up a painting's point of web presence in the context, they will
find comments left on that page by other students in the class.

Contexts have been established for published artifacts based on their 'distributed object identifier' [10], for products
based on their UPC code, for articles in newspapers and magazines, and for artifacts in the office [29] and museums
[24]. The research issue is how to choose the context (the resolver) for a given identifier so as to present appropriate
resources, but to do so automatically wherever possible. Users require a choice, but a balance is needed between
choice and ambiguity. The system must scale to trillions of points of web presence. At CoolTown, we are
investigating resolver technologies that will support contexts shared between groups of individuals (the art class) or
spanning organizations (the inventory context), while linking those contexts to more global ones where appropriate.
Thus a printer's identifier could yield not only its pages within the host organization, but also pages from the
manufacturer.

Discovery and registration mechanisms

There are three main discovery and registration mechanisms in addition to the physical mechanisms described in
section 2: those based on zones or cells, triangulation or network discovery.

Version of July 10, 2000 11

Zone or cell-based (for example, '911' cell-phone tracking and postal codes) are too coarse for fine-grained places
such as stores and exhibition stands. On the other hand, they are useful for large-grained places such as sections of
towns and cities.

Triangulation-based tracking systems include satellite-based (GPS), and terrestrial radio and acoustic schemes.
These are inadequate for designating places that have fuzzy or complex topologies. The combination of indoor
working and fine-grained localities argues against use of GPS; even radio frequency triangulation techniques may be
of insufficient resolution; acoustic tracking requires line of sight.

Network discovery systems such as Jini [1] and SLP [16] use the ability to reach a resource over the network in a
small number of hops as the criterion for what is local. This is often not an adequate criterion, as the exhibition
example illustrates. Neighboring stands, for example Acme, Zenith and Peak in Figure 4, employ the same 802.11
network, which permeates the entire exhibition hall. Nothing in the network corresponds to those places. This is not
an artificial example: the same is true of meeting rooms in buildings, for example.

We have developed our alternative, physical discovery and registration, because it allows users to decide exactly
what it is that they are interested in based upon their understanding of their surroundings – not the happenstance of
physical and networking topologies.

Privacy

Nomadic computing environments present extra potential threats to users’ privacy that are currently not typically
found, or only found to a lesser degree, in the virtual world of the Internet or in stores and other public places. The
extra threats stem from the facts that nomadic environments potentially process detailed location information, and
they provide points of exposure with which users are not currently familiar, such as utilization of a wireless
networking infrastructure. We shall deal briefly with the question of location information.

In active badge systems [27, 30], locations sense users via the badges they wear, which emit a unique identifier. The
system thus knows where each user is, without the user having to take any action. This is the inverse of the
CoolTown approach, in which users decide whether to sense their location, and can do so without exposing any
identifier except their IP number. The trade-off is between privacy and transparency.

Spontaneous networking

Entities in CoolTown are web present rather than, say, Jini-present [1] or CORBA-present [25]. This is because we
believe that content-oriented computing as opposed to object-oriented computing has helped make the web
successful, and that the same rationale applies in nomadic computing.

In its favor, Jini is an example of a system that provides answers to two key questions in nomadic computing: how
to discover resources in a new environment, and how to utilize them. Jini uses network discovery to answer the first
question. The resource is registered with specified attributes, and any device that knows the same descriptive format
and vocabulary can discover that resource if it is in networking range. CoolTown's place manager satisfies that same
function, except that we have added physical discovery and registration, for the reasons discussed above.

Jini's answer to the method of interaction between devices and the resources in their environment involves the
download of Java object code to the device. This is better than systems based upon conventional, pre-installed
device “drivers”. Drivers contain code that runs on the content source to “drive” the operations of the sink.
Conventional drivers are specific to the combination of particular sources and sinks. Consequently, in a world of
many different devices, driver-based device control becomes a significant configuration problem. Jini leverages the
processor-independence of a Java Virtual Machine to reduce the scale of the driver problem: one driver is needed for
each sink device, but all source devices run the same driver and the driver is transparently downloaded. Jini requires
all source devices to run Java Virtual Machines, implying considerable processing and memory resources.

The content-post approach we use supports simple device interaction without the need to install device drivers for
every type of device encountered, dynamically or otherwise. It allows simple operations with minimal run-time
support (a small layer on top of HTTP) without precluding the use of drivers for other operations. HP's JetSend [19]
also embodies the principle of 'not modeling the device'.

7. Conclusion

We have outlined many of the important issues any system supporting nomadic users of pervasive systems must
face, and provided web-based solutions to many of them. Critical to our approach is technology to connect physical

Version of July 10, 2000 12

objects and places with their corresponding web presence. We have a good deal of progress in that area. The web
presence for places and its use as a context for nomadic users has been explored. Mechanisms for nomadic users to
exchange content with each other and with devices that they encounter that have low software and configuration
requirements have been developed. While much work remains before pervasive support for nomadic users will be a
reality, our web-based approach has been easy to add to incrementally, suggesting that it will provide a sound basis
for deployment.

Acknowledgements

The work described here contains contributions from many people in the Cooltown project. The concept and
demonstration of the URL beacons is due to Jeff Morgan, Marcos Frid, Bill Serra, and John Schettino. The content
transfer ideas came from the HP JetSend team with special thanks to Peter Willams and from Jeff Morgan. We also
thank Gene Becker and Gita Gopal for helpful discussions.

References

[1] Arnold, K., Wollrath, A., O'Sullivan, B., Scheifler, R., and Waldo, J. The Jini specification (The Jini
Technology Series). Addison-Wesley Pub Co; ISBN: 0201616343.

[2] Barton, John J., Simple Object Update Protocol, in preparation, available by request from
John_Barton@hpl.hp.com.

[3] Berners-Lee, T., Fielding, R., and Masinter, L. Uniform Resource Identifiers (URI): generic syntax. Internet
RFC 2396, 1998.

[4] Berners-Lee, T., Masinter, L., and McCahill, M. Uniform Resource Locators (URL). Internet RFC 1738,
1994.

[5] Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Frystyk Nielsen, H., Thatte, S.
Winer, D. SOAP: Simple Object Access Protocol. http://www.w3.org/TR/SOAP/, 2000.

[6] Caswell, D. and Debaty , P. Creating web representations for places. Proc. Second International Handheld
and Ubiquitous Computing Symposium, HUC'2000, Bristol, England, 2000.

[7] CoolTown home page. http://www.cooltown.hp.com/.

[8] Daniel, R. A trivial convention for using HTTP in URN resolution. Internet RFC 2169, 1997.

[9] Davies, N., Cheverst, K., Mitchell, K., and Friday, A. Caches in the air: disseminating information in the
Guide system. Proc. Second IEEE Workshop on Mobile Computing Systems and Applications (WMCSA '99),
New Orleans, Louisiana, U.S., 25-26 February 1999.

[10] Digital Object Identifier home page. http://www.doi.org.

[11] Embedding Web Access Mechanism in an Appliance for User Interface Functions Including a Web Server
and Web Browser. United States Patent no. 5956487, Sep 21, 1999. Inventors: Venkatraman, C., and
Morgan, J. Assignee: Hewlett-Packard Company, Palo Alto, Calif.

[12] Extensible Markup Language (XML) 1.0 http://www.w3.org/TR/REC-xml.html

[13] Fox, A., Johanson, B., Hanrahan, P., and Winograd, T. Integrating Information Appliances into an Interactive
Workspace, IEEE Computer Graphics & Applications, 20(3), May/June 2000

[14] Freed, N., and Borenstein, N. Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies. Internet RFC 2045, 1996.

[15] Frid, M. Personal communication.

[16] Guttman, E. Service Location Protocol: automatic discovery of IP network services. IEEE Internet
Computing, Jul.-Aug. 1999. pp. 71-80.

[17] HTTP - Hypertext Transfer Protocol. http://www.w3.org/Protocols/.

[18] iButton home page. http://www.ibutton.com/.

[19] JetSend home page. http://www.jetsend.com/.

Version of July 10, 2000 13

[20] Kindberg, T., Barton, J., Morgan, J., Becker, G., Caswell, D., Debaty, P., Gopal, G., Frid, M., Krishnan, V.,
Morris, H., Schettino, J., and Serra, B. People, places, things: web presence for the real world. Tech report
HPL-2000-16, Hewlett-Packard Laboratories, 2000.

[21] Kleinrock, L. Nomadicity: anytime, anywhere in a disconnected world. Mobile networks and applications
1(4), 1997, pp. 351-357.

[22] Krishnan, V., and Chang, G. Customized Internet radio. Proc. Ninth International World Wide Web
Conference, Amsterdam, 2000.

[23] Moran, T., Saund, E., van Melle, W., Gujar, A., Fishkin, K., and Harrison, B. Design and technology for
collaborage: collaborative collages of information on physical walls. Proc. Twelth Annual ACM Symposium
on User Interface Software and Technology, 1999, pp. 197-206.

[24] Oberlander, J., Mellish, C., O’Donnell, M., and Knott, A. Exploring a gallery with intelligent labels. Proc.
Fourth International Conference on Hypermedia and Interactivity in Museums, 1997, pp. 153-161.

[25] The Object Management Group home page. http://www.omg.com/.

[26] Salber, D., Dey, A.K., and Abowd, G.D. The Context Toolkit: aiding the development of context-enabled
applications. In Proc. 1999 Conference on Human Factors in Computing Systems (CHI '99), Pittsburgh, PA,
May 15-20, 1999, pp. 434-441.

[27] Spreitzer, M., and Theimer, M. Providing location information in a ubiquitous computing environment. Proc.
Fourteenth ACM Symposium on Operation System Principles, 1993, pp. 270-283.

[28] Universal Plug and Play Forum. http://www.upnp.org/.

[29] Want, R., Fishkin, K.P., Gujar, A., and Harrison, B.L. Bridging physical and virtual worlds with electronic
tags. In Proc. 1999 Conference on Human Factors in Computing Systems (CHI '99), Pittsburgh, PA, May 15-
20, 1999.

[30] Want, R., and Hopper, A. Active badges and personal interactive computing objects. IEEE Transactions on
Information Systems, 38(1), 1992, pp. 10-20.

[31] Weiser, M. Some computer science issues in ubiquitous computing. Communications of the ACM, 36(7),
1993, pp. 74-84.

[32] Yarin, P., and Ishii, H. TouchCounters: designing interactive electronic labels for physical containers. Proc.
1999 Conference on Human Factors in Computing Systems (CHI '99), Pittsburgh, PA, May 15-20, 1999. pp.
362-369.

