

Inte r-Ente rprise Collaborative Busine ss
Proce ss M anage m e nt

Qim ing Ch e n , M e ich un H su
Softw are Te ch nology Laboratory
H P Laboratorie s Palo Alto
H PL-2000-107
August 17th , 2000*

E-m ail: qch e n @h pl.h p.com

coope rative
proce ss
m anage m e n t

Conve n tional w ork flow syste m s are prim arily designed for intra-enterprise
process m anage m e n t, and th e y are h ardly used to h andle process es w ith
task s and data se parated by ente rprise boundarie s , for re asons such as
s ecurity, privacy, sh arability, fire w alls, e tc. Furth e r th e coope ration of
m ultiple e n te rprises is often based on pe e r-to-pe e r inte ractions rath e r th an
ce n traliz ed coordination . As a result, th e conve n tional ce n traliz ed process
m anage m e n t arch ite cture doe s not fit into th e picture of inte r-e n te rprise
business-to-business E-Com m e rce .

W e h ave d eve loped a Collaborative Process Manager (CPM) to support
de ce n traliz ed , pe e r-to-pe e r process m anage m e n t for inter-enterprise
collaboration at th e business process le ve l. A collaborative process is not
h andled by a ce n traliz ed w ork flow e n gine, but by m ultiple CPMs, e ach
re pre s e nts a player in th e business process . Each CPM is used to sch edule ,
dispatch and control th e task s of th e process th at th e playe r is re sponsible
for, and th e CPMs inte rope rate th rough an inte r-CPM m e ssaging protocol.
An XML based Collaborative Process Definition Language , CPDL, e xtending
th e process definition language (PDL), is de ve loped for spe cifying
collaborative business process es . W e h ave im ple m e n ted CPM and em bedded
it into a dynam ic softw are age n t arch ite cture , E-Carry, th at w e de ve loped at
H P Labs, to e le vate m ulti-age n t coope ration from th e conve rsation le ve l to
th e process le ve l for m e diating E-Com m e rce applications. W e h ave also
inte grated E-Carry w ith E-Spe ak , an inte r-e n te rprise com m unication
infrastructure product de ve loped at H P.

In ge n e ral, our approach re pre s e nts a sh ift from ce n traliz ed process
m anage m e n t to de ce n traliz ed , collaborative process m anage m e n t. W e
b elie ve th at CPMs w ill b e th e basic building block s for a scalable , dynam ic,
inte r-e n te rprise m iddle w are fram e w ork . Th e fe asibility and practical value
of th is approach h ave b e e n d em onstrated by th e prototypes im ple m e n ted at
H P Labs.

�

Inter-Enterprise Collaborative Business Process Management

Qiming Chen and Meichun Hsu

HP Labs

Hewlett Packard Co.
1501 Page Mill Road, MS 1U4

Palo Alto, California, CA 94303, USA
+1-650-857-3060

qchen@hpl.hp.com

Abstract

Conventional workflow systems are primarily designed for intra-enterprise process management, and
they are hardly used to handle processes with tasks and data separated by enterprise boundaries, for
reasons such as security, privacy, sharability, firewalls, etc. Further the cooperation of multiple
enterprises is often based on peer-to-peer interactions rather than centralized coordination. As a result, the
conventional centralized process management architecture does not fit into the picture of inter-enterprise
business-to-business E-Commerce.

We have developed a Collaborative Process Manager (CPM) to support decentralized, peer-to-peer
process management for inter-enterprise collaboration at the business process level. A collaborative
process is not handled by a centralized workflow engine, but by multiple CPMs, each represents a player
in the business process. Each CPM is used to schedule, dispatch and control the tasks of the process that
the player is responsible for, and the CPMs interoperate through an inter-CPM messaging protocol. An
XML based Collaborative Process Definition Language, CPDL, extending the process definition
language (PDL), is developed for specifying collaborative business processes. We have implemented
CPM and embedded it into a dynamic software agent architecture, E-Carry, that we developed at HP
Labs, to elevate multi-agent cooperation from the conversation level to the process level for mediating E-
Commerce applications. We have also integrated E-Carry with E-Speak, an inter-enterprise
communication infrastructure product developed at HP.

In general, our approach represents a shift from centralized process management to decentralized,
collaborative process management. We believe that CPMs will be the basic building blocks for a scalable,
dynamic, inter-enterprise middleware framework. The feasibility and practical value of this approach
have been demonstrated by the prototypes implemented at HP Labs.

1. Introduction

E-Commerce applications operate in a distributed environment involving multiple parties with
dynamic availability, and a large number of heterogeneous information sources with evolving
contents. A business partnership is often created dynamically and maintained only for the
required duration such as a single transaction. E-commerce activities typically rely on business-
to-business (B2B) and business-to-consumer (B2C) interoperation at the business process level.

�

The automation of these activities represents both challenges and opportunities for supporting
inter-enterprise business process management.

1.1 The Problem

The general function of a workflow engine is to support the modeling and execution of business
processes [34]. Although the tasks that contribute to a process can be distributed, they are
centrally scheduled at the process level. Such centralized process control is appropriate for a
single enterprise. However, intra-enterprise process management and inter-enterprise process
management are significantly different. When multiple parties belonging to different enterprises,
are involved in a business process, they are unlikely to use a centralized process management,
because they are often separated by firewalls, have self-interests, and do not wish to share all the
process data. Rather, they need support for peer-to-peer interactions. This has become the major
impendence for using the conventional centralized workflow systems for inter-enterprise E-
Commerce automation. In fact, to our knowledge, there has been no such experience reported.

1.2 The Solution

Our solution to the above problem is based on extending process management from the one-
server model to the multi-server peer-to-peer model, a shift from centralized process
management to collaborative process management.

We introduce the notion of a collaborative business process (Figure 1). A collaborative process
involves multiple parties. The process definition is based on a commonly agreed operational
protocol, such as the protocol for on-line purchase or auction. A collaborative process is not
executed by a centralized workflow engine, but by multiple engines collaboratively. More
exactly, each execution of a collaborative process, or a logical process instance, consists of a set
of peer process instances run by the Collaborative Process Managers (CPMs) of participating
parties. These peer instances share the same process definition, but may have private process
data and sub-processes. The CPMs run these peer instances independently and collaboratively.
The CPM of each party is used to schedule, dispatch and control the tasks that party is
responsible for, and the CPMs interoperate through an inter-CPM messaging protocol to
synchronize their progress in process execution. An XML[2]-based Collaborative Process
Definition Language, CPDL, extending the process definition language (PDL), is developed for
specifying collaborative business processes. Solutions for synchronizing collaborative process
execution are developed.

For example, in case a buyer wants to buy something from a seller, the buyer-side CPM engine,
A, creates a logical instance of the purchasing process, and initiates a “buyer-side” peer instance;
A then notifies the seller-side CPM, B, to instantiate a “seller-side” peer instance of the purchase
process. The peer process instances at both sides can be considered as autonomous but are
following a purchase protocol both the buyer and the seller are willing to comply. When A
finishes a task, it informs B of the task status, in order for B to proceed, and vice versa. The

�

entire purchase process is not handled by any common server, but by the peer-to-peer
cooperation of multiple servers.

Figure 1: Peer-to-peer collaborative process management

Further, we integrate collaborative process management with an agent infrastructure, E-Carry,
that we have developed at HP Labs. We show how agent-embedded CPMs can be used to shift
agent cooperation from the agent conversation level to the process level, while at the same time
shifting workflow management from centralized process management to collaborative process
management. We have developed prototypes at HP Labs to illustrate the feasibility and practical
value of the proposed approaches for enabling agent-mediated E-Commerce.

We claim that the proposed collaborative process management can provide a significant
extension to the current workflow technology. It enhances the interaction of dynamically formed
business partnerships, allows us to support inter-enterprise business cooperation at the process
level, and represents a step towards a dynamic distributed middleware infrastructure.

Section 2 compares collaborative process management with other workflow schemes. In Section
3 the collaborative process model is described. Section 4 discusses the execution issues of
collaborative processes. Section 5 describes the integration of CPM with an agent architecture,
and illustrates the use of CPMs to support multi-agent cooperation. Some concluding remarks are
given in Section 6.

2. From Centralized Process Management to Collaborative Process Management

2.1 Centralized Process Management

Workflow servers are used to coordinate the execution of multiple actions that form a business
process [13,14,25,34]. A business process specifies the integration and synchronization of multiple
steps, each step represents a logical piece of work, or action, that contributes to the

Peer process instance run by A Peer process instance run by B

Collaborative process manager A

Enterprise 1

Collaborative process manager B

Enterprise 2

Collaborative process definition

Business Collaboration protocol

�

accomplishment of the whole process. Although these actions and the agents executing the
actions can be distributed, they are scheduled and coordinated by a centralized workflow engine.
Typically a business process includes a data packet containing the process data for flow control
and data flow, and tasks can manipulate the process state by updating these data. However, as
shown in Figure 2, consider a purchase process involving tasks belonging to different
enterprises, e.g. the buyer and the seller. It is unrealistic to have the buyer and the seller
coordinated by a single workflow engine, and it is unreasonable for them to put their private data
(e.g. negotiation threshold) into the common process data packet for flow control.

Figure 2: Centralized workflow control: not for cross-enterprise applications

2.2 Subprocess Execution

A task belonging to a business process, say P, may itself be a process, P’, referred to as a
subprocess of P [34] (Figure 3). When P’ is bound to P at the process definition phase, P’
becomes a static extension of P. When P’ is bound to P at the process execution phase, P’
becomes a dynamic extension of P. In any case P’ inherits some property, including the
definitions (templates) of the process data, from P, while having its own specialized properties
and data. As P’ is just the extension of P, they are typically executed in the same enterprise.

Figure 3: A sub-process executed in the same enterprise as the parent process

2.3 Multi-processes Interoperation, or Federation

Multiple individual business processes may be executed concurrently but with interoperability.
For example, two processes, say P1 and P2, may interoperate in the following ways.
• Some tasks of P1 and P2 have operational dependencies. For example, task Ti of P1 depends

on the termination of task Tj of P2 to start, such that Ti cannot start until Tj terminates (Figure
4).

• P1 and P2 exchange data at certain steps.
The Workflow Coalition (WfC) published recommended interface specifications for process

Enterprise A Buyer
Enterprise B: Seller

Fire-walls

Business process

A
B

Centralized Workflow engine

?

 sub-process P’

 process P

�

interoperation.

Figure 4: Inter-operation of different processes

It is worth noting the following features of the conventional process interoperation, in order to
distinguish it from our proposed collaborative process management.
• The conventional process interoperation, or federation, primarily focuses on intra-enterprise

applications. It lacks support for inter-enterprise cooperation.
• The conventional notion of process interoperation deals with the relationships between

different processes. Although these processes may run on the same or different workflow
engines, each process is fully executed by that engine. For each individual process, besides
certain dependencies with others, the whole flow control is based on its own logic and
execution progress.

2.4 Transaction Group

Several advanced models on transaction groups and cooperative transactions were reported in
[3,7-11,19,21,28,32,34]. These models are characterized by joint execution of a transaction by
multiple participants, and applied to such applications as cooperative design. The obvious
difference of our approach from the above efforts is that we tackle the peer-to-peer interaction
where no joint task is involved. We focus on inter-enterprise applications where participating
parties, such as a buyer and a seller, deal with each other but have their own private database and
decision rules.

2.5 Partner Interface Process (RosettaNet)

Figure 5: Partner Interface Process (Rosetta-net)

The RosettaNet Consortium, founded in 1998, has placed focus on defining standard interfaces
between partners for business process integration [31]. More specifically, the consortium is
driving the development of Partner Interface Processes (PIPs) that define the processes and data
elements necessary for a broad set of supply chain scenarios. The PIPs only define the
“interface” tasks that supply chain partners commonly participate in, but not the internal,

Partner A

Partner B

PIP

Process P2
Tj

Process P1
Ti

dependency

�

proprietary processes used by any partner to carry out businesses. It is the responsibility of each
partner to identify how its internal processes and systems align to the PIPs. This concept is
shown in Figure 5.

The PIP approach does address the issue of inter-enterprise process integration for enabling plug-
and-play for new partners into the supply chain. However, the PIP specifications focus primarily
on architecting the information to be exchanged at the connection points of partner business
processes; they do not focus on a common process-level specification for all the partners.
Further, the PIPs do not offer a model of execution; for instance, it does not intend to specify
how the partner process instances are synchronized, or made to be aware of the progress of the
peer processes. The CPM approach discussed in this paper can be used to support PIPs. We can
convert PIPs into process definitions in CPM, and support their execution.

2.6 Peer-to-Peer Collaborative Processes

The proposed peer-to-peer collaborative process management is different from all the above
approaches. With this approach, an inter-enterprise business process is offered a global view, but
executed by multiple distributed CPMs of the participating parties. An inter-enterprise
collaborative process is defined based on the corresponding business protocols, and such a
definition becomes the common template for all the participating parties to share. However, an
execution of a collaborative process, viewed as a logical instance of the process, actually
includes multiple peer instances that are not executed by a centralized workflow engine but by
multiple CPMs and synchronized through peer-to-peer communication. The CPM at each side
recognizes its own share of the tasks (shaded in Figure 6) based on role-matching. For example,
an on-line trading process, say P, is executed collaboratively by a seller and a buyer in such a
way that each peer CPM runs an individual process instance of P. For the CPM at buyer side, it
is only responsible for (schedule and dispatch) the tasks to be executed by the buyer, such as
preparing a purchase order and making a payment. Similarly the CPM at seller side is only
responsible for the tasks belonging to the seller. The CPMs exchange task execution status
messages for synchronization.

Figure 6: Logical view to the execution of an inter-enterprise collaborative process

Compared with the conventional workflow and sub-process handling techniques, this approach
differs in that it uses decentralized and collaborative process management. Note that here the
decentralization is introduced to the process management level rather than the task execution

Peer process instance at BPeer process instance at A

CP Enterprise CPEnterprise

Cooperative process definition
One process

One logical execution
instance

A set of peer instances

�

level.

The conventional process interoperation, or federation, approach, which supports task
dependency enforcement and process data exchange, does not address many inter-enterprise
cooperation issues. Also, the concurrently executed process instances do not follow the same
process definition based on commonly agreed business protocols. Compared with that, the
proposed collaborative process management has a clear focus and systematic support on protocol
based inter-enterprise process management.

We share the same motivation as RosettaNet PIP approach in inter-enterprise process integration,
and we conclude that our approach is capable of supporting PIPs. However, our approach goes
beyond PIP in the following aspects.

� First, collaborative process management is based on process-level business protocols. Given
a collaborative process, P, although each party is only responsible for a few steps of P, it can
have a global view to the whole business process from the shared process definition. On the
other hand, the PIP approach is interface based. PIPs expose individual “hand-shake” or
conversation points of partner processes, but not a process level view to their cooperation.
The PIP approach can be more appropriately viewed as a design at the conversation level
than at the process-level.

� Second, we have developed peer-to-peer execution mechanism for collaborative processes.
As mentioned above, each execution of a collaborative process consists of logically related
process instances, for which we provide an execution model. In the PIP approach, however,
there is no corresponding execution model. The execution of partner processes are not related
and synchronized at process-level. Each party sees the trees, not the forest

From the above comparison we can see the uniqueness of the proposed approach in supporting
peer-to-peer collaborative processes.

3. Collaborative Process Definition

To explain how the proposed collaborative process management approach extends the current
workflow technology, we adopt the usual concepts of business process modeling in the following
discussions. A process is modeled as a DAG with nodes representing the steps, or tasks, and arcs
representing the links of those steps. A work-node represents a step (task) and associated with an
activity, i.e. a piece of work that contributes to the accomplishment of the process, that may be
executed either by a program (e.g. a software agent) or by a human worker. A process is
associated with a packet of process data. When an activity is launched, a subset of the process
data, sub-packet, is passed to it; when it is completed, together with task status information, the
sub-packet, possibly updated during the task execution, is sent back for reconciliation with the
process data packet. A route-node specifies the rules and conditions for flow control, process
data update, etc. Conventionally, a process execution creates a single process instance. However,

�

for a collaborative process, the logical instance of each execution includes multiple peer process
instances. Further, a collaborative process may have multiple concurrent executions.

To support collaborative processes, the minimal extensions to process definition include the
following.
• A collaborative process has a list of process-roles, indicating the logical participants. For

example, if a simple purchase process has two roles, “buyer” and “seller”, then there are two
peer instances involved in its execution, one at the CPM for “buyer” and another at the CPM
for “seller”. These two peer instances are assigned roles “buyer” and “seller” respectively.

• A work-node has a task-role, and that must match one of the process-roles. In the above
example, tasks can have roles “buyer” and “seller”. If the role of a task is “buyer”, it is only
executed in the peer process instance with process-role “buyer”.
Note that an activity also has a role called activity-role, such as “invoice-generator”,
meaning that this task should be executed by (or dispatched to) an agent playing the
“invoice-generator” role in this process. The notion of activity-role can be found in regular
business process specifications.

• In an inter-enterprise collaborative process execution, each party wants to keep some of the
process data prviate. For example, the buyer in one enterprise and the seller in another
enterprise do not want to expose their thresholds during price negotiation. In the process
definition, templates for holding the definitions and initial values of process data objects can
be specified. Furthermore, the sharing scope of the data objects is specified. A template may
be public, i.e. sharable by all process-roles (and thus by all peer process instances) or
process-role specific. A role-specific template is used by the peer process instances of the
given roles (one or more) only, and such templates can be made different for different
process-roles. Consider a collaborative process with roles “buyer”, “seller” and “bank”; some
data are private to “buyer”; some are sharable by “buyer” and “seller”; some are public to all
three roles. The initial data packet of a peer process instance consists of the appropriate
templates, where the sharing scope of each data object is marked. This data packet can be
updated or expanded at run time.1

Let us use a simple example for explanation purpose. The sample collaborative process for on-
line purchase defined based on the OBI (Open Buying on Internet) protocol, obi_process, has
process-roles “buyer” and “seller”. Each logical instance of obi_process has two peer-instances
run at two peer CPMs, A and B, one at the buyer side and one at the seller side. It has several
tasks (steps) including T1 (make purchase order), T2 (process purchase order), etc. T1 is a step the
buyer is responsible for, so its role is “buyer”, while the role of T2 is “seller”. A, running the peer
instance with role “buyer”, is responsible for excuting T1, and B, running the peer instance with
the role “seller”, is responsible for executing T2. The initial data packet for process-role “buyer”
includes templates obi_tpl and obi_buyer_tpl, while the initial data packet for process-role
“seller” includes template obi_tpl and obi_seller_tpl. The activity “Action2 has an activity role
“order examiner”, and thus it is dispatched to an agent with activity-role “order examiner” for
execution.

1 In this paper we do not explicitly address the situation where a single process role is played by multiple players (as
in an example where multiple sellers coexist in a buying process). Such a situation requires extensions to both
process definition and process execution described in this paper.

�

The specification of this process is illustrated below. It is WFC (Workflow Coalition [34])
standard compliant but is in XML format. When compiled, it is first translated into a DOM
(Document Object Model) [15] tree of Java objects, then into a Java class for cooperative process
definition.

<PROCESS name="OBI_PROCESS" ...>
 <ROLES> Seller, Buyer </ROLES>
 ...
 <WORK_NODE name="T1">
 <ROLE> Buyer </ROLE>
 <DESC> Make PurchaseOrder </DESC>
 <ACTIVITY> Action1 </ACTIVITY>
 </WORK_NODE>

 <WORK_NODE name="T2">
 <ROLE> Seller </ROLE>
 <DESC> Propcess PurchaseOrder </DESC>
 <ACTIVITY> Action2 </ACTIVITY>
 </WORK_NODE>
 ...
 <ARC name="Arc0" type="START"> <FROM></FROM> <TO>WorkNode1</TO> </ARC>
 <ARC name="Arc1" type="FORWARD"> <FROM>WorkNode1</FROM> <TO>WorkNode2</TO> </ARC>
 ...
 <PROCESS_DATA>

<TEMPLATE> obi_tpl</TEMPLATE>
</PROCESS_DATA>

 <PROCESS_DATA>
<ROLE> Seller </ROLE>
<TEMPLATE> obi_seller_tpl</TEMPLATE>

</PROCESS_DATA>

<PROCESS_DATA>
<ROLE> Buyer </ROLE>
<TEMPLATE> obi_buyer_tpl</TEMPLATE>

</PROCESS_DATA>
</PROCESS>

<TEMPLATE name="obi_seller_tpl"> ... </TEMPLATE>
<TEMPLATE name="obi_buyer_tpl"> ... </TEMPLATE>
…
<ACTIVITY name="Action2" type="PROCESS" imp="AGENT">

 <DESC> Process purchase order </DESC>
<ROLE> order examiner </ROLE>

 <CLASS> PurchaseOrderResult</CLASS>
 <URL> file:cba.hp.com/ecarry/CBLclasses </URL>
 <ARGS> ... </ARGS>

</ACTIVITY>

A task may represent a private sub-process with a private data packet. The sub-process binding is
dynamic, that is, bound at run time. This allows a private sub-process to be designed separately
from the host process (Figure 7). Furthermore, the process data of the internal sub-process is
entirely private to the party executing the sub-process. Below is an example.

<ACTIVITY name="Action7" type="PROCESS" imp="SUBPROC">
 <DESC> Check credit </DESC>

<SUBPROC> Check_credit_process </SUBPROC>
</ACTIVITY>

��

Figure 7: Handle enterprise internal activities and data by private subprocess

4. Collaborative Process Execution

An execution of a collaborative process consists of a set of peer process instances run by the
CPMs of the participating parties. These instances share the same process definition but they
have additional properties and may have private process data and sub-processes.

4.1 Collaborative Execution

Each peer process instance has a role that must match one of the process-roles. When a peer
process instance is launched by a CPM at the seller side, for example, the process-instance-role
is “seller”, and the CPM is only responsible for scheduling and dispatching the tasks with task-
role “seller”.

When executing a collaborative business process, the player of each peer process instance must
be specified and bound to the corresponding process instance role. In addition, a logical
identifier for this execution must be obtained. These two pieces of information are captured as
properties in every peer process instance. They are described below.

• Players: this indicates the CPMs participating in the execution of a collaborative business
process. A player is associated with four attributes.
q The role, e.g. “buyer” or “seller”, of the given process instance running at the CPM that

represents this player. Note that without binding to a peer process-instance, a CPM does not have
a fixed role.

q The domain name; a domain is a group of communicating servers coordinated by a coordinator
server of that domain. The name of the domain is the name that the coordinator uses to register
with an inter-domain messaging service infrastructure, such as HP E-Speak [16]; the coordinator
can be thought of as the gateway to the domain; an example of a domain name can be
“corp.hp.com”.

q The local name of the CPM server within the domain to represent the player. Each server has a
unique local name within a domain. While a domain may have multiple CPM servers, one or
more CPMs are selected to represent the players in this process instance. For example,
corp.hp.com/buying_agnet may be a player playing the buyer role in a purchasing business
process, whose peer CPM in this process might be us.oracle.com/sales_agent.

Instances of common
cooperative process

Partner B

Partner A

��

q The inter-domain messaging service infrastructure, such as HP E-Speak, that provides messaging
services for inter-domain CPM communication. The messaging service infrastructure is capable
of delivering messages among multiple domains. When inter-domain CPMs rely on E-Speak to
reach each other, the addressing structure is

 espeak:domain_name/local_name.
An example is espeak:corp.hp.com/buying_agent. More detailed message delivery mechanism
will be explained later.

• Coop-key: this is used to identify a logical instance of a collaborative process, that is, to
correlate and synchronize the multiple peer instances of the execution of a single
collaborative process. All the messages exchanged for that execution are marked by a unique
coop-key. In our implementation, each CPM can run multiple process instances concurrently,
and each instance has a local ID. Each CPM engine maintains a mapping table between coop-
keys and local process instance IDs. When a message relating to the execution of a
collaborative process is received, the coop-key is used to identify the corresponding local
process instance.

As shown in Figure 8, when a collaborative process is defined, it is specified with the process-
roles and task-roles. When a logical process instance is created, the players and the roles they
play are specified. The CPM at the creating party obtains a coop-key for this logical process,
creates a peer process instance for itself, and associates this key with its peer process instance.
When the CPM at the creating party sends requests to other peer CPMs (i.e., the other players of
the process) to instantiate the peer process instances, the coop-key is also specified. This coop-
key is encapsulated in all the messages on the above logical process instance, and transferred to
all peer sides to correlate peer instances of the collaborative process execution.

Figure 8: Settings for defining, creating and initiating collaborative process

Using the above obi_process as an example, the execution of a collaborative process is carried
out in the following way:

• CPM A, representing the process-instance-role of “buyer”, initiates a buyer-side process
instance Pb and through messaging, tells CPM B to create a seller-side peer process instance
Ps.

• A dispatches and executes T1, and upon receipt of the task return message, r1, forwards it to
all other players of the process, in this case, simply B. Both A and B update their process
state and schedule the possible next step of their own peer process instance based on that
message.

• When A proceeds to activity T2, since the role represented by A does not match the role of

Roles Buyer, Seller
Task role T1/Buyer, T2/Seller
Proc_instant role
Plyers
Key
Proc data packet

Roles Buyer, Seller
Task role T1/Buyer, T2/Seller
Proc_instant role Seller
Plyers Seller|D1/A, Buyer|D2/B
Key
Proc data packet Data instances

Roles Buyer, Seller
Task role T1/Buyer, T2/Seller
Proc_instant role Seller
Plyers Seller|D1/A, Buyer|D2/B
Key D1/A-100001
Proc data packet Data instances

 Define Process Create Process Instance Instantiate Peer Process Instances

��

T2, A simply waits for the peer server, that is B in this example, to handle it at the peer site.
• When B proceeds to activity T2, since the role represented by B matches that of T2, T2 will

be handled by B.
• The execution of peer process instances at both peer CPMs progress in this way, towards

their ends.

4.2 Synchronizing Process Data and Data in the Task Return Messages

An activity is dispatched to a software agent or a human user to perform, and upon its
termination, a task return message is sent back and used to trigger the next step in process
execution. Such a task return message contains the following information:

q coop-key of the logical process instance,
q handles (local Ids) of the process instance, task, and activity,
q activity execution status,
q the sub-packet, i.e. the subset of process data passed to the activity.

When a task return message comes back to the local CPM engine, it contains all the above
information. Since the sub-packet of the process data passed to the activity may be updated
during task execution, it must be reconciled with the process data packet after returning.
However, before such a message is forwarded to a peer player, only the updated data elements
that are shared with the player are retained. (Recall that the sharing scope of each data element is
specfied in the process definition.)

4.3 Queuing based Message Delivery Synchronization

A key design issue is to maintain the right order of message processing. For various reasons the
messages may not be delivered in the original order. Refer to Figure 9 for the following scenario,
for example.

(1) CPM A initiated a process instance PA, and then started executing the first task, T1;
(2) CPM A informed CPM B to create and execute the peer process instance, PB, soon after initiating PA;
(3) Upon completion of T1, A forwarded the task return message of T1 to CPM B.

A possible consequence caused by out-of-order message delivery is, when the task return
message of T1 reaches CPM B, the initiation of PB has not completed yet, thus there is no ground
for processing the above message.

Figure 9: Task return message received from peer before the counterpart process instance ready

As another example, consider the execution of a collaborative process with three peer instances
run by CPMs A, B and C, responsible for tasks T1, T2 and T3 respectively. These tasks are to be

Start proc_instance

(2) Request to start peer process instance
(1)

T1

A
CPM A CPM B

(3) Task return msg for T1

��

executed in the order T1, T2, T3 . Please refer to Figure 10 for the following scenario.
(1) When task T1 run by CPM A completed, A forwarded the task return message of T1, msg1, to

both B and C;
(2) Upon receipt of msg1, CPM B started executing task T2;
(3) When T2 completed, B forwarded the task return message of T2, msg2, to both A and C.

In this scenario, a possible consequence caused by out-of-order message delivery is, when msg2

reached C, it hasn’t received msg1. In this case, processing msg2 at CPM C can lead to an
inconsistent result.

Figure 10: Task return messages from peer CPMs received in wrong order

Queuing technique and the knowledge drawn from process definitions are used to resolve the
out-of-order message delivery problem. Each CPM has a queuing server, in additional to the
regular message queue handler (Figure 11). This queuing server is workflow specific as it
interfaces to the process definition handler and the process instance log handler, using process
definitions and execution histories to make operational decisions. It also responds to CPM
internal events such as process instance status changes.

Figure 11: Queuing server of CPM

The general functions of the queuing server include the following.
• When a message is received, check if it is ready to be processed based on the process

definition, execution history and queued messages, and if not, queue the message. In the
above example, if msg2 for task T2 cannot be executed at CMP C since C hasn’t received the
task return message for task T1, msg2 is to be put in the queued first.

• After a new message is processed, check if any queued message is ready to be processed as a
result, and if there is, process it. In the above example, assume that CPM C queued msg2 for

A B C

(1) msg1: task T2 complete
(2) start task T2

(3) msg2: task T2 complete

Msg2 received
earlier than msg1

Task T2 Task T3Task T1

Queue Server

Proc def
handler

Proc exec
handler

Log
handler

Message
handler

Message
transporter

Message in/out
queue

Messages to be queued

Messages to be acted on

��

task T2 since it did not receive the task return message, msg1, for T1. Later, when msg1 was
eventually received, CPM C would process msg1 for T1 first, followed by processing msg2 for
task T2.

• When a CPM internal event about process instance status change (e.g. started, terminated,
suspended) is received, the queuing server check if the change makes any queued message
ready to be processed. In the example shown in Figure 8, assume that the task return message
for T1 was queued as a result of the unavailability of PB, upon receipt of the event on PB’s
availability, the queuing server enables the processing of that message.

5. An Agent-based Implementation Architecture for CPM

We have implemented CPM and integrated it into a dynamic software agent platform, E-Carry,
that we have developed at HP Labs. This novel integration achieves two purposes: on the one
hand, it provides an implementation and execution platform for a CPM system; on the other
hand, it elevates multi-agent cooperation in E-Carry from the conversation level to the process
level for mediating e-Commerce applications. In addition, we have also integrated E-Carry with
E-speak, an inter-enterprise communication infrastructure, to provide for inter-domain
communication for inter-enterprise business processes. In this section, we briefly describe the
integration of CPM, E-Carry, and E-Speak. Section 5.1 describes the integration of CPM and E-
Carry. Section 5.2 describes the integration of the agent-embedded CPM with E-Speak. Section
5.3 discusses how this implementation architecture also serves the dual purpose of elevating
multi-agent cooperation from the conversation level to the process level.

5.1 Agent Embedded CPM

E-Carry is a dynamic and scalable platform for developing agent-based applications [6]. Every
E-Carry agent contains a built-in Service Tier. The Service Tier of an E-Carry agent has the
ability to load applications dynamically and to communicate with other E-Carry agents in the
same domain, i.e., within a domain, E-Carry agents sharing the same Coordinator. In addition,
the service tier contains an embedded Web server with servelet functionality, enabling the state
of an E-Carry agent to be accessed through a browser. The development of E-Carry is motivated
by providing a migration from the traditional agent infrastructure to a scalable, dynamic and
distributed middleware framework.

Figure 12: E-Carry agent with embedded CPM

We have implemented the functionality of CPM and embedded into the service tier of E-Carry,
as shown in the following figure. An agent with CPM embedded is used as a CPM server.

E-Carry Agent A

Messaging Tier

Service Tier

other CPM

Application Tier

E-Carry Agent B

Messaging Tier

Service Tier

other CPM

Application Tier

��

However, since a CPM server can also be viewed as an agent, it is possible to consider the notion
of personalized CPM engine. That is, each logical entity of an enterprise, say, a complementary
product buying agent, could have its (or his) own CPM engine to represent it (or him) when
participating in inter-enterprise collaboration, having its (or his) own CPM server executing peer
process instances. Besides of acting as a CPM server, an E-Carry agent can also perform
activities. The full details about E-Carry will be reported separately.

Figure 12 shows agents with embedded CPMs. The CPM embedded in an E-Carry agent
interacts with the hosting agent though a set of internal messages. The communication between
agents is made through inter-agent message exchange. A set of agent messages specific to
collaborative process management, are defined, and a corresponding message interpreter is
provided for each agent. The E-Carry agent has the capability to load and switch interpreters
based on message ontology types thus can easily handle applications in different contexts.

5.2 Inter-Enterprise Agent Communication

Agent in the same group, referred to as the agent domain, can communicate using the naming
service provided by the coordinator of that domain. However, agents in different enterprises may
not form a single agent domain. Instead, they need certain “service bus” to locate each other for
peer-to-peer communication. Further, issues such as firewall, security, access control, and even
billing, should be taken into account. We have adopted the HP E-Speak service bus, an interface
based service provisioning and invocation framework with multiple interconnected E-Speak
Cores. An E-Speak core provides a set of predefined and extensible infrastructure services
including authentication, authorization, billing, etc. These infrastructure services represent the
major difference between E-Speak and the traditional CORBA-like middleware. In this paper we
do not intend to explain E-Speak in detail.

Intuitively, any agent, A, can register a “send message” service with E-Speak, making it possible
for another agent in a foreign domain to directly invoke this service and thus able to directly send
a message to A. However, if every agent has to register a messaging service in order to receive
messages, and every agent has to maintain multiple client side messaging service
implementations of all the agents it may need to have a contact with, it is not scalable.

In order to unify the messaging interface for inter-enterprise agent communication, we only
register the messaging service of the coordinator of an agent domain with E-Speak. This service
then becomes the single entrance to the agent domain. Inside the domain, the coordinator can
forward messages to other agents through intra-domain agent communication. Thus, it is
unnecessary for each agent to register an individual message service, and the coordinator
provides a gateway for any foreign agent to reach that agent-domain. On the other hand, every E
-Carry agent only needs to be provided with a “standard” interface and the client-side stub for
invoking the above messaging service, using the agent domain name as a parameter. By invoking
the message service of an agent domain, an agent can contact any agent in that domain, with
messages routed by the coordinator of that domain.

��

Figure 13:Unify messaging service interface to simplify inter-enterprise agent communication

This mechanism is actually transparent at the message level. In an intra-domain message, the
destination is simply expressed by the receiver’s name. In an inter-domain message, it is
expressed by

espeak:domain_name/agent_name

Here espeak is used to identify the service bus, a concept at a higher-level than transport service.
Given a domain_name, the messaging service of the coordinator of that domain can be invoked,
as the messaging gateway for contacting all the agents in that domain. The agent_name local to
the domain is then used by the coordinator to route messages to that agent. Refer to Figure 13,
when agent A sends a message to agent B in domain “Vendor”, the full address of B is
espeak:Vendor/B, and the message is transferred through E-Speak infrastructure to the
coordinator of domain Vendor, then forwarded to B.

5.3 CPMs for Process-Level Agent Cooperation

The collaboration of multiple peer CPMs is analogous to multi-agent cooperation
[1,6,18,20,23,24,29]. In fact, using agent technology to support E-Commerce automation is a
promising direction [4,5,22,26,27,30]. However, the previous “proof-of-concept” efforts in agent
platforms do not scale well in E-Commerce automation for the following two major reasons.
• Most E-Commerce applications are based on inter-enterprise business partnership, but the

current mechanisms for multi-agent cooperation is based on intra-enterprise coordination,
without addressing the issue of inter-enterprise collaboration. The conventional group-based
coordination cannot handle inter-enterprise agent cooperation, since agents across enterprise
boundaries are unlikely to be organized into the same group and under a centralized
coordination.

• In the conventional agent platforms, agents cooperate through message exchanges, or
conversations [17,18,22]. However, many real applications include complex business
processes with a number of concurrent, long-duration, nested tasks, which are difficult to
manage and trace through flat conversations. Instead, a more robust and scalable approach is
to lift agent cooperation from the conversation level to the process level.

Turning agent cooperation from conversation-level to process-level is a natural and necessary
move. In general, businesses collaborate by following certain rules, such as “if you send me a
price request then I will send you a quote”, and “if the quote I sent you is acceptable, then you
will send me an order”. These rules include sequences of steps, with some of those steps nested.

Fire-walls
E-

speak

Domain: Buyer

coordinator E-
speak

A

B

coordinator

��

Such business collaboration usually involves multiple agents, each responsible for managing or
performing certain tasks that contribute to the process. Adding a process-level coordination
capability into agent-based systems is critical in enabling the latter to better tackle such
applications.

We have relied on the proposed approach to tackle these issues. The combination of E-Carry and
CPM allows us to scale agent cooperation from conversation level to process level, and from
intra-enterprise cooperation to inter-enterprise collaboration.

6. Conclusions

Focusing on inter-enterprise E-Commerce automation at business process level, we have
developed the collaborative process manager (CPM) to support peer-to-peer process
management. We further embedded CPM into a dynamic software agent architecture, E-Carry,
that we developed at HP Labs, and extended E-Carry with the inter-domain communication
capability by utilizing inter-domain messaging services such as E-Speak and by introducing
inter-domain messaging protocol. Through this work, we have made conceptual as well as
practical contributions to both workflow technology and agent technology.

From the workflow point of view, the proposed approach can be used to enhance the
collaboration of business partners, and to support inter-enterprise business processes, a practical
extension to the current workflow approach.

From the multi-agent system point of view, the proposed approach can be used to lift agent
cooperation from the conversation level to the process level, and from centralized coordination to
peer-to-peer collaboration. The combination of CPM and agent framework can be a step towards
a scalable, dynamic, inter-enterprise middleware framework.

The feasibility of this approach has been demonstrated in a prototype implemented at HP Labs.
We are currently investigating the use of this infrastructure to support CBL (Common Business
Library)- and RosettaNet-based E-Commerce automation.

REFERENCES
[1] Aglets, "Programming Mobile Agents in Java", IBM, http://www.trl.ibm.co.jp/aglets/, 1997.

[2] T. Bray, J. Paoli, C. M. Sperberg-McQueen, “Extensible Markup Language (XML) 1.0 Specification”, February 1998,
(http://www.w3.org/TR/REC-xml)

[3] A.Buchmann, M.Ozsu, M.Hornick, D.Georgakopoulos, and F.A. Manola"A transaction model for active distributed object
systems", A. Elmagarmid (ed) Transaction Models for Advanced Database Applications, Morgan-Kaufmann, 1992.

[4] A. Chavez and P. Maes, Kasbah: An Agent Marketplace for Buying and Selling Goods, Proc. of PAAM96, 1996.

[5] Q. Chen, Meichun Hsu, Umesh Dayal, Martin Griss, “Incorporating Multi-Agent Cooperation, Dynamic Workflow and
XML for E-Commerce Automation”, Proc. Fourth International Conference on Autonomous Agents, 2000, Span.

[6] Q. Chen, P. Chundi, Umesh Dayal, M. Hsu, "Dynamic-Agents", International Journal on Cooperative Information Systems,
1999, USA.

[7] Q. Chen and Umesh Dayal, "Failure Recovery across Transaction Hierarchies", Proc. of 13th International Conference on

��

Data Engineering (ICDE-97), 1997, UK.

[8] Q. Chen and Umesh Dayal, "A Transactional Nested Process Management System", Proc. of ICDE-96, 1996.

[9] Q. Chen and Umesh Dayal, "Commit Scope Control in Nested Transactions", Proc. of EDBT’96, 1996, France.

[10] Q. Chen, Umesh Dayal, "Contracting Transaction Hierarchies", Proc. of RIDE’96, 1996, USA.

[11] P.K. Chrysanthis and K.Ramamritham"Acta: The saga continues", A. Elmagarmid (ed) Transaction Models for Advanced
Database Applications, Morgan-Kaufmann, 1992.

[12] CORBA, "CORBA Facilities Architecture Specification", OMG Doc 97-06-15, 1997.

[13] U. Dayal and M. Hsu and R. Ladin, “Organizing Long Running Activities with Triggers and Transactions”, Proc. ACM-
SIGMOD'90, 1990.

[14] U. Dayal and M. Hsu and R. Ladin, “A Transactional Model for long Running Activities”, Proc. VLDB'91, 1991.

[15] Document Object Model, http://www.w3.org/DOM/

[16] E-Speak, http://www.e-speak.net/

[17] T. Finin, R. Fritzson, D. McKay, R. McEntire, “KQML as an Agent-Communication Language”, Proc. CIKM'94, 1994.

[18] Foundation for Intelligent Physical Agents(FIPA)- FIPA97 Agent Specification, http://www.fipa.org/

[19] J.Gray and A.Reuter, "Transaction processing: Concepts and techniques"Morgan Kaufmann Publishers, 1993.

[20] R. S. Gray. Agent Tcl: A flexible and secure mobile-agent system. Dr. Dobbs Journal, 22(3):18-27, 1997.

[21] S.Heiler, SHaradhvala, S.Zdonik, B.Blaustein, and A.Rosenthal"A flexible framework for transaction management in
engineering environments", A. Elmagarmid (ed) Transaction Models for Advanced Database Applications, Morgan-
Kaufmann, 1992.

[22] N.R. Jennings, P. Faratin, M.J. Johnson, P.O'Brien & M.E Wiegan, "Using Intelligent Agents to Manage Business
Processes". Proc. of PAAM96, U.K., 1996, pp. 245-360.

[23] N. R. Jennings (1999) "Agent-based Computing: Promise and Perils" Proc. IJCAI-99, Sweeden. 1429-1436.

[24] T. John, Intelligent Agent Library/Factory, release 4 (http://www.bitpix.com)

[25] N.Krishnakumar and A.Sheth"Specification of workflows with heterogeneous tasks in meteor", Proc. VLDB'94, 1994.

[26] P. Maes, R. H. Guttman and A. G. Moukas, “Agents that Buy and Sell”, CACM 42(8), March, 1999.

[27] A.G. Moukas, R. H. Guttman and P. Maes, “Agent Mediated Electronic Commerce: An MIT Media Laboratory
Perspective”, Proc. of International Conference on Electronic Commerce, 1998.

[28] M.Nodine and S.Zdonik"Cooperative transaction hierarchy: A transaction model to support design applications", Proc. of
VLDB'90, 1990.

[29] Odyssy, "Agent Technology: Odyssey", General Magic, http://www.genmagic.com, 1997.

[30] B. Perry, M. Talor, A. Unruh, “Information Aggregation and Agent Interaction Patterns in InfoSleuth”, Proc. of CoopIS’99,
UK, 1999.

[31] Rosetta-net, www.rosettaNet.org.

[32] M. Rusinkiewicz, W. Klas, T. Tesch, J. Wasch, P. Muth, “Towards a Cooperative Transaction Model – The Cooperative
Activity Model”, VLDB’95, 1995.

[33] H.Wachter and A.Reuter, "The contract model", A. Elmagarmid (ed) Transaction Models for Advanced Database
Applications, Morgan-Kaufmann, 1992.

[34] Workflow Management Coalition, www.aiim.org/wfmc/mainframe.htm.

