

How Agents from Different E-Commerce
Enterprises Cooperate

Qiming Chen, Meichun Hsu, Igor Kleyner
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2000-108
August 17th, 2000*

E-mail: qchen@hpl.hp.com

inter-enterprise
agent
cooperation,
cooperative
business process
management

Using agent technology to support E-Commerce automation is a promising
direction. However, the previous "proof-of-concept" efforts do not scale well
in E-Commerce automation. An essential reason is that the conventional
agent infrastructures are primarily designed for intra-enterprise, group-
based agent cooperation, but most E-Commerce applications are based on
inter-enterprise business partnership. Agents across enterprise boundaries
are unlikely to be organized into the same "agent group" and under a
centralized coordination.

We tackle the issue of scaling inter-enterprise agent cooperation from the
following three angles. First, we have introduced the Point of Presence
(POP) approach for integrating message-based agent communication with
interface-based service invocation. This approach allows us to unify the
messaging service interface for all the agents, and therefore greatly simplify
both server-side and client-side interface implementation and maintenance.
Next, we have developed the agent-embedded cooperative process
manager, for elevating multi-agent cooperation from the conversation level
to the business process level, and from centralized process management to
peer-to-peer cooperative process management. Finally, we propose the
conceptual separation of agent cooperation messaging network from
the bulk data network. These emerging technologies are integrated with
the E-Carry agent infrastructure, an autonomous and decentralized system
we developed at HP Labs. The feasibility of this approach has been
demonstrated in a prototyping system.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2000

�

How Agents from Different E-Commerce Enterprises Cooperate

Qiming Chen, Meichun Hsu, Igor Kleyner

 Hewlett Packard Laboratories
1501 Page Mill Road, MS 1U4

Palo Alto, California 94303, USA
+1-650-857-3060

qchen@hpl.hp.com

Abstract

Using agent technology to support E-Commerce automation is a promising direction. However, the
previous “proof-of-concept” efforts do not scale well in E-Commerce automation. An essential reason is
that the conventional agent infrastructures are primarily designed for intra-enterprise, group-based agent
cooperation, but most E-Commerce applications are based on inter-enterprise business partnership.
Agents across enterprise boundaries are unlikely to be organized into the same “agent group” and under a
centralized coordination.

We tackle the issue of scaling inter-enterprise agent cooperation from the following three angles. First,
we have introduced the Point of Presence (POP) approach for integrating message-based agent
communication with interface-based service invocation. This approach allows us to unify the messaging
service interface for all the agents, and therefore greatly simplify both server-side and client-side interface
implementation and maintenance. Next, we have developed the agent-embedded cooperative process
manager, for elevating multi-agent cooperation from the conversation level to the business process level,
and from centralized process management to peer-to-peer cooperative process management. Finally, we
propose the conceptual separation of agent cooperation messaging network from the bulk data
network. These emerging technologies are integrated with the E-Carry agent infrastructure, an
autonomous and decentralized system we developed at HP Labs. The feasibility of this approach have
been demonstrated in a prototyping system.

Keywords: Inter-Enterprise Agent Cooperation, Cooperative Business Process Management

1. From Intra-enterprise Agent Cooperation to Inter-enterprise Agent Cooperation

E-Commerce applications operate in a distributed environment involving multiple parties with
dynamic availability, and a large number of heterogeneous information sources with evolving
contents. A business partnership is often created dynamically and maintained only for the
required duration such as a single transaction. E-commerce activities typically rely on distributed
and autonomous tasks for dealing with such operational dynamics. Today, they are initiated and
executed primarily by humans. With the goal of automation, conducting them by software agents
has being proposed [3,4,19,21]. However, the previous “proof-of-concept” efforts do not scale
well in real E-Commerce applications.

�

Software agents have been studied for many years from all the aspects of software engineering:
agent architecture [1,5,6,22,23,27], agent communication language (e.g. ACL, KQML
[12,17,20]), agent coordination, conversation management (e.g. FIPA specification [13]), etc.
However, previously agent technology primarily focused on autonomy, intelligence, ontology,
language, etc, but rarely on scalability. To our knowledge, there is no sizable, inter-enterprise E-
Commerce application using a commercial agent system ever deployed. It is time to examine the
potential reasons for such a slow adoption.

1.1 Agent Cooperation across Enterprise Boundaries

Internet-based E-Commerce involves multiple enterprises separated by firewalls. One difficulty
for the traditional agent technology to fit into this picture consists in the limitation of agent
coordination model. Such a model assumes that agents are formed in groups, or domains, each
group is provided with a coordinator for facilitating naming service, resource service, etc.
Agents in a group rely on these services to communicate and cooperate. While it is possible for
the agents belonging to the same enterprise, it is unlikely for the agents belonging to different
enterprises, to form a single agent group, or domain. We see for example, a buyer agent for a
retailer and a seller agent for a supplier might not be in the same agent group or under the same
coordination (Figure 1). Organizing agent groups into a hierarchy may help, but does not
eliminate the difficulty of coordination across enterprise boundaries.

Figure 1: Group-based coordination does not support inter-enterprise agent cooperation

One possible solution is to use a CORBA-like service bus [8] for agents to locate each other in
peer-to-peer communications. Intuitively, any agent, A, can register a “send-message” service,
making it possible for another agent in a foreign domain to send a message to A, using that
service. However, if every agent has to register a messaging service in order to receive
messages, and every agent has to maintain multiple client side messaging service
implementations for all the agents it may need to have a contact with, it is not scalable. We call
this “interface complexity” problem.

1.2 Agent Cooperation at Business Process Level

Next, agents cooperate through message exchanges, and this has led to a research topic:
conversation management. However, many E-Commerce applications include complex business
processes with a large number of concurrent, long-duration, long-waiting and nested tasks, and
the flat conversation management lacks the scalability for handling and tracking such sizable
applications. Instead, a more robust and scalable approach is to lift agent cooperation from the
conversation level to the process level.

Conventionally, a workflow engine is used to provide a centralized scheduling, monitoring and

Enterprise A: Buyer Enterprise B: Seller

Fire-walls

coordinator coordinator

�

execution control of business processes, although the tasks that contribute to a process can be
distributed (Figure 2) [7,9,15,18,26]. Such centralized process control is appropriate within a
single enterprise but not across enterprise boundaries. Intra-enterprise process management
differs from intra-enterprise process management significantly. Different enterprises are often
separated by firewalls, have self-interests and individual data sharing scopes. When they are
involved in a business process, they are unlikely to trust and rely on a centralized workflow
server. Rather, they need support for peer-to-peer interactions [25]. This has become the major
impendence for using the conventional centralized workflow systems for inter-enterprise E-
Commerce automation. In fact, to our knowledge, there has been no such experience reported.

Figure 2: Centralized workflow control not suitable for cross-enterprise applications

1.3 Agent Cooperation with Bulk Data Exchange

As personalized, continuously running and semi-autonomous computational entities, software
agents can be used to mediate users and servers to automate a number of time-consuming tasks
in E-Commerce. However, agents communicate by exchanging messages, which may not be
suitable for bulk data transfer. Routing and caching a large amount of data also impose a
considerable burden for agents. For example, as sown in Figure 3, moving data between an
operational database and a data warehouse via a software agent is unlikely.

Figure 3: Agents for mediating E-Commerce automation may not for bulk data transfer

A principle of business process management is the separation of tasks from the processes they
contribute to, in the sense that a task does not necessarily know the entire process. Analogously,
we can place bulk data transferring and agent cooperation at different conceptual layers, and we
believe that is a necessary approach to scaling agent mediated E-Commerce automation.

1.4 Our Solutions

We envisage that the scalability issues introduced above are critical to agent-mediated E-
Commerce automation, and these issues are inter-related. We tackle them by the following

serverserver

server

server
server

bulk data transfer

Enterprise A: Buyer
Enterprise B: Seller

 Fire-walls

A
B

centralized workflow engine

?

�

approaches.

• We have developed the Point of Presence (POP) approach that supports inter-enterprise
agent communication using a CORBA-like service bus, HP E-Speak [11], but provides a
unified messaging interface to overcome the “interface complexity” problem. The use of E-
Speak allows agents to communicate across enterprise boundaries, with fine-grained access
control, firewall traversal and other infrastructure services. Under the proposed POP
mechanism, each agent domain only registers the messaging service of the domain
coordinator with E-Speak. This service then becomes the single gateway to the agent
domain, and can be made standard for all the agent domains. Within a domain, the domain
coordinator can forward messages to other agents through intra-domain agent
communication. Thus on one hand, it is unnecessary for each agent to register an individual
message service for receiving messages; on the other hand, an agent only needs a “standard”
client-side interface for invoking the above messaging service to contact any agent in any
foreign domain, using the domain name as a parameter.

• We have introduced the notion of cooperative business process and developed agent-
embedded Cooperative Process Managers (CPMs), which elevates agent cooperation from
the conversation-level to the process-level, and from centralized process management to
cooperative process management with peer-to-peer interoperations. A cooperative business
process is defined based on a commonly agreed operational protocol, such as the protocol for
on-line purchase or auction. However, it is not executed by a centralized workflow engine,
but by multiple agents with CPMs collaboratively. More specifically, each execution of a
cooperative process, or a logical process instance, consists of a set of peer process instances
run by the CPMs of participating agents. These peer instances share the same process
definition, but may have private process data and sub-processes. The CPM of each agent is
used to schedule, dispatch and control the tasks that agent is responsible for, and the CPMs
interoperate through an inter-CPM messaging protocol to synchronize their progress in
process execution. An XML-based Cooperative Process Definition Language, CPDL,
extending the process definition language (PDL) [26], is developed for specifying
cooperative business processes. This approach represents a technical emerging of, and
significant extensions to both workflow technology and agent technology.

• We have developed the notion of two-tier agent cooperation infrastructure that is
characterized by the conceptual separation of cooperation message network and bulk data
network. This notion is analogous to the separation of signal network and voice trunks in
modern telephone infrastructure, where the former is used for routing calls, setting-up and
tearing-down connections, and the latter for transferring voice data. In our two-tier agent
cooperation infrastructure, the message network is used for agents to exchange control
information, meta-data and small size documents [10], and in addition, for setting-up and
tearing-down connections between devices. The communication at this tier is message-based,
asynchronized. Bulk data network is used for transferring large amount of data. The
communication at this tier is generally synchronized.

The approaches proposed above are related. For example, peer-to-peer cooperative process

�

management requires inter-enterprise agent communication; the separation of cooperation
messages and bulk data transfers ensures the required data throughput in agent-mediated E-
Commerce applications, and allows the control information and data of business processes to be
handled separately, for both efficiency and privacy.

Although the proposed mechanisms are independent of the underlying agent infrastructure, our
experience has shown that implementing them using the E-Carry agent infrastructure, an
autonomous and decentralized system we have developed at HP Labs, has many advantages due
to its openness, scalability and flexibility. An E-Carry agent has the ability to load, maintain and
start servers and applications dynamically. It also contains an embedded Web server with
servelet functionality, enabling its state to be accessed or updated through a browser. Adding the
proposed capabilities allows us to provide a migration from the traditional agent infrastructure to
a dynamic and distributed middleware framework. The full details about E-Carry architecture
will be reported separately.

The significance and feasibility of this work have been demonstrated in a prototype implemented
at HP Labs.

Section 2 describes the POP approach for using E-Speak infrastructure to support inter-enterprise
agent cooperation. Section 3 discusses peer-to-peer, agent cooperative process management.
Section 4 illustrates the architecture for separating agent cooperation message network and bulk
data network. Related work will be covered in Section 5 with conclusions.

2. Inter-Enterprise Agent Communication with Unified Messaging Interface

Agents in the same group, referred to as the agent domain, can communicate using the naming
service provided by the coordinator of that domain. However, agents in different enterprises may
not form a single agent domain. Instead, they need certain “service bus” to locate each other for
peer-to-peer communication. Further, issues such as firewall, security, access control, and even
billing, should be taken into account. We have adopted the HP E-Speak service bus, an interface
based service provisioning and invocation framework with multiple interconnected E-Speak
Cores. An E-Speak core provides a set of predefined and extensible infrastructure services
including authentication, authorization, billing, etc. These infrastructure services represent the
major difference between E-Speak and the traditional CORBA-like middleware. In this paper we
do not intend to explain E-Speak in detail.

Conceptually, an agent, A, can register a “send message” service with E-Speak, making it
possible for another agent in a foreign domain to send a message to A by invoking this service.
In doing so, however, we want to avoid the following possible problems.

The first problem is the “interface diversity” problem we mentioned earlier, that is, if every agent
has to register a messaging service in order to receive messages, and every agent has to
implement and maintain multiple client side messaging service interfaces for all the agents it

�

may need to have a contact with, there would be too many interfaces for E-Speak to register, and
for an agent to keep.

Furthermore, it is often the case that once an agent can reach a domain, it should be allowed to
invoke certain services carried by the coordinator or other agents of that domain. If all those
services must be registered, it is not scalable from service invocation point of view.

2.1 Inter-domain Agent Communication with Unified Messaging Interface

In order to unify the messaging interface for inter-enterprise agent communication, we integrate
E-Carry and E-Speak in the following way.

Figure 4:Unify messaging service interface to simplify inter-enterprise agent communication

The coordinator of every agent domain carries a messaging service, and registers this service
with E-Speak. This service then becomes the single entrance to the agent domain. We refer to it
as the Point of Presence (POP). Inside the domain, the coordinator can forward messages to
other agents. Thus, it is unnecessary for each agent to register an individual message service,
since the coordinator provides a gateway for any foreign agent to reach any agent in that agent-
domain. Further, services provided either by the coordinator or by other agents in that domain,
may be invoked through messages. This also eliminates the need of registering every individual
service, maintaining therefore the single POP for service invocation as well (note that, however,
there is no restriction on service registration, i.e. open more POPs, as needed).

Registering only the general messaging service also simplifies and unifies the client interface for
sending messages. Every E -Carry agent only needs to be provided with a “standard” client-side
stub for invoking the above messaging service, with the domain name encapsulated in the
message envelop. By invoking this message service, the agent can contact any agent in any
foreign domain, with messages routed by the coordinator of that domain.

Through the messages an agent sends to a foreign domain, services provided by the agents
(including the coordinator) of that domain can be invoked, and such invocation is message-based
without keeping continuous connection. Below we give some details about the messaging service
used for inter-enterprise agent communication.

At “server-side”, the messaging service provided by the coordinator of an agent domain, D, is

Fire-walls

E-speak
core

E-speak
corecoordinator

Messaging
service

Other service

coordinator

Enterprise A Domain D1 Enterprise B Domain D2

 espeak:D2/B2

B2

B3

B1

A1A2A3

�

registered with E-Speak. The interface of this service includes a single method
void sendMsg(String message)

The interface name, say AgentMsgService, plus a property “description” indicating the domain
name, uniquely identify this service. In an intra-domain message, the destination is simply
expressed by the receiver’s name. In an inter-domain message, the destination is expressed by

espeak:domain_name/agent_name

where espeak is the service bus, a concept at a higher-level than transport. For example, when
our approach is extended to use http as the service bus, the logical address of an agent should be

http:domain_name/agent_name

In this case the Web server embedded in an E-Carry agent will be used. On the “client-side”, a
standard implementation of the above interface is embedded to each E-Carry agent, as the “e-
speak message dispatcher”.

As shown in Figure 4, for example, when agent A1 in domain D1 attempts to contact agent B2 in a
foreign domain D2, A1 invokes function sendMsg, that is registered with E-Speak by the
coordinator of domain D2 as

Name=’AgentMsgService’ and Description=’ D2’
to send a message with destination espeak: D2/B2. The message is first received by the
coordinator of D2, and then forwarded to B2 by the coordinator. At the first step, the E-Speak
infrastructure service is called; at the second step, the local naming service provided by the
domain coordinator, is employed. If the sender intends to invoke a service provided by the
coordinator or another agent of D2, the result of that service will be sent back to it via E-Speak as
well.

2.2 Message Subscribing/Publishing

With E-Speak, agents from different domains can also communicate in the publish/subscribe
mode. For example, when an agent intends to buy some electronic parts, instead of checking the
vendor agents one by one, it can publish an availability-check message, and E-Speak can
broadcast this message to all the vendor agents who subscribe this message.

The message publish server carried by an E-Carry agent and registered with E-Speak,
implements the same interface as AgentMsgService, with a single method sendMsg(String
message). The agent represents a virtual agent domain: MsgPublisher (Figure 5). Therefore,
when an E-Carry agent tries to publish a message, it sends the message to the MsgPublisher
server, using espeak:MsgPublisher as the address, just like sending a message to an agent
domain. To subscribe to message AvailabilityCheck, for instance, the subscribing agent should
send the following message to espeak:AgentMsgPublisher.

 <MESSAGE type=”SUBSCRIBE” from=“espeak:D2/A3” to=“ espeak:MsgPublisher” interpreter=“xml.default”>
 <CONTENT> <MESSAGE_NAME> AvailabilityCheck </MESSAGE_NAME>…</CONTENT>
 </MESSAGE>

�

Figure 5: Publishing / Subscribing based communication

2.3 Message-based, Asynchronous Service Invocation

The POP approach has an additional advantage when used for agent service invocation, that is to
keep the message-based, asynchronous client-server communication.

E-Commerce is a plug and play environment. Services need to be provided on demand. Business
partnerships (e.g. between suppliers, resellers, brokers, and customers) need to be created
dynamically and maintained only for the required duration such as a single transactional process.
To support such dynamics, an E-Commerce infrastructure must support the cooperation of
loosely coupled e-business systems.

Interface oriented, CORBA-like middleware is based on a technology for integrating tightly
coupled local systems. It doesn’t fit into the picture of e-business since it is too dependent on
Remote Procedure Call (RPC), or Remote Method Invocation (RMI), a form of synchronous
communications in which networked devices maintain continuous contact. Synchronous
communications lack the flexibility for plug-and-play e-business, and don’t cope well with
firewalls. In the contrary, Web-based communication is asynchronous, where a message is sent
when the line is available and contact is interruptible. This feature is also represented by IBM’s
MQ Series and Microsoft’s MSMQ messaging middleware.

The E-Carry capability for carrying actions allows a domain coordinator to carry multiple
services not registered with E-Speak, but invoked through messages. Services carried by other
agents in the domain can also be invoked on the message basis. It is unnecessary (but optional) to
register agent provided services with E-Speak. This well fits in agent cooperation where most of
the services are kept message-enabled.

3. Inter-Enterprise, Peer-to-Peer Agent Cooperation at Business Process Level

Many E-Commerce applications include complex business processes, and involve multiple
enterprises. To handle such applications through simple agent conversation is not scalable, and
through a centralized server is unreasonable. This has motivated us to lift agent cooperation from
the conversation level to the process level, and from centralized process management to peer-to-

E-Speak infrastructure E-Speak service
Name: AgentMsgService
Desc: MsgPublisher

publisher

CC

subscriber

C

subscriber

Domain D3A1

A3

A2

Domain D1

Domain D2

A1

A2 A3

A2A1

Virtual domain: MsgPublisher

�

peer cooperative process management.

3.1 From Centralized Process Management to Cooperative Process Management

A business process specifies the integration and synchronization of multiple steps, each step
represents a logical piece of work that contributes to the accomplishment of the whole process.
Although these tasks and the agents executing them can be distributed, they are scheduled and
coordinated by a centralized workflow engine. Typically a business process includes a data
packet containing the process data for control flow and data flow, and tasks can manipulate the
process state by updating these data. However, consider a purchase process involving tasks
belonging to different enterprises, e.g. the buyer and the seller. It is unrealistic to have the buyer
and the seller coordinated by a single workflow engine, and it is unreasonable for them to put
their private data (e.g. negotiation thresholds) into the common process data packet for flow
control.

Our solution to the above problem is based on extending process management from the one-
server model to the multi-server peer-to-peer model, a shift from centralized process
management to cooperative process management.

Figure 6: Peer-to-peer collaborative process management

We introduce the notion of cooperative business process. An inter-enterprise cooperative
process involves multiple parties. It is defined based on the corresponding business protocols,
and such a definition becomes the common template for all the participating parties to share.
However, an execution of a cooperative process, viewed as a logical instance of the process,
actually includes multiple peer instances that are not executed by a centralized workflow engine
but by multiple CPMs and synchronized through peer-to-peer communication. These peer
instances share the same process definition, but may have private process data and sub-
processes. The CPM at each side recognizes its own share of the tasks (shaded in Figure 6)
based on role-matching. For example, an on-line trading process, say P, is executed
collaboratively by a seller and a buyer in such a way that each peer CPM runs an individual

Peer process instance by A Peer process instance by B

Cooperative process manager

Enterprise 1

Cooperative process manager

Enterprise 2

Cooperative process definition

Cooperation protocol

��

process instance of P. For the CPM at buyer side, it is only responsible for (schedule and
dispatch) the tasks to be executed by the buyer, such as preparing a purchase order and making a
payment. Similarly the CPM at seller side is only responsible for the tasks belonging to the
seller. The CPMs exchange task execution status messages for synchronization.

3.2 Agent Embedded Cooperative Process Manager

We have implemented CPM and integrated it into E-Carry agent platform. This novel integration
achieves two purposes: on the one hand, it provides an implementation and execution platform
for a CPM system; on the other hand, it elevates multi-agent cooperation in E-Carry from the
conversation level to the process level for mediating E-Commerce applications.

Figure 7: E-Carry agent with embedded CPM

As shown in Figure 7, the functionality of CPM is embedded into the service tier of E-Carry,.
The agent with CPM embedded can then be used as a CPM server. Since a CPM server can also
be viewed as an agent, it is possible to consider the notion of personalized CPM engine. That is,
each logical entity of an enterprise, say, an electronic parts buying agent, could have its (or his)
own CPM engine to represent it (or him). When participating in inter-enterprise collaboration, it
has its (or his) own CPM server executing peer process instances. Besides of acting as a CPM
server, an E-Carry agent can also perform activities.

The CPM embedded in an E-Carry agent interacts with the hosting agent though a set of internal
messages. The communication between agents is made through inter-agent message exchange. A
set of agent messages specific to cooperative process management, are defined, and a
corresponding message interpreter is provided for each agent. The E-Carry agent has the
capability to load and switch interpreters based on message ontology types thus can easily handle
applications in different contexts.

3.3 Cooperative Process Definition

To explain how the proposed cooperative process management approach extends the current
workflow technology, we adopt the usual concepts of business process modeling in the following
discussions. A process is modeled as a DAG with nodes representing the steps, or tasks, and arcs
representing the links of those steps. A work-node represents a step (task) and associated with an
activity, i.e. a piece of work that contributes to the accomplishment of the process, that may be
executed either by a program (e.g. a software agent) or by a human worker. A process is
associated with a packet of process data. When an activity is launched, a subset of the process

E-Carry Agent A

Messaging Tier

Service Tier

other CPM

Application Tier

E-Carry Agent B

Messaging Tier

Service Tier

other CPM

Application Tier

��

data, sub-packet, is passed to it; when it is completed, together with task status information, the
sub-packet, possibly updated during the task execution, is sent back for reconciliation with the
process data packet. A route-node specifies the rules and conditions for flow control, process
data update, etc. Conventionally, a process execution creates a single process instance. However,
for a cooperative process, the logical instance of each execution includes multiple peer process
instances. Further, a cooperative process may have multiple concurrent executions. To support
cooperative processes, the minimal extensions to process definition include the following.

A cooperative process has a list of process-roles, indicating the logical participants. For
example, if a simple purchase process has two roles, “buyer” and “seller”, then there are two
peer instances involved in its execution, one at the CPM for “buyer” and another at the CPM for
“seller”. These two peer instances are assigned roles “buyer” and “seller” respectively.

A work-node has a task-role, and that must match one of the process-roles. In the above
example, tasks can have roles “buyer” and “seller”. If the role of a task is “buyer”, it is only
executed in the peer process instance with process-role “buyer”. Note that an activity also has a
role called activity-role, such as “invoice-generator”, meaning that this task should be executed
by (or dispatched to) an agent playing the “invoice-generator” role in this process. The notion of
activity-role can be found in regular business process specifications.

In an inter-enterprise cooperative process execution, each party wants to keep some of the
process data private. For example, the buyer in one enterprise and the seller in another enterprise
do not want to expose their thresholds during price negotiation. In the process definition,
templates for holding the definitions and initial values of process data objects can be specified.
Furthermore, the sharing scope of the data objects is specified. A template may be public, i.e.
sharable by all process-roles (and thus by all peer process instances) or process-role specific. A
role-specific template is used by the peer process instances of the given roles (one or more)
only, and such templates can be made different for different process-roles. Consider a
cooperative process with roles “buyer”, “seller” and “bank”; some data are private to “buyer”;
some are sharable by “buyer” and “seller”; some are public to all three roles. The initial data
packet of a peer process instance consists of the appropriate templates, where the sharing scope
of each data object is marked. This data packet can be updated or expanded at run time.

A task may represent a private sub-process with a private data packet. The sub-process binding is
dynamic, that is, bound at run time. This allows a private sub-process to be designed separately
from the host process. The process data of the internal sub-process is entirely private to the party
executing the sub-process.

An XML[2]-based Cooperative Process Definition Language, CPDL, extending the process
definition language (PDL) by capturing the above notions, is developed for specifying
cooperative business processes.

��

3.4 Cooperative Process Execution

An execution of a cooperative process consists of a set of peer process instances run by the
CPMs of the participating agents. These instances share the same process definition but they
have additional properties and may have private process data and sub-processes.

Each peer process instance has a role that must match one of the process-roles. When a peer
process instance is launched by a CPM at the seller side, for example, the process-instance-role
is “seller”, and the CPM is only responsible for scheduling and dispatching the tasks with task-
role “seller”. When executing a cooperative business process, the player of each peer process
instance must be specified and bound to the corresponding process instance role. In addition, a
logical identifier for this execution must be obtained. These pieces of information are captured as
properties in every peer process instance. They are further described below.

The players of a cooperative process indicate the participating agents with embedded CPMs. A
player is associated with four attributes.

• The role, e.g. “buyer” or “seller”, of the given process instance running at the CPM that represents
this player. Note that without binding to a peer process-instance, a CPM does not have a fixed role.

• The domain name of the agent
• The local name of the agent within the domain to represent the player. For example,

corp.hp.com/buying_agnet may be a player playing the buyer role in a purchasing business process,
whose peer agent in this process might be us.oracle.com/sales_agent.

• The inter-domain messaging service infrastructure, such as HP E-Speak, that provides messaging
services for inter-domain agent communication. The messaging service infrastructure is capable of
delivering messages among multiple domains. As mentioned above, when peer agents participating a
cooperative process execution rely on E-Speak to reach each other, the addressing structure is

 espeak:domain_name/local_name.

A coop-key is used to identify a logical instance of a cooperative process, that is, to correlate and
synchronize the multiple peer instances of the execution of a single cooperative process. All the
messages exchanged for that execution are marked by a unique coop-key. In our implementation,
the CPM of each E-Carry agent can run multiple process instances concurrently, and each
instance has a local ID. Each CPM engine maintains a mapping table between coop-keys and
local process instance IDs. When a message relating to the execution of a cooperative process is
received, the coop-key is used to identify the corresponding local process instance.

Let us use a simple example shown in Figure 8 for explanation purpose. The sample cooperative
process for on-line purchase defined based on the OBI (Open Buying on Internet) protocol,
obi_process, has process-roles “buyer” and “seller”. Each logical instance of obi_process has
two peer-instances run at two peer CPMs, A and B, one at the buyer side and one at the seller
side. It has several tasks (steps) including T1 (make purchase order), T2 (process purchase order),
etc. T1 is a step the buyer is responsible for, so its role is “buyer”, while the role of T2 is “seller”.
A, running the peer instance with role “buyer”, is responsible for executing T1, and B, running the

��

peer instance with the role “seller”, is responsible for executing T2. The initial data packet for
process-role “buyer” and “seller” can be different. The execution of a cooperative process is
carried out in the following way:

• CPM A, representing the process-instance-role of “buyer”, initiates a buyer-side process instance Pb

and through messaging, tells CPM B to create a seller-side peer process instance Ps.
• A dispatches and executes T1, and upon receipt of the task return message, r1, forwards it to all other

players of the process, in this case, simply B. Both A and B update their process state and schedule the
possible next step of their own peer process instance based on that message.

• When A proceeds to activity T2, since the role represented by A does not match the role of T2, A
simply waits for the peer server, that is B in this example, to handle it at the peer site.

• When B proceeds to activity T2, since the role represented by B matches that of T2, T2 will be handled
by B.

• The execution of peer process instances at both peer CPMs progress in this way, towards their ends.

Figure 8: Peer-to-peer collaborative process management

An activity is dispatched to a software agent or a human user to perform, and upon its
termination, a task return message is sent back and used to trigger the next step in process
execution. Such a task return message contains the coop-key of the logical process instance, the
handles (local Ids) of the process instance, task, and activity, the activity execution status, and the sub-
packet, i.e. the subset of process data passed to the activity.

When a task return message comes back to the local CPM engine, it contains all the above
information. Since the sub-packet of the process data passed to the activity may be updated
during task execution, it must be reconciled with the process data packet after returning.
However, before such a message is forwarded to a peer player, only the updated data elements
that are shared with the player are retained. (Recall that the sharing scope of each data element is
specified in the process definition.)

A key design issue is to maintain the right order of message processing. For various reasons the
messages may not be delivered in the original order. Queuing technique and the knowledge
drawn from process definitions are used to resolve the out-of-order message delivery problem.
Each CPM has a queuing server, in additional to the regular message queue handler. This
queuing server is workflow specific as it interfaces to the process definition handler and the
process instance log handler, using process definitions and execution histories to make

Peer process instance Ps role: sellerPeer process instance Pb role: buyer

CPM A
Enterprise

CPM B
Enterprise

Cooperative process roles
buyer, seller

One process

One logical execution
instance

A set of peer instances

….

…. ….

task role
buyer

task role
seller

T1 T2

T1 T2

T1 T2

��

operational decisions. When a message is received, the queue server checks if it is ready to be
processed, if not, queue the message; and if it is, further checks if the change makes any queued
message ready to be processed. It also responds to CPM internal events such as process instance
status changes.

Turning agent cooperation from conversation-level to process-level is a natural and necessary
move. In general, businesses collaborate following certain rules, such as “if you send me a price
request then I will send you a quote”, and “if the quote I sent you is acceptable, then you will
send me an order”. These rules include sequences of steps to form a business process. Such
business collaboration usually involves multiple agents, each responsible for managing or
performing certain tasks that contribute to the process. Adding inter-enterprise cooperative
process management capability into agent-based systems is critical for these business
collaborations.

4. Separating Bulk Data Transfer from Agent Cooperation Messaging Network

In previous agent cooperation frameworks, there is no explicit separation of control information
and application data agents exchange. A business process instance is also combined with control
flow and data flow. In some workflow systems such as Lotus-Notes, control flow and data flow
are fully combined.

We have described early in this paper that for data privacy purpose, in cooperative process
management we define the scopes of data visibility among peer CPMs and separate the non-
sharable data from the sharable data. The messages for synchronizing cooperative process
execution contain no sensitive private data, and data exchanges are handled at the task execution
level, with explicit privacy control. Here we revisit this issue beyond process management.

In agent cooperative activities, agents communicate by exchanging messages. The content of
agent conversation may be requests, inter-CPM messages, or moderate size business documents.
However, transfer bulk data via software agents is neither efficient nor necessary. It is inefficient
since the data transfer throughput of software agents is far less than large-scale data servers. It is
unnecessary since the percentage of control data (to be handled by an agent) in a large data
stream is fairly small. This has led to the idea of separating bulk data network from agent
cooperation message network conceptually. We believe this is the key to the success of agent
mediated E-Commerce automation, although it requires substantial work in standardization. In
fact, such a system configuration is analogous to a modern telephone system.

In the telecommunication infrastructure, an important architecture feature is the separation of the
voice network and the signal network. The voice trunks connect end-offices for voice data
traffic. The end-offices are connected to and controlled by the SS7 signaling network (Figure 9)
for switching, monitoring, traffic information gathering and so on. Such separation aims at
enhancing the controlling and monitoring functionality over the whole infrastructure. With the
separation of the signal network from the voice trucks, for example, the caller-id service can be

��

provided to allow a callee to know who the caller is, before picking up his phone.

Figure 9: Telephone network: separation of signalnetwork from voice(data) trunks

Our proposed infrastructure is illustrated in Figure 10, where bulk data transfer is separated from
the agent Cooperative Message Network (CMN). As mentioned above, the CMN still can be
used for agents to exchange moderate size data as message contents. However, large data transfer
such as database loading, must be separated from agent message delivery.

Figure 10: Separate collaboration message network from Data Network (Payload)

We can once again relate this concept to cooperative process management, where processes and
tasks are already separated into two system layers. Bulk data transfer can be handled at task level
without via process level messaging. Such separation can be introduced to the general agent
mediated E-Commerce automation, that is, separate the tasks involving bulk data transfer, from
the cooperation activities between agents. For instance, with the servelet capability, E-Carry
agents can respond to certain messages by setting up corresponding services, including enacting
the actions to set-up or tear-down connections between the systems they represent. For example,
an E-Carry agent can execute a program that starts an Oracle Express OLAP script for loading
data into its multi-dimensional database from a relational database.

5. Comparisons and Conclusions

We have developed several inter-enterprise agent cooperation approaches for supporting agent-
mediated E-Commerce automation. These approaches represent an integrated solution based on
emerging technologies and applications. The agent embedded CPMs enable peer-to-peer agent

Voice
Trunk

user

SSPSSP

STP

STP STP

STP
SS7 Signal Network

End
Offic

End
Offic

End
Offic

E-Carry Collaboration Messaging Network (CMN)

E-Carry

serverserver

OLAP
MDB

Oracle
DBserver

Bulk data transfer

��

cooperation at the business process level, and communicate using the unified messaging
interface under the POP mechanism. This mechanism also supports message-based,
asynchronous application invocation without requiring continuous connection. By separating
bulk data transfer from cooperative message network, the data throughput limitation of agents
can be overcome.

Compared with the group and group-hierarchy based multi-agent systems [12-14,16], we scale
agent cooperation across enterprise boundaries by supporting peer-to-peer, non-coordinated
inter-domain communication and collaboration.

Compared with RPC and RMI [8], the POP approach allows us to maintain, to the maximum, the
benefits of asynchronous communication for Internet based applications. The regular use of
RPC/RMI based middleware is to specify a service function in an interface class. Although
multiple functions may be grouped into a single interface class, conceptually every service
function must be specified and registered. In order to contact multiple interfaces, multiple client
side implementations of those interfaces must be provided. Use this mechanism allows agents to
reach out the local domains, but would require handling a lot of interfaces both for service
provisioning and for service invocation. The proposed POP approach provides a unified interface
for inter-domain agent communication, and therefore can reduce the above complexity. The use
of E-Speak further offers the benefits of infrastructure services.

Compared with agent conversation management [13], the use of CPMs allows us to lift agent
cooperation from the conversation level to the process level, and from centralized coordination to
peer-to-peer collaboration.

Compared with existing workflow systems [26], the proposed cooperative process management
can be used to enhance the collaboration of business partners and support inter-enterprise
business process executions. This represents a novel extension to the workflow technology.

Compared with the conventional process federation and RosettaNet PIP approach [24], we
conclude that our approach is capable of supporting PIPs. However, our approach goes beyond
PIP in the following aspects. First, cooperative process management is based on process-level
business protocols and PIP approach is based on interface tasks. PIPs expose individual “hand-
shake” or conversation points of partner processes, but not a process level view to their
cooperation. Second, we have a peer-to-peer execution model for cooperative processes but the
PIP approach does not. In PIP approach, the execution of partner processes are not related and
synchronized at process-level. Each party sees the trees, not the forest.

From the above comparison we can see the uniqueness of the proposed approaches in supporting
inter-enterprise agent cooperation, the key to realize and scale agent-mediated E-Commerce
automation. The significance and feasibility of this work has been demonstrated in a prototype
implemented at HP Labs. We plan to further extend this system to a scalable, dynamic, inter-
enterprise middleware framework.

��

REFERENCES
[1] Aglets, "Programming Mobile Agents in Java", IBM, http://www.trl.ibm.co.jp/aglets/, 1997.

[2] T. Bray, J. Paoli, C. M. Sperberg-McQueen, “Extensible Markup Language (XML) 1.0 Specification”, February 1998,
(http://www.w3.org/TR/REC-xml)

[3] A. Chavez and P. Maes, Kasbah: An Agent Marketplace for Buying and Selling Goods, Proc. of PAAM96, 1996.

[4] Q. Chen, Meichun Hsu, Umesh Dayal, Martin Griss, “Incorporating Multi-Agent Cooperation, Dynamic Workflow and
XML for E-Commerce Automation”, Proc. Fourth International Conference on Autonomous Agents, 2000, Span.

[5] Q. Chen, P. Chundi, Umesh Dayal, M. Hsu, "Dynamic-Agents", International Journal on Cooperative Information Systems,
1999, USA.

[6] Q. Chen, P. Chundi, U. Dayal, M. Hsu, "Dynamic-Agents for Dynamic Service Provision", Proc. of 3rd Int. Conf. on
Cooperative Information Systems (CoopIS'98), 1998, USA.

[7] Q. Chen and Umesh Dayal, "A Transactional Nested Process Management System", Proc. of International Conference On
Data Engineering, 1996.

[8] CORBA, "CORBA Facilities Architecture Specification", OMG Doc 97-06-15, 1997.

[9] U. Dayal and M. Hsu and R. Ladin, “A Transactional Model for long Running Activities”, Proc. VLDB'91, 1991.

[10] Document Object Model, http://www.w3.org/DOM/

[11] E-Speak, http://www.e-speak.net/

[12] T. Finin, R. Fritzson, D. McKay, R. McEntire, “KQML as an Agent-Communication Language”, Proc. CIKM'94, 1994.

[13] Foundation for Intelligent Physical Agents(FIPA)- FIPA97 Agent Specification, http://www.fipa.org/

[14] R. J. Glushko, J. M. Tenenbaum and B. Meltzer, “An XML Framework for Agent-based E-Commerce”, CACM 42(8),
March, 1999.

[15] N.R. Jennings, P. Faratin, MJ. Johnson, P O'Brien & ME Wiegan, "Using Intelligent Agents to Manage Business Processes".
Proc. of PAAM96, U.K., 1996, pp. 245-360.

[16] N. R. Jennings (1999) "Agent-based Computing: Promise and Perils" Proc. IJCAI-99, Sweeden. 1429-1436.

[17] T. John, Intelligent Agent Library/Factory, release 4 (http://www.bitpix.com)

[18] N.Krishnakumar and A.Sheth"Specification of workflows with heterogeneous tasks in meteor", Proc. VLDB'94, 1994.

[19] P. Maes, R. H. Guttman and A. G. Moukas, “Agents that Buy and Sell”, CACM 42(8), March, 1999.

[20] S.A. Moore, "KQML and FLBC: Contrasting Agent Communication Languages," proceedings. 32nd Hawaii international
conference on system sciences, 1998,

[21] A.G. Moukas, R. H. Guttman and P. Maes, “Agent Mediated Electronic Commerce: An MIT Media Laboratory
Perspective”, Proc. of International Conference on Electronic Commerce, 1998.

[22] Odyssy, "Agent Technology: Odyssey", General Magic, http://www.genmagic.com, 1997.

[23] B. Perry, M. Talor, A. Unruh, “Information Aggregation and Agent Interaction Patterns in InfoSleuth”, Proc. of CoopIS’99,
UK, 1999.

[24] Rosetta-net, www.rosettaNet.org.

[25] M. Rusinkiewicz, W. Klas, T. Tesch, J. Wasch, P. Muth, “Towards a Cooperative Transaction Model – The Cooperative
Activity Model”, VLDB’95, 1995.

[26] Workflow Management Coalition, www.aiim.org/wfmc/mainframe.htm.

[27] Voyager, "Voyager Core Package Technical Overview", Object Space,
http://www.objectspace.com/voyager/technical_white_papers.html, 1997.

