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1 Introduction

The classical way of de�ning self-duality is as follows. An operator  on a set of real

functions L is called self-dual when  (f) = � (�f), for all function f in L. Another

type of self-duality is obtained when  (f) = N � (N �f), for functions mapping into

the interval [0; N ]. The concept of self-duality is accurately de�ned within the report.

Self-duality is a desired property in many applications, and, in particular, image �l-

tering, where it is expressed by identical treatment of bright and dark objects. It is

however not a straightforward property of most operators in classical mathematical

morphology (de�ned on complete lattices). This is a consequence of the inherent dual-

ity of complete lattices, which causes operators to appear usually in pairs { one of the

operators dealing with bright and the other with dark objects only. Nevertheless, it

is possible to design self-dual operators in classical morphology. The work of Serra in

[8, chapter 8] and Heijmans in [5] are examples of self-dual morphology. On the other

hand, these approaches lack of a simple intuition, and su�er a bit from complicated

notation.

With the recent extension of mathematical morphology to inf-semilattices [6, 7], an

alternative approach for self-dual morphology became possible. In this report, an

inf-semilattice theory for self-dual morphology is developed, and two approaches for

deriving self-dual operators are proposed: Through reference semilattices and through

lattice ordered groups. The former is also studied from the point of view of translation

invariance. Some examples are provided.

Apart of providing new image processing operators, the proposed approach has the

bene�t of being more intuitive than the classical one, and has the potential of providing

simpler notation for self-dual processing. At this point, however, most of the operators

originated by the proposed approach are di�erent from those obtained in the classical

theory, and also from those proposed in [6, 7]. Therefore, a unifying theory for self-dual

morphology is still missing.

2 Adjunctions on Posets

2.1 Operators on posets

Consider two posets (partially ordered sets) L andM with partial orderings �L and

�M, respectively. If no confusion about the partial orderings seems possible, we will

delete the subindices L andM indicating the underlying space.

An operator (i.e., mapping)  : L ! M is called increasing (or isotone) if x �L y

implies  (x) �M  (y). It is called decreasing if x �L y implies  (y) �M  (x). If  is a

bijective operator between L andM such that both  and its inverse  �1 are increasing,
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then  is called an isomorphism (automorphism if L = M). A bijective operator  

for which both  and its inverse  �1 are decreasing is called a dual isomorphism

(respectively, dual automorphism if L =M). An isomorphism  on L with  6= idL

and  2 = idL, where idL denotes the identity operator on L, is called an �-negation. A

dual isomorphism with  2 = idL is called an involution or �-negation. In many cases

(e.g. if L is a chain) there do not exist �-negations on L. The mapping  : IR ! IR

given by  (t) = �t is an �-negation.

In the sequel, the following notation will be used. If  is an �-negation on L, then we

denote  (x) by x�, for x 2 L, when no confusion is possible as to which �-negation is

meant. Similarly, if  is a �-negation we denote  (x) by x�. If both L andM possess

an �-negation and  is an operator between L and M, then the �-negative of  is

de�ned as the operator between L andM given by

 �(x) = ( (x�))�; x 2 L: (2.1)

Similarly, if L and M possess a �-negation, then the �-negative of  is the operator

between L andM given by

 �(x) = ( (x�))�; x 2 L: (2.2)

When using the notation  �, resp  �, it is tacitly assumed that there do exist �-

negation, resp. �-negations, on the underlying sets L andM It is easy to verify that

both  � and  � are increasing i�  is increasing. Furthermore,

( �)� =  and ( �)� =  ;

for every operator  : L !M.

If x 7! x� is an �-negation on L and  is an operator between L and M, then  is

called �-selfdual if

 =  �:

The concept of an �-selfdual operator is de�ned analogously. The range of an operator

 is denoted by ran( ), that is ran( ) = f (x) j x 2 Lg.

2.2 Adjunctions on posets

2.1. De�nition. Assume that L andM are posets and that " : L !M and � :M!

L are operators. The pair ("; �) is called an adjunction between L andM if

�(y) �L x () y �M "(x); x 2 L; y 2 M:

If L =M, then ("; �) is called an adjunction on L.
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We list some basic properties. The proofs are rather straightforward (see also [4,

Chapter 3]) and therefore omitted.

2.2. Proposition. If ("; �) is an adjunction then both " and � are increasing. Fur-

thermore

�" � idL and "� � idM

"�" = " and �"� = �

2.3. Proposition. If  : L !M is an isomorphism, then ( ;  �1) is an adjunction.

2.4. Proposition. If ("1; �1) is an adjunction between L and M and ("2; �2) is an

adjunction betweenM and N , then ("2"1; �1�2) is an adjunction between L and N .

2.5. Proposition. Assume that ("; �) is an adjunction between the posets L andM.

(a) Suppose that L;M both have a �-negation. Then ("�; ��) is an adjunction between

L andM.

(b) Suppose that L;M both have a �-negation. Then (��; "�) is an adjunction between

M and L.

The next result states that the pairing between dilations and erosions is unique.

2.6. Proposition. Let " be an operator from L into M, let M1;M2 � M, and

assume that ran(") �M1\M2. Let �i be an operator fromMi into L such that ("; �i)

is an adjunction between L andMi, for i = 1; 2. Then �1(y) = �2(y) for y 2 M1\M2.

Proof. Assume that y 2M1 \M2, then

�1(y) � x () y � "(x) () �2(y) � x ;

for every x 2 L. Choosing x = �1(y) at the left yields �2(y) � �1(y). Similarly, choosing

x = �2(y) at the right gives �1(y) � �2(y). Thus we arrive at our conclusion.

We point out that the Duality Principle, which says that L provided with the relation

x �0 y i� y � x is a poset as well, implies an analogue of Proposition 2.6 concerning

the uniqueness of the erosion that forms an adjunction with a given dilation.

In general, a subset of the poset L does not have a supremum (least upper bound) nor

in�mum (greatest lower bound) in general. In this respect, the following results are

remarkable.
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2.7. Proposition. If ("; �) is an adjunction between L andM then fx 2 L j y � "(x)g

has in�mum �(y), for every y 2 M. Dually, fy 2 M j �(y) � xg has supremum "(x),

for every x 2 L.

Proof. First, since �(y) � x if y � "(x), we get that �(y) is a lower bound of fx 2 L j y �

"(x)g. Now suppose that a is a lower bound of this set, then in particular, a � �(y) since

y � "�(y). This proves the result.

2.8. Proposition. Assume that ("; �) is an adjunction between L andM.

(a) Suppose that the family fxi j i 2 Ig has an in�mum a, then f"(xi) j i 2 Ig has

in�mum "(a) inM.

(b) Suppose that the family fyi j i 2 Ig has a supremum b, then f�(yi) j i 2 Ig has a

supremum �(b) in L.

Proof. We prove (a), then (b) follows by duality. If fxi j i 2 Ig has an in�mum a, then

by the increasingness of the operator ", "(a) � "(xi) for i 2 I. Now b is a lower bound of

f"(xi) j i 2 Ig if b � "(xi), that is �(b) � xi for i 2 I. But then �(b) � a, hence b � "(a). We

conclude that "(a) is the in�mum of f"(xi) j i 2 Ig.

2.9. De�nition. (Erosions on posets)

An operator " between the posets L and M is called an erosion if for all families

fxig � L it is true that

(i)
V
xi exists in L i�

V
"(xi) exists inM;

(ii)
V
"(xi) = "(

V
xi) in case (i) holds.

A dilation � is de�ned analogously with the in�mum replaced by supremum. It is easy

to see that dilations and erosions are increasing operators. We give an example.

2.10. Example. Let L be the integers with partial ordering � de�ned by m � n if

m � n and m + n even. Hence 2 � 6 and �3 � 7 but 1 6� 2. Every erosion on

L must have the property that "(Ze) \ "(Zo) = ?, where Ze;Zo are the even and odd

integers, respectively. For, if "(n) = "(m) = k, where n is odd and m is even, then the

in�mum of n and m does not exist whereas the in�mum of "(n) and "(m) equals k.

Note, however, that the condition "(Ze)\ "(Zo) = ? is far from being su�cient for " to

be an erosion, even under the additional assumption that " is increasing. Two simple

examples of erosions are "(n) = n+ k and "(n) = n3 + k, where k is a �xed integer.
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2.11. Proposition. Let " be an erosion between the posets L andM. De�neM["] �

M as

M["] = fy 2 M j the set fx 2 L j y � "(x)g has in�mum in Lg; (2.3)

and � :M["]! L as

�(y) =
^
fx 2 L j y � "(x)g: (2.4)

Then ran(") �M["] and ("; �) is an adjunction between L andM["].

Proof. We �rst show that ran(") �M["]. Take x0 2 L, we show that fx 2 L j "(x0) � "(x)g

has an in�mum. Because of De�nition 2.9(i) this is true i� f"(x) j x 2 L and "(x0) � "(x)g

has an in�mum. But obviously, this in�mum exists and equals "(x0).

To prove that ("; �) is an adjunction between L andM["], we must demonstrate that �(y) � x

i� y � "(x) for x 2 L and y 2 M["]. First assume that �(y) � x, that is
V
fx0 2 L j y �

"(x0)g � x. Since " is an erosion, we �nd

"�(y) =
^
f"(x0) j y � "(x0)g � "(x) :

It follows immediately from this expression that y � "�(y), hence y � "(x). On the other

hand, y � "(x) in combination with (2.4) yields that �(y) � x.

The dilation given by (2.4) will sometimes be denoted by �(") to emphasise the de-

pendence on ".

2.3 Adjunctions on Complete Lattices

The theory of adjunctions on complete lattices has played an important role in math-

ematical morphology over the past ten years or so [4, 9]. In this section we will briey

recall some of the major results, in particular those that are not generally valid in the

poset framework.

First of all, it is obvious that the de�nition of erosion and dilation given in De�nition 2.9

can be simpli�ed as follows: the operator " between the complete lattices L andM is

an erosion if

"(
^
i2I

xi) =
^
i2I

"(xi);

for every family fxi j i 2 Ig in L. Note that "(>) = > by this de�nition. To see this,

one has to choose the collection fxig empty and use that the in�mum of the empty set

is >. A similar de�nition holds for dilation.
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2.12. Proposition. (a) To every erosion " between the complete lattices L andM

there corresponds a unique dilation � :M! L given by

�(y) =
^
fx 2 L j y � "(x)g; y 2 M; (2.5)

such that ("; �) is an adjunction.

(b) To every dilation � between the complete lattices M and L there corresponds a

unique erosion " : L !M given by

"(x) =
_
fy 2 M j �(y) � xg; x 2 L; (2.6)

such that ("; �) is an adjunction.

Note that the setM["] introduced in Proposition 2.11 equalsM in this case.

There is a great deal of literature where it is explained that the theory of adjunctions on

complete lattices provides the appropriate framework for various di�erent approaches

in mathematical morphology. The best known examples are binary and grey-scale

morphology, respectively. We will briey discuss both cases below.

Binary (i.e., black-and-white) images can be modeled mathematically by the complete

Boolean lattice L = P(E) comprising all subsets of an underlying universal set E,

usually IR
2 or Z2 or a �nite subset of one of these sets. A binary morphological operator

is then nothing but an operator on P(E). The complement operator, mapping a set X

onto its complement Xc is a �-negation. The �-negative of an operator  is then given

by

 �(X) = ( (Xc))c ; X � E :

Grey-scale images can be modeled as elements of the power set T E, where T is the set

of grey-values and where E has the same interpretation as before. Note that we are

back in the binary case if T = f0; 1g. If T carries a partial ordering such that it has a

complete lattice structure, then T E endowed with the pointwise partial ordering also

becomes a complete lattice. In many practical cases, T is totally ordered (i.e., a chain).

Typical choices for T are IR = IR[f�1;+1g, IR+ = [0;1], Z; Z+, and f0; 1; : : : ; Ng,

where N � 1 is an integer. Often, it is straightforward to provide T with a �-negation,

which can then be extended to T E by applying it pointwise. A typical �-negation on

IR (and also on Z) is given by t 7! �t. On IR+ we have a �-negation t 7! 1=t (with

1=0 =1 and 1=1 = 0) and on f0; 1; : : : ; Ng we have t 7! N � t. It is, however, easy

to show that there exists no �-negation on Z+.

Finally we point out that T E is not totally ordered in general, even if T is.
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2.4 Morphology, Operator Types, and Self-Duality

It is typical for mathematical morphology, in the binary as well as in the grey-scale case,

that operator types always occur in pairs, dilation and erosion, opening and closing,

etc. By an operator type we mean a family of operators on L which can be completely

speci�ed in terms of the underlying partial ordering. For example the operator type

called \opening" refers to operators  which are increasing, idempotent, and anti-

extensive. We emphasise that it is not necessarily true that operators exist pairwise

(like erosions and dilations in an adjunction on a complete lattice; see Proposition 2.12).

The pairwise occurrence of operator types is a consequence of the Duality Principle for

posets, and is in no way constructive; in particular, it does not imply that both operator

types in such pairings play an equal role on a given poset L. An important illustration

of this fact follows later when we discuss erosions and dilations on an inf-semilattice.

As we shall see, dilations and erosions play a very asymmetric role there.

Of great importance in this respect is the (non-) existence of a �-negation on the

underlying poset L. In fact, the existence of a �-negation does provide a constructive

tool for transforming an operator type into its dual. For example, if L is a poset with

�-negation � and if  is an operator of type \opening", then  � = � � is of type

\closing".

2.13. De�nition. A poset L for which there exists a �-negation � : L ! L is called

a �-negation poset or self-dual poset.

Up to this point, our considerations have not been referring to the physical world that

our model is supposed to describe. What is missing is the observation that the �-

negation that is being used, should map an image onto another image that may be

considered as its physical negative. We don't want to go into this matter very deeply

here, as we think that most readers will have some intuition for the meaning of the

\physical negative" of an image (bright parts of the original image corresponding to

dark parts of its negative and vice versa).

We have now reached the point that we are able to explain the phrase \self-dual

morphology" in the title of our paper. If the operator � that maps an image x 2 L

to its physical negative x� = �(x) is a �-negation, then an erosion " on L will not be

self-dual in the sense that

"(�(x)) = �("(x)); (2.7)

because the operator "� = �"� is of type \dilation".1 Note however, that there may

exist self-dual operators in this case; refer to [5] for construction methods of such

operators

1Some cautionary remark is in order here: there do exist operators  which are at the same time erosion and dilation

and which do satisfy  � =  with respect to some �-negation.
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If, on the other hand, the physical negation operator � is a �-negation, then "� = �"� is

an erosion i� " is one, and in this case self-duality of " is within reach; see Section 4 for

speci�c examples. In the complete inf-semilattice framework discussed later, erosions

and dilations (and also openings and closings) play a completely di�erent role. In view

of the fact that the in�mum, but not the supremum, of any subcollection of elements

exists, this is not very suprising.

3 Complete Inf-Semilattices

3.1 De�nitions and examples

An important instance of a poset which, in general, does not allow a �-negation is the

inf-semilattice that will be introduced now.

3.1. De�nition. A poset L is called an inf-semilattice if for every two elements x; y 2

L their in�mum x f y exists. It is called a complete inf-semilattice, or briey, cisl if

every non-empty subset K of L has an in�mum (greatest lower bound)fK 2 L. The

least element of a cisl is denoted by ?, i.e. ? =
V
L.

From now on a partial ordering on a complete inf-semilattice will be denoted by �. It

is easy to see that a (complete) inf-semilattice L which possesses a �-negation x 7! x�

is actually a (complete) lattice. Namely, the supremum of x; y is given by

x g y = (x� f y�)�:

Two simple examples of an inf-semilattice are represented by the Hasse diagrams:

t u v

w

x

t u v

yx

z

w

Figure 1: Two Hasse diagrams representing a cisl.

In the diagram at the left we have w � t; u and x � v; w, and by transitivity also

x � t; u. Note for example that t f v = x. The inf-semilattice at the right has 5

�-negations, namely:

(1) t ! u (i.e., only t and u are interchanged);
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(2) v  ! w;

(3) t ! u, v  ! w;

(4) t ! v, u ! w, x ! y;

(5) t ! w, u ! v, x ! y.

The inf-semilattice at the left of Fig. 1 has only one �-negation, namely the operator

that interchanges t and u and leaves all other elements unaltered.

The next example of a cisl will play a prominent role in the remainder of this paper.

De�ne the partial ordering � on IR as follows:

s � t if 0 � s � t or t � s � 0: (3.1)

Thus IR can be considered as the concatenation of two chains (IR�;�) and (IR+;�)

intersecting at the origin, which is the least element of the poset thus de�ned. We

0

IR    - IR    +

Figure 2: The cisl IR0 is a concatenation of two chains. The arrows point in the direction of

smaller elements.

denote IR provided with this partial ordering by IR0. There exists one �-negation on

IR0, namely the operator t 7! �t.

It s not di�cult to understand how the previous cisl-ordering can be extended to the

complex plane C. Consider C as an (in�nite) union of chains C� = frei� j r � 0g

ordered by the magnitude of the modulus. Thus, given two elements w; z 2 C, we have

w � z if argw = arg z and jwj � jzj : (3.2)

Here arg z denotes the argument of z. Evidently, the mappings z 7! �z and z 7! ei�z

(where � 2 IR) are �-negations.

One �nal example of a cisl that we want to mention here is the family of all �nite

subsets of an in�nite set E provided with the set inclusion as partial ordering.

We state some basic results concerning cisl's. The proof of the �rst result is straight-

forward.
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3.2. Proposition. Let E be a nonempty set and assume that (Tp;�p) is a cisl, for

every p 2 E. Then the set L comprising all mappings x : E !
S
p2E Tp with x(p) 2 Tp

ordered by

x � y if 8 p 2 E : x(p) �p y(p);

de�nes a cisl.

An important special case is obtained if (Tp;�p) is the same for all p, in which case

L = T E is called the power cisl. Observe that, in the latter case, every �-negation �T
on T easily extends to a (pointwise) �-negation �L on L given by �L(x)(p) = �T (x(p)).

As an example, assume that E = IR and T = IR0. In Fig. 3 we illustrate the cisl

ordering on T E and the corresponding in�mum. The next result, the proof of which

x

y

0

x

y

0

Figure 3: Left: x � y in the cisl L of functions from IR to IR0. Right: the in�mum of two

signals x; y 2 L (fat grey line).

is straightforward, says that a bijection between a cisl L and another setM induces a

cisl-structure onM.

3.3. Proposition. Assume that (L;�) is a cisl, that M is some nonempty set, and

that � : L !M is a bijection. De�ne the relation �� onM�M by

y1 �� y2 () ��1(y1) � ��1(y2):

Then (M;��) is a cisl with in�mum given by

f
�
yi = �(f ��1(yi)):

If (L;�) and (M;�) are cisl's, then a bijective mapping � : L ! M is called an

cisl-isomorphism if

�(f xi) =f �(xi)

for every collection fxig � L.
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3.2 Reference cisl's

A class of cisl's that is important for our purposes, are the so-called reference cisl's.

Before giving a formal de�nition we recall the concept of `in�nite distributivity' on a

complete lattice. Given a complete lattice (L;�), we say that L satis�es the in�nite

distributive laws if

y ^
_
i2I

xi =
_
i2I

(y ^ xi) (3.3)

y _
^
i2I

xi =
^
i2I

(y _ xi) (3.4)

for an arbitrary family fxi j i 2 Ig � L and y 2 L. We call (3.3) and (3.4) the in�nite

supremum distributive law and the in�nite in�mum distributive law, respectively. It is

evident that every complete lattice in which these laws hold is distributive; the converse

is not true, however.

3.4. De�nition. Let (L;�) be a lattice. An element r 2 L is called reference element

if for every two elements x; y 2 L we have x ^ r = y ^ r and x _ r = y _ r if and only

if x = y.

Obviously, the least and greatest element in a lattice, if they exist, are automatically

reference elements, but it is easy to �nd lattices which do not contain any other refer-

ence elements. This is e.g. the case for the lattice represented by the following Hasse

diagram: We have a ^ c = b ^ c = ? and a _ c = b _ c = >, hence c is not a reference

a b c

⊥

⊥

element. The same is true for a and b.

Let L be a lattice and r 2 L a �xed element. De�ne the binary relation �r on L � L

by

x �r y if

(
r ^ y � r ^ x

r _ y � r _ x

If we choose for r the least element of L (presumed that it exists), then�r coincides with

the partial ordering �. If, on the other hand, we choose for r the greatest element of L
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(again, supposed that it exists), then �r is the dual ordering � on L, also sometimes

denoted by �0.

3.5. Proposition. Let L be a complete lattice for which the in�nite distributive laws

hold. If r is a reference element of L, then (L;�r) is a cisl with least element r and

with in�mum given by

f
r
xi = (r ^

_
i2I

xi) _
^
i2I

xi = (r _
^
i2I

xi) ^
_
i2I

xi : (3.5)

Proof. The second equality in (3.5) is a straightforward consequence of the distributivity of

L. We show that �r de�nes a partial ordering on L. It is evident that x �r x for x 2 L.

Assume that x �r y and y �r x. We get that x ^ r = y ^ r and x _ r = y _ r. From the fact

that r is a reference element we conclude that x = y. The transitivity of �r (i.e. x �r y and

y �r z implies x �r z) is trivial and we conclude that (L;�r) is a poset.

It remains to be shown that the expressions in (3.5) de�ne the in�mum of a family xi 2

L; i 2 I. Let us denote the element de�ned by (3.5) by a. We must show that

(i) a �r xi for i 2 I;

(ii) a0 �r a for every a0 with property (i).

Using the in�nite distributivity laws we get

r ^ a = r ^
_

i2I

xi =
_

i2I

(r ^ xi) � r ^ xi ; i 2 I

r _ a = r _
^

i2I

xi =
^

i2I

(r _ xi) � r _ xi ; i 2 I :

But this yields that a �r xi, hence (i) is proved. Now if a0 �r xi for i 2 I, then a
0^r � xi^r,

hence

a
0
^ r �

_

i2I

(xi ^ r) = r ^
_

i2I

xi ;

where we have used the in�nite supremum distributivity law. This yields a0 ^ r � a ^ r.

Similarly, we deduce a0 _ r � a _ r and we conclude that a0 �r a, which was to be shown.

Finally, it is easy to see that r is the least element of (L;�r).

We mention some special cases of lattices L where the in�nite distributive laws hold

and every element is a reference element.

3.6. Proposition. For every complete chain, the in�nite distributive laws hold, and

every element is a reference element.
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The proof of this result is straightforward and therefore omitted. Thus, the conclusions

of Proposition 3.5 are valid if L is a complete chain. In fact, it is easy to see that,

for r 2 L, the cisl (L;�r) is a concatenation of two chains, namely (( ; r];�) and

([r;!);�), where ( ; r] = fx 2 L j x � rg and [r;!) = fx 2 L j x � rg. Note that

IR0 is an example of a cisl that possesses this structure, apart from the fact that the

least and greatest element �1 and +1 are not included.

Every complete Boolean lattice satis�es the in�nite distributive laws. Furthermore,

every element x 2 L is a reference element. Thus, Proposition 3.5 yields that (L;�r)

is a cisl for every r 2 L. Actually, we can prove a stronger result in this case. Recall

that we denote the complement of an element x of a Boolean lattice by xc.

3.7. Proposition. If L is a complete Boolean lattice, then

x �r y i� y �rc x; r; x; y 2 L :

In particular, (L;�r) is a complete lattice with least and greatest element r and rc,

respectively, with in�mum given by (3.5) and supremum given by

g
r
xi = (rc ^

_
i2I

xi) _
^
i2I

xi (3.6)

for fxi j i 2 Ig � L.

Proof. It su�ces to prove the �rst equivalence relation as the other results are easy conse-

quences of this fact. Now x �r y means

x ^ r � y ^ r and x _ r � y _ r :

In the �rst equality we take at both sides the supremum with rc, and in the second equality

we take at both sides the in�mum with rc. Thus we get

(x ^ r) _ rc � (y ^ r) _ rc and (x _ r) ^ rc � (y _ r) ^ rc ;

which, by using distributivity, can be rewritten as

x _ r
c
� y _ r

c and x ^ r
c
� y ^ r

c
:

But this means y �rc x, as we wanted to show.

Later, in Section 5, we will discuss another family of lattices, the so-called lattice-

ordered groups, for which the assumptions in Proposition 3.5 are valid.

We conclude this section with an example. Let E be a nonempty set and let T = Z or

IR with the usual ordering. Consider the complete lattice (T E;�), where � denotes the

14



pointwise ordering of functions. It is easy to show that this complete lattice satis�es

the in�nite distributive laws and that each of its elements is a reference element. Thus,

following Proposition 3.5, we conclude that (T E;�r) is a cisl for every reference function

r 2 T E. We will denote this cisl by Fr. The mapping x 7! x� on Fr given by

x�(p) = 2r(p)� x(p) (3.7)

de�nes a �-negation. Observe that Fr can be regarded as a special case of Proposi-

tion 3.2, where Tp = T for all p 2 E and �p on T is the partial ordering �r(p). An

illustration is given in Fig. 4. The operator �r given by �r(x) = x � r de�nes a cisl-

x

y

r
x

y

r

Figure 4: Left: x � y in the cisl Fr. Right: the in�mum (in grey) of two signals x; y 2 Fr.

isomorphism between the cisl's Fr and F0, and more generally, between Fr+s and Fs.

This leads to the following intertwining diagram for operators on Fr and operators on

F0.

Fr
 
�! Fr

x 7!x�r

??y x??x 7!x+r
F0

 0
�! F0

Intertwining diagram:  (x) =  0(x� r) + r.

The inverse ��1r is given by ��1r (x) = ��r(x) = x + r, and it is a cisl-isomorphism

between F0 and Fr, and more generally, between Fs and Fs+r. The operators in the

diagram above are related by

 = ��1r  0�r

It is easy to verify that  is increasing on Fr i�  0 is increasing on F0. Later we will

use this intertwining diagram to de�ne erosions on Fr.
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3.3 Adjunctions on cisl's

In Section 2 we have de�ned erosions, dilations and adjunctions on general posets. As

we shall see below, the various expressions become simpler in the case of cisl's. First

of all, an operator " : L !M, where both L andM are cisl's, is an erosion if

"(
^
i2I

xi) =
^
i2I

"(xi);

for every collection fxig � L. The setM["] de�ned in (2.2) is now given by

M["] = fy 2 M j 9 x 2 L : y � "(x)g ;

and the dilation � = �(") is the same as in (2.4), i.e.,

�(y) =
^
fx 2 L j y � "(x)g; y 2 M["] :

Note that the in�mum exists since the set over which the in�mum is taken is nonempty.

It is evident that ? 2M["] and that �(?) = ?.

The following proposition is concerned with composition of adjunctions.

3.8. Proposition. Let L;M be cisl's and N a poset. Assume that "1 : L ! M and

"2 :M!N are erosions, and that " = "2"1. Then " is an erosion from L into N and

(i) N ["] � N ["2];

(ii) �("2) maps N ["] intoM["1];

(iii) �("1)�("2) = �(") on N ["].

Proof. We write �i = �("i) for i = 1; 2 and � = �(").

(i) z 2 N ["] means that z � "2"1(x) for some x 2 L. But this implies z � "2("1(x)), and

therefore z 2 N ["2].

(ii) We show that �2(z) 2 M["1] for z 2 N ["]. Now z 2 N ["] means z � "2"1(x) for some

x 2 L. Furthermore,

�2(z) =
^
fy 2M j z � "2(y)g;

and since "1(x) is an element of the set at the right hand-side we derive that �2(z) � "1(x),

which yields that �2(z) 2M["1].

(iii) For x 2 L and z 2 N ["] we have

z � "2"1(x) () �2(z) � "1(x) [since z 2 N ["1] by (i)]

() �1�2(z) � x [since �2(z) 2M["1] by (ii)]
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where we have respectively used that ("2; �2) forms an adjunction betweenM and N ["2], and

that ("1; �1) is an adjunction between L and M["1]. On the other hand,

z � "2"1(x) = "(x) () �(z) � x :

This yields that � = �1�2 on N ["].

We now give a simple example.

3.9. Example. Let L =M = N = [�3; 3] and de�ne "1 = "2 as in Fig. 5 below. We

have M ["1] = [�2; 2] and N ["] = [�1; 1]. Note that the dilations �("1);�("2) cannot

be extended beyond [�2; 2].

ε1
ε2

-3

-2

-1

0

1

2

3

Figure 5: Composition of two erosions.

The next result is concerned with the �-negative of an erosion; see (2.1) for the corre-

sponding de�nition.

3.10. Proposition. Assume that L a cisl, thatM is a poset, and that both sets have

an �-negation. If " is an erosion between L and M then "� is an erosion between L

andM too and we have

M ["�] = (M["])� = fy� j y 2 M["]g

�("�) = (�("))�
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Proof. That "� is an erosion follows immediately from the fact that (
V
i2I xi)

� =
V
i2I xi

� for

every family fxi j i 2 Ig � L. Furthermore,

y � "(x) () y
�
� "(x)� = "

�(x�) ;

which yields that M ["�] = (M["])�. Finally, for y 2M ["�] we have

�("�)(y) =
^

i2I

fx 2 L j y � "
�(x)g

=
^

i2I

fx 2 L j y � ("(x�))�g

=
^

i2I

fx 2 L j y
�
� "(x�)g

=
^

i2I

fx
�
j x 2 L and y

�
� "(x)g

=
�^

i2I

fx j x 2 L and y
�
� "(x)g

�
�

= (�(")(y�))� ;

which proves that �("�) = (�("))�.

The space of operators mapping a set L into a cislM can be regarded as a power cisl

ML (see Section 3). Thus the in�mum of an arbitrary collection of operators between

L andM exists. The following result is concerned with the in�mum of erosions.

3.11. Proposition. Let "i, i 2 I, be erosions between the poset L and the cisl M,

and de�ne " =fi2I "i. Then " is an erosion between L andM with

M["] �
\
i2I

M ["i] (3.8)

�(") = g
i2I

�("i) onM["] : (3.9)

Proof. It is evident that " is an erosion and that (3.8) holds. To prove (3.9), observe that

�(")(y) =ffx 2 L j y � "(x)g. If y � "(x), then y � "i(x) for all i 2 I, and therefore

�(")(y) �ffx 2 L j y � "i(x)g = �("i)(y) :

Thus �(")(y) is an upper bound of f�("i)(y) j i 2 Ig. Assume that �("i)(y) � a for i 2 I.

Then y � "i(a) for i 2 I, which yields that y � fi2I "i(a) = "(a). But this means that

�(")(y) � a, and we conclude that �(")(y) is the least upper bound of f�("i)(y) j i 2 Ig.

This proves (3.9).

The inclusion in (3.8) may be a strict inclusion as we show by means of an example.

18



3.12. Example. Let L = f0; 1; 2; : : :g with the following partial ordering: n � m if

n = 0 or if n+m is even and n � m. Thus L consists of two chains which are connected

at the origin: 0 � 1 � 3 � 5 � � � � and 0 � 2 � 4 � 6 � � � � . Consider the erosions

"1 = id and "2(n) = n � 1 (with "2(0) = 0) from L into L. Then L["1] = L["2] = L

but ("1 f "2)(n) = 0 for every n, thus in particular L["1 f "2] = f0g. For the sake of

completeness we mention that �1 = id and that �2 is given by �2(n) = n + 1 for n > 0

and �2(0) = 0.Let L = f0; 1; 2; : : :g with the following partial ordering: n � m if n = 0

or if n + m is even and n � m. Thus L consists of two chains which are connected

at the origin: 0 � 1 � 3 � 5 � � � � and 0 � 2 � 4 � 6 � � � � . Consider the erosions

"1 = id and "2(n) = n � 1 (with "2(0) = 0) from L into L. Then L["1] = L["2] = L

but ("1 f "2)(n) = 0 for every n, thus in particular L["1 f "2] = f0g. For the sake of

completeness we mention that �1 = id and that �2 is given by �2(n) = n + 1 for n > 0

and �2(0) = 0.

3.4 Invariance properties

Adjunctions on Consider the cisl T = IR0 with the partial ordering � as de�ned in the

previous section. De�ne the family of mappings �v; v 2 IR, on IR0 by

�v(t) =

8><
>:
t+ v if t; t + v > 0

t� v if t; t� v < 0

0 otherwise.

(3.10)

Note that the erosion "1 in Fig. 5 coincides with ��1 (restricted to the interval [�3; 3]).

We can show the following properties.

3.13. Proposition. The family �v satis�es the following properties:

(a) �0 = id;

(b) �w�v = �v+w if v; w � 0;

(c) ��w��v = ��v�w if v; w � 0;

(d) ��w�v = �v�w if v � w � 0;

(e) (�v)
� = �v for all v.

The proof of this result is not very di�cult and we leave it as an exercise for the reader.

3.14. Proposition. For every v � 0, the pair (��v; �v) de�nes an adjunction on IR0.
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Proof. We must show that

�v(t) � s () t � ��v(s) ;

for s; t 2 IR0. Assume �rst that �v(t) � s. Without loss of generality we may assume that

t � 0. If t = 0 the result follows immediately. If t > 0 then t + v � s hence t � s � v =

s+ (�v) = ��v(s). This yields that t � ��v(s).

Assume on the other hand that t � ��v(s). Without loss of generality we may assume that

s � 0. If 0 � s � v then ��v(s) = 0, hence t = 0 as well and the result follows. If s > v, then

��v(s) = s� v and t � ��v(s) means that 0 � t � s� v, hence t+ v � s. This implies that

�v(t) � s.

For v > 0 we write:

t _+ v = �v(t) and t _� v = ��v(t); for t 2 IR0: (3.11)

It is easy to see that all the previous result remain valid on Z0 (with also v 2 Z0).

In many practical cases our interest goes towards adjunctions with additional proper-

ties. Here we consider adjunctions which are invariant under a given automorphism

group. Let L be a poset and T an Abelian automorphism group on L. An operator  

on L is said to be T -invariant if

 � = � ; � 2 T :

The proof of the following result is easy.

3.15. Proposition. Assume that the erosion " : L ! L is T -invariant, then L["] is

T -invariant, i.e., y 2 L["] implies �(y) 2 L["] for every � 2 T , and �(") is T -invariant.

Below we consider a speci�c example in more detail. In the forthcoming sections we

shall be concerned with adjunctions on F0 and Fr that are translation invariant in a

sense to be speci�ed later.

3.16. Example. Consider the cisl C provided with the partial ordering de�ned in

(3.2). The mapping " : C! C given by

"(z) = E(jzj) � exp
�
iA(arg z)

�
(3.12)

de�nes an erosion if and only if E is an erosion on the cisl (IR+;�) with E(0) = 0 and

A : [0; 2�)! [0; 2�) is an injective mapping. Let RA � [0; 2�) denote the range of A.

It is easy to verify that

C["] = fw 2 C j argw 2 RA and jwj 2 IR+[E] g:
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Note that IR+[E] is of the form [0;W ] with W <1 or [0;W ) with W � 1.

The adjoint dilation � = �(") is given by

�(w) = D(jwj) � exp
�
iA�1(argw)

�
;

where D is the dilation on IR+[E] adjoint to erosion E. A simple example is given by

E(r) = cr, where c � 0, and A(') = ' + � (mod2�). This corresponds to the erosion

"(z) = cei�z. The adjoint dilation is �(w) = c�1e�i�w if c > 0 and �(w) = 0 for all w

if c = 0.

The erosion in (3.12) can be generalized to the cisl L = CS, where S = IR
d or Zd, as

follows:

"(x)(s) = Es(jx(s)j) � exp
�
iAs(arg x(s))

�
(3.13)

where, for every s 2 S, Es and As satisfy the properties given above. Now consider

the family of operators M = f�q;a j q > 0; a 2 Sg on L given by

�q;a(x)(s) = qeiha ; six(s); s 2 S :

Here h� ; �i is the vector product on S � S. It is easy to see that every �q;a is a cisl-

automorphism on L and that

�q;a�r;b = �qr;a+b; q; r > 0; a; b 2 S ;

whence it follows that M is an Abelian automorphism group on L = CS. If " given

by (3.13) is required to be M -invariant, we �nd that for every s 2 S, the mappings Es
and As satisfy

Es(qr) = qEs(r); q; r > 0 ;

As('+ ha ; si) = As(') + ha ; si; ' 2 [0; 2�); a 2 S:

Thus we get that Es and As are of the form

Es(r) = c(s)r; As(') = '+ �(s) ;

where c : S ! IR+ and � : S ! [0; 2�). Writing e(s) = c(s)ei�(s), we obtain that

"(x)(s) = e(s)x(s); s 2 S:

Before concluding this example, we point out the relation with linear �ltering. Taking

the Fourier transform f̂ of a signal f : IR ! IR (integrable or square integrable), we

end up in the cisl L (where S = IR). The cisl ordering on L thus induces a cisl ordering

on the original space; see e.g. Proposition 3.3. Furthermore, the Fourier transform

maps translation invariance of an operator on the original space onto invariance under
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modulations (the mappings �1;a) and grey-scale invariance onto grey-scale invariance.

The erosion "(x) = ex on the Fourier transformed domain corresponds (via the inverse

Fourier transform) to a linear convolution on the original domain. These observations

suggest that linear convolution operators can be considered as erosions with respect

to a very speci�c partial ordering on the underlying space. We shall not pursue this

matter further here.

4 Translation Invariance

4.1 Standard translations

Let T = IR0 or Z0 provided with the cisl ordering �. As before, we denote by Fr(E; T )

the functions x : E ! T provided with cisl ordering �r; here r : E ! T is a given

reference function. When no confusion about E or T is possible, we write Fr.

The operators �v de�ned in (3.10) can be extended to the cisl F0 by pointwise ap-

plication: �v(x)(p) = �v(x(p)). Using the intertwining diagram in Section 3, these

operators can also be extended to Fr for any reference function r. The properties in

Propositions 3.13 and 3.14 remain valid. An illustration is given in Fig. 6. De�ne the

x

ρv (x)

r

x

ρv (x)

r

Figure 6: Vertical translation for v > 0 and v < 0.

translation operator �h, h 2 E, on F0 as follows:

�h(x)(p) = x(p� h); x 2 F0; p 2 E:

The following properties are straightforward.

4.1. Proposition. The family �h; h 2 E; of operators on F0 has the following prop-

erties:

(a) every �h is a cisl-automorphism;
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(b) �h�k = �h+k, for h; k 2 E;

(c) (�h)
� = �h, for h 2 E.

Furthermore, it is easy to verify the following commutation relation:

�h�v = �v�h; h 2 E; v 2 T : (4.1)

In other words, the operators �v are T -invariant, T being the family of translations �h.

Let A be a subset of E and assume that eh is an erosion on T for every h 2 A. It is

not di�cult to see that the operator " : F0 ! F0 given by

" = f
h2A

eh�h ;

or alternatively

"(x)(p) = f
h2A

eh(x(p� h)) ; (4.2)

de�nes an erosion. The set F0["] comprises all functions y 2 F0 for which

y(p) � eh(x(p� h)); for all h 2 A; p 2 E;

or alternatively,

y(p+ h) 2 T [eh]; h 2 A; p 2 E:

Let dh be the dilation on T [eh] that forms an adjunction with eh, then

dh(y(p+ h)) � x(p); h 2 A; p 2 E :

We conclude that the supremum of dh(y(p+ h)) over h 2 A exists in this case, and

g
h2A

dh(y(p+ h)) � x(p); p 2 E :

The expression at the left is the dilation � = �(") adjoint to ":

�(y)(p) = g
h2A

dh(y(p+ h)) � x(p); p 2 E ; (4.3)

or alternatively,

� =g dh��h :

If we choose eh on T as (see (3.11))

eh(t) = t _� g(h) ;
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where g(h) > 0 for h 2 A, then we �nd

"(x)(p) = f
h2A

�
x(p� h) _� g(h)

�
: (4.4)

The adjoint dilation is given by

�(y)(p) = g
h2A

�
y(p+ h) _+ g(h)

�
; (4.5)

presumed that y 2 F0["]. Besides being translation invariant, " and � have the following

invariance property:

"��v = ��v" and ��v = �v� ;

for every v > 0. Note that �v maps F0["] into F0["].

4.2. Remark. In the classical case where L comprises the functions from E to T = IR

or Z provided with the usual complete lattice ordering, it is true that every translation

invariant erosion " is of the form (4.2). In the cisl case discussed here this is no longer

true. For example, the operator " given by

"(x)(p) =

(
x(p); if x(p)x(p� 1) > 0 ;

0; otherwise ;

is a translation invariant erosion on F0 which is not of the form (4.2).

An important subclass of erosions, as de�ned by (4.2), is obtained if one chooses for

eh the identity mapping, for every h in the structuring element A. Such erosions are

given by

"(x)(p) = f
h2A

x(p� h) : (4.6)

In Fig. 7 we depict the erosion " and the correspond opening �" on F0 for the case

where A = f�a;�a + 1; : : : ;�1; 0; 1; : : : ; ag for a = 3. In Fig. 8 we show the same

operators for the cisl Fr; here we have used the intertwining construction given in

Section 3. In this case the expression for " is

"(x)(p) = r(p) + f
h2A

�
x(p� h)� r(p� h)

�
: (4.7)

In Fig. 9 we show the 2-dimensional erosion of a given input image with respect to

a given reference image. In Fig. 10 we show how to use the cisl opening for noise

�ltering. Fig. 11, which is partially given for the sake of curiosity, but also since it

illustrates the mechanism behind the cisl reference erosion, shows the transition from

an input image to another reference image.
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0

x

e(x)
de(x)

x

0

Figure 7: Erosion (left) and opening (right) of a signal in F0.

x

r

e(x)
de(x)

x

r

Figure 8: Erosion (left) and opening (right) of a signal in Fr.

Figure 9: Erosion as de�ned by (4.7) of an input image (left) with respect to a given reference

image (second). The third image is the eroded image and the right-most image shows the

di�erence between the input and the output (with enhanced contrast).

4.2 Signed translations

In this section we introduce an alternative class of translations for discrete signals.

The key di�erence with the translations de�ned in the previous subsection is that the
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Figure 10: The cisl reference opening obtained by composing " in (4.7) with its adjoint dilation

can be used to remove noise. From left to right: the input noisy image, the result after iterative

�ltering, and the image obtained by applying the cisl reference opening to the input image,

with the median-�ltered image as reference image.

Figure 11: The two images that we start with are the input image x at the top left and the

reference image r at the bottom right. The sequence "n(x), where " is given by (4.7), converges

to r when n increases.

translations de�ned below do not change the sign of a function at a given point. Thus,

if the function is nonnegative at a given location, then it cannot become negative due

to translation. In other words, the sign of the function is preserved. For that reason

we call them signed translations.

Consider the cisl F0 of functions mapping Z into Z0 provided with the partial ordering
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�. De�ne the operator " on F0 by

"(x)(n) =

8><
>:
x(n� 1) _ 0; if x(n) > 0

x(n� 1) ^ 0; if x(n) < 0

0; if x(n) = 0

At a given location n this operator describes a shift towards the right as long as x(n�1)

and x(n) are both positive or both negative, i.e., x(n�1)x(n) > 0. If x(n�1)x(n) � 0,

then "(x)(n) = 0. Thus we can also write

"(x)(n) =

(
x(n� 1); if x(n� 1)x(n) > 0

0; if x(n� 1)x(n) � 0 :

Furthermore, we de�ne a second operator � : F0 ! F0 describing a leftward shift:

�(y)(n) =

(
y(n+ 1); if y(n+ 1) 6= 0

sign y(n); if y(n+ 1) = 0 :

Here sign t denotes the sign of t, which is de�ned to be 0 if t = 0. De�ne

F
(1)
0 = fx 2 F0 j x(n)x(n + 1) � 0 for n 2 Zg :

4.3. Proposition. The operator " de�nes an erosion on F0 with

F0["] = F
(1)
0

and �(") = �.

Proof. First we show that ("; �) is an adjunction between F0 and F
(1)
0 , that is �(y) � x i�

y � "(x) for x 2 F0 and y 2 F
(1)
0 .

Assume that �(y) � x; we must show that y � "(x), i.e., that y(n) � "(x)(n) , for n 2 Z.

If y(n) = 0 then this is obvious. We consider the case where y(n) > 0; evidently the case

y(n) < 0 is treated analogously. Using that �(y) � x at n � 1 we get y(n) � x(n � 1).

Suppose x(n) = 0, then �(y)(n) = 0, hence y(n) = 0, which contradicts our assumption that

y(n) > 0. Suppose x(n) < 0, then �(y)(n) < 0. Obviously, y(n + 1) 6= 0, for otherwise

�(y)(n) = sign y(n) = 1. We get �(y)(n) = y(n + 1). From �(y)(n) � x(n) we �nd that

y(n + 1) � x(n) < 0. But then y(n)y(n + 1) < 0 which contradicts the fact that y 2 F
(1)
0 .

We conclude that x(n) > 0. We have seen above that 0 < y(n) � x(n� 1), hence "(x)(n) =

x(n� 1), and indeed we have shown that y(n) � "(x)(n).

Assume that y � "(x); we must show that �(y) � x, i.e., that �(y)(n) � x(n) for n 2 Z. First

assume that x(n) = 0. Then "(x)(n) = "(x)(n + 1) = 0 and therefore y(n) = y(n+ 1) = 0.

This yields that �(y)(n) = 0, and thus �(y)(n) � x(n) in this case. Thus it remains to
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consider the case where x(n) > 0; the case x(n) < 0 is treated analogously. We distinguish

two cases: y(n+1) = 0 and y(n+1) > 0. (Again, the case y(n+1) < 0 is treated analogously

to the case where y(n+ 1) > 0.)

(i) y(n+ 1) = 0. Then �(y)(n) = sign y(n). If y(n) = 0 then �(y)(n) = 0 and the inequality

�(y)(n) � x(n) is trivially satis�ed. If y(n) > 0 then �(y)(n) = 1. Since "(x)(n) � y(n) > 0

we get that x(n) > 0, hence �(y)(n) � x(n). If y(n) < 0 then �(y)(n) = �1 and from

"(x)(n) � y(n) we get that x(n) < 0, which then yields that �(y)(n) � x(n).

(ii) y(n+ 1) > 0. Then �(y)(n) = y(n + 1) > 0. Since "(x)(n + 1) � y(n + 1) we conclude

that x(n+ 1) > 0 and x(n) � y(n+ 1) > 0, i.e., �(y)(n) � x(n).

Thus we have shown that ("; �) is an adjunction between F0 and F
(1)
0 . Thus we are left with

the task to show that

F0["] = F
(1)
0 :

Suppose �rst that y 2 F
(1)
0 . Then y � "�(y) hence y 2 F0["]. On the other hand, let

y 2 F0["]; we must demonstrate that y(n)y(n+1) � 0 for every n 2 Z. Assume that y(n) > 0

and y(n+ 1) < 0. Then "(x)(n) > 0, which requires that x(n� 1) > 0 and x(n) > 0. But in

this case also "(x)(n + 1) � 0 which contradicts y(n+ 1) � "(x)(n + 1). This concludes the

proof.

The adjunction ("; �) forms the basis ingredient for a new class of translations. De�ne,

for every integer k � 1 the set F
(k)
0 � F0 by

F
(k)
0 = fx 2 F0 j x(n)x(n + j) � 0 for n 2 Z and j = 1; 2; : : : ; kg :

One can easily show that

F
(k)
0 � F

(k�1)
0 ; for k � 1 ;

where F
(0)
0 = F0. Furthermore, " maps F

(k)
0 into F

(k+1)
0 and � maps F

(k+1)
0 into F

(k)
0 .

In fact, we have the following extension of the previous proposition.

4.4. Proposition. For every n � 0 and k � 1, the operator "k de�nes an erosion on

F
(n)
0 with

F
(n)
0 ["k] = F

(n+k)
0

and �("k) = �k.

In the sequel we use the following notation:

�k = "k and � k = �k; k � 0 :
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For k � 0 we de�ne �k and �
 
k by using the erosion "0 governing translation to the left

as starting point:

"0(x)(n) =

8><
>:
x(n + 1) _ 0; if x(n) > 0

x(n + 1) ^ 0; if x(n) < 0

0; if x(n) = 0

It is evident that the corresponding set F0["
0] equals F

(1)
0 and more generally, that

F0["
0k] equals F

(k)
0 .

In Fig. 12 we depict a signal x, its signed translate �k(x), and the inverse � k �k(x),

which, being a composition of an erosion and a dilation, is an opening. Note that the

0

x

translation of x

0

Figure 12: A signal x (thin line), it's signed translate �k(x) with k = 4 (left), and the opening

�
 
k �k(x) (right).

translation family �k does not have the same nice properties as the family �k introduced

in the previous section. In particular, it is not a group: we only have

�k�l = �k+l if kl � 0 :

If, however, k; l have opposite signs, then this relation fails to be true. In particular,

it does not hold that �k��k = id: signed translations are not invertible.

It is easy to verify that

�k�v = �v�k; k 2 Z; v 2 Z ;

(c.f. relation (4.1)). Furthermore, we can easily establish the following relationships:

�k�l = �l�k; k; l 2 Z

� k �l = �l�
 
k ; k; l 2 Z :

Furthermore, it holds that

id f �1 = id f �1 ; (4.8)
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and as we argue below, this relation has some important consequences.

Using the signed translation operators �k, we can de�ne a new family of erosions in

the following way: let A � Z be a �nite structuring element and de�ne K = maxfjkj j

k 2 Ag. Then

"A = f
k2A

�k (4.9)

de�nes an erosion that maps F0 into F
(K)
0 . The proof that the range of "A is contained

in F
(K)
0 is based on the observation that x 2 F

(k)
0 and y 2 F

(l)
0 implies x f y 2 F

(m)
0 ,

where m = maxfk; lg. The dilation adjoint to "A is

�A = g
k2A

� k ; (4.10)

which is well-de�ned on F
(K)
0 . In Fig. 13 we compare the adjunction corresponding

0

x

e(x)

de(x)

x

0

e(x)

0

x

de(x)

x

0

Figure 13: Comparison between operators deriving from the standard translation (top row)

and the signed translation (bottom row). The �rst column shows the signal (thin line) and

its erosion (fat line), the second column the signal and its opening. In both cases we use

structuring element f�3; 3g.

to the signed translation and the adjunction deriving from the standard translation
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as discussed in the previous section. We used a structuring element of the form A =

f�a; ag. If A is of the form [�a; a], both erosions yield the same ouput. This is a

straightforward consequence of the identity given in (4.8).

We can extend the signed translations to two dimensions by decomposition into a

horizontal and vertical component. Translation of a 2-dimensional signal over the

vector (k; l) only yields a positive (resp. negative) value at the point with coordinates

(m;n) if and only if x(i; j) is positive (resp. negative) at the entire rectangle [m �

k;m]� [n� l; n].

5 Lattice Ordered Groups and Inf-Semilattices

5.1 Lattice ordered groups

An interesting construction method for cisl's uses so called lattice ordered groups and

will be discussed below.

5.1. De�nition. A nonempty set L with an addition + and a a partial ordering

relation � is called a lattice ordered group if

(i) (L;+) is a group;

(ii) (L;�) is a lattice;

(iii) the addition is isotone, i.e.,

x � y implies x + a � y + a and a+ x � a + y (5.1)

for a; x; y 2 L.

(iv) the addition + is distributive over the supremum and in�mum, i.e.,

(x ^ y) + a = (x + a) ^ (y + a) and a + (x ^ y) = (a+ x) ^ (a + y)(5.2)

(x _ y) + a = (x + a) _ (y + a) and a + (x _ y) = (a+ x) _ (a + y)(5.3)

for x; y; a 2 L.

Some background on lattice ordered groups can be found in [1, 2, 3].

Denoting the inverse of an element x with respect to the group operation + by �x we

have

x � y () �y � �x:
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In fact, it follows that x 7! �x is a dual automorphism on the lattice (L;�). In

particular, we have

�(x ^ y) = �x _ �y and � (x _ y) = �x ^ �y : (5.4)

In [2] the following result has been proved; see also [1].

5.2. Proposition. If (L;+;�) is a partially ordered group such that (L;�) is an inf-

semilattice, then (L;+;�) is a lattice ordered group and, moreover, the lattice (L;�)

is distributive.

Throughout the remainder of this section we assume that (L;+;�) is a lattice ordered

group. Let 0 be the unit element with respect to the group operation +. De�ne the

cone L+ as

L+ = fx 2 L j x � 0g:

Elements in L+ are said to be positive. It is obvious that x; y 2 L+ implies that

x+y 2 L+. Furthermore, L+\�L+ = f0g. De�ne, for an element x 2 L the elements

x+; x� 2 L+ by2:

x+ = x _ 0 and x� = �(x ^ 0) : (5.5)

It is easy to see that

(�x)+ = x� and (�x)� = x+ : (5.6)

5.3. Proposition. For every x 2 L we have

x = x+ � x� : (5.7)

Proof. Let x 2 L, then

x
+
� x

� = (x _ 0) + (x ^ 0) = (x+ (x ^ 0)) _ (0 + (x ^ 0))

= (x+ (x ^ 0)) _ (x+ (0 ^ �x)) = x+ ((x ^ 0) _ (0 ^ �x))

� x+ 0 = x ;

where we have used that (x^0)_(0^�x) � 0. Hence x+�x� � x. Substituting�x for x this

yields (�x)+ � (�x)� � �x. Using (5.6) we get x� � x
+ � �x which implies x+ � x

� � x,

whence the assertion follows.

We de�ne the absolute value of x 2 L by

jxj = x+ + x�: (5.8)

For the proof of the following result we refer to Birkho� [1]; see also [3, Chapter V].

2Observe that our de�nition of x� is di�erent from that often found in the literature. There one usually de�nes

x� = x ^ 0
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5.4. Proposition. For x; y 2 L the following is true:

(a) jxj > 0 if x 6= 0;

(b) x+ ^ x� = 0;

(c) jxj = x _ �x;

(d) jx� yj = (x _ y)� (x ^ y).

5.5. De�nition. Two positive elements x; y 2 L are said to be disjoint (or orthogonal)

if x ^ y = 0.

It is easy to see that

x; y are disjoint () x _ y = x+ y : (5.9)

Namely,

x ^ y = 0 () �x _ �y = 0 () 0 _ (x� y) = x () y _ x = x + y:

In particular this means that x+ y = y + x if x; y are disjoint.

Property (b) in Proposition 5.4 above says that x+ and x� are disjoint, for every element

x 2 L.

We make the following additional assumption on L.

5.6. Assumption. Every nonempty subset of L which possesses a lower bound has

an in�mum in L.

If this assumption holds, it is automatically true that every nonempty subset which

has an upper bound has a supremum. Furthermore, the relations in (5.2)-(5.4) carry

over to in�nite in�ma and suprema. For example, the �rst relation in (5.2) generalizes

to

(
^
i2I

xi) + a =
^
i2I

(xi + a) :

This means that fxi j i 2 Ig has an in�mum i� fxi + a j i 2 Ig has an in�mum and

the previous relation holds.
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5.2 De�ning a new partial ordering

De�ne a binary relation � on L as follows:

x � y if x+ � y+ and x� � y� : (5.10)

The following important result holds.

5.7. Proposition. (L;�) is a cisl with the in�mum of a collection fxig given by

f
i2I
xi =

^
i2I

x+i �
^
i2I

x�i : (5.11)

This in�mum satis�es

(f
i2I
xi)

+ =
^
i2I

x+i and (f
i2I
xi)
� =

^
i2I

x�i (5.12)

The least element of (L;�) is 0.

Proof. First we show that `�' de�nes a partial ordering on L. Reexivity and transitivity

are evident. We show that `�' is anti-symmetric, i.e., that x � y and y � x implies x = y.

Obviously, x � y and y � x yield that x+ = y
+ and x� = y

�. But then x = y. It is also

clear that 0 � x for x 2 L.

Now consider a family fxig � L and de�ne a =
V
i2I x

+
i and b =

V
i2I x

�
i . Evidently,

a; b 2 L+ and

a ^ b =
^

i2I

(x+i ^ x
�
i ) = 0 ;

since x+i ^ x
�
i = 0 for every i 2 I. Subtracting b at both sides and using the distributivity in

(5.2) we get that (a� b) ^ 0 = �b, that is

(a� b)� = b =
^

i2I

x
�
i ;

hence (a� b)� � x
�
i for every i 2 I. Furthermore, from the disjointness of a and b and (5.9)

we derive that

a _ b = a+ b :

Subtracting b from both sides and using the distributivity in (5.3) we get

(a� b) _ 0 = a =
^

i2I

x
+
i ;

hence (a � b)+ � x
+
i for i 2 I. We have shown that (a � b)� � x

�
i and (a � b)+ � x

+
i for

i 2 I, and therefore a� b � xi for i 2 I. This means that a� b is a lower bound of fxig with

respect to `�'. Suppose that c is another lower bound; we show that c � a� b. In fact, if c is

a lower bound of fxig then c
+ �

V
i2I x

+
i = (a� b)+. Analogously we get c� � (a� b)� and

thus c � a� b. We conclude that a� b is the greatest lower bound of fxig. The equalities in

(5.12) follow from the arguments above.
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Note that

x � y ) jxj � jyj: (5.13)

The converse is not true in general, however.

5.8. Example. (a) Consider once again the set L = T E where T = IR or Z provided

with the standard ordering x � y if x(p) � y(p) for p 2 E, and the addition (x +

y)(p) = x(p) + y(p). It is evident that (L;+;�) is a lattice ordered group for which

Assumption 5.6 holds. The corresponding cisl (L;�) coincides with F0 in this case.

(b) We de�ne another addition +r, where r 2 L is a given element, by

(x+r y)(p) = x(p) + y(p)� r(p) :

Again, it is not di�cult to verify that (L;+r;�) is a lattice ordered group for which

Assumption 5.6 holds. The unit element of the group (L;+r) is r. The cisl (L;�r)

that we obtain in this case is the reference cisl Fr.

If  is an automorphism on (L;�) with  (0) = 0, then

 (x+) =  (x _ 0) =  (x) _  (0) =  (x) _ 0 =  (x)+ :

Analogously, we get that  (x�) =  (x)�, and the following result holds.

5.9. Proposition. If  is an automorphism on (L;�) with  (0) = 0, then  is also

an automorphism on (L;�).

But also �-negations on (L;�) yield automorphisms on (L;�), as the following result

shows.

5.10. Proposition. Every �-negation on (L;�) which maps 0 onto 0 de�nes an au-

tomorphism on (L;�).

Proof. Let � be a �-negation on (L;�) with �(0) = 0. We must show that � de�nes an

increasing mapping on (L;�). Assume that x � y, that is, x+ � y
+ and x� � y

�. From the

fact that � is a �-negation on (L;�), we derive that

�(x)+ = �(x) _ 0 = �(x) _ �(0) = �(x ^ 0) = �(�x�) :

Similarly we derive that �(x)� = �(�x+). Thus

�(x)+ = �(�x�) � �(�y�) = �(y)+ ;

as well as

�(x)� = �(�x+) � �(�y+) = �(y)� ;

and we conclude that �(x) � �(y), which �nishes the proof.
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This last result holds in particular for the �-negation �(x) = �x. A combination of

the two previous results leads to the following corollary.

5.11. Corollary. If  is an automorphism on (L;�) with  (0) = 0, then  and � 

de�ne automorphisms on (L;�).

5.3 Operator constructions

In what follows we shall de�ne operators  on L starting from two operators  +;  �

on L+.

5.12. De�nition. A pair  +;  � of operators on L+ is called disjointness-preserving

if

x ^ y = 0 )  +(x) ^  �(y) = 0; x; y 2 L+:

The operator  + is called disjointness-preserving if the pair  +;  + is disjointness-

preserving.

It is easy to see that the pair  +;  � is disjointness-preserving if both operators are

anti-extensive. The converse is not true, however.

Given two arbitrary operators  +;  � on L+, we de�ne the operator  on L by

 (x) =  +(x+)�  �(x�); x 2 L:

5.13. Proposition. Assume that  +;  � are disjointness-preserving and that  is of

the form given above.

(a) If  +;  � are increasing on (L+;�) then  is increasing on (L;�).

(b) If  + =  � then  is self-dual, i.e.,  (�x) = � (x) for x 2 L.

(c) If  +;  � are anti-extensive on (L+;�) then  is anti-extensive on (L;�).

(d) If  +;  � are idempotent then  is idempotent.

Proof. First we show that

[ (x)]+ =  
+(x+) and [ (x)]� =  

�(x�) (5.14)

for every x 2 L. Using the distributivity relation in (5.3) we get

[ (x)]+ = [ +(x+)�  
�(x�)]+

= ( +(x+)�  
�(x�)) _ 0

= ( +(x+) _  �(x�))�  
�(x�) :
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The fact that  +(x+) and  
�(x�) are disjoint in combination with (5.9) yields that this

latter expression reduces to

( +(x+) +  
�(x�))�  

�(x�) =  
+(x+) :

This proves the �rst relation in (5.14). The second one follows by an analogous argument.

(a) Now assume that x � y, then

[ (x)]+ =  
+(x+) �  

+(y+) = [ (y)]+

[ (x)]� =  
�(x�) �  

�(y�) = [ (y)]�

which yields that  (x) �  (y).

(b) Using that (�x)+ = x
� and (�x)� = x

+ we get

 (�x) =  
+((�x)+)�  

+((�x)�)

=  
+(x�)�  

+(x+)

= � (x) :

(c) For x 2 L we have ( (x))+ =  
+(x+) � x

+ and ( (x))� =  
�(x�) � x

� which yields

that  (x) � x.

(d) For x 2 L we have

 
2(x) =  ( (x)) =  

+(( (x))+)�  
�(( (x))�)

= ( +)2(x+)� ( �)2(x�)

=  
+(x+)�  

�(x�) =  (x) ;

where we have used the identities in (5.14).

Combination of the results in (a); (c); (d) yields the following interesting fact.

5.14. Corollary. If  +;  � are openings on (L+;�), then  is an opening on (L;�).

In particular, if  + is an opening on (L+;�) then the operator  given by  (x) =

 +(x+)�  +(x�) is a self-dual opening on (L;�).

We now show how to construct adjunctions on (L;�) given an adjunction on L+.

5.15. Proposition. Let "+ be an erosion on (L+;�) which is disjointness-preserving,

and let " be the extension to L given by

"(x) = "+(x+)� "+(x�) ; x 2 L :

Then " de�nes an erosion on (L;�). For every y 2 L["] we have y+; y� 2 L+["+], and

the adjoint dilation � : L["]! L is given by

�(y) = �+(y+)� �+(y�) ;

where �+ : L+["+]! L+ is the adjoint dilation of "+.

37



Proof. First we show that y 2 L["] implies that y+; y� 2 L+["+]. Assume that y � "(x) for

some x 2 L, that is, y � "
+(x+)� "

+(x�). This means in particular that

y _ 0 � ("+(x+)� "
+(x�)) _ 0 = ("+(x+) _ "+(x�))� "

+(x�) :

Since "+(x+) and "+(x�) are disjoint, we can replace the supremum at the right hand-side

by a summation, and we �nd that y+ = y _ 0 � "
+(x+), that is y+ 2 L+["+]. Similarly, we

�nd that y� 2 L+["+].

It remains to be shown that �(y) � x () y � "(x) for x 2 L and y 2 L["]. Assume

�rst that y � "(x). Then y+ � ("(x))+ = "
+(x+) and y� � ("(x))� = "

+(x�). This yields

that y+; y� 2 L+["+], and since ("+; �+) is an adjunction, we get that �+(y+) � x
+ and

�
+(y�) � x

�. But this implies that �(y) � x.

Now assume that �(y) � x, i.e., (�(y))+ � x
+ and (�(y))� � x

�. Since y 2 L["], we have

y � "(x0) for some x0 2 L, that is

y
+
� ("(x0))

+ = ("+(x+0 )� "
+(x�0 ))

+ = "
+(x+0 )

y
�
� ("(x0))

� = ("+(x+0 )� "
+(x�0 ))

� = "
+(x�0 )

This yields that �+(y+) � x
+
0 and �

+(y�) � x
�
0 , which means in particular that �+(y+)

and �+(y�) are disjoint. Therefore (�(y))+ = �
+(y+) � x

+, which yields that y+ � "
+(x+).

Similarly we get that y� � "
+(x�), and we �nd that y � "

+(x+)� "
+(x�) = "(x).

Note from Proposition 5.13(b) that the erosion " given by Proposition 5.15 is self-dual

in the sense that "(�x) = �"(x) for every x 2 L. Furthermore, L["] is invariant under

the �-negation y 7! �y, i.e., y 2 L["] i� �y 2 L["] and �(�y) = ��(y) for such y.

Note also that the previous result can easily be extended to the case where we start

with two di�erent erosions "+; "� on L+. In that case we de�ne an erosion on (L;�)

by "(x) = "+(x+)� "�(x�) for x 2 L.

5.16. Remark. We briey discuss an alternative approach for the construction of a

cisl which possesses a �-negation. The starting point for this construction is a given

inf-semilattice (L;�). For example, if we are interested in the functions IR
E, then L

represents the positive part, i.e. L = IR
E
+. Denote the least element of L by 0. De�ne

M = fx = (x+; x�) 2 L � L j x+ ^ x� = 0g ;

and de�ne a partial ordering � onM by

(x+; x�) � (y+; y�) if x+ � y+ and x� � y�:

Now (M;�) is an inf-semilattice with least element (0; 0).

The mapping  given by

(x+; x�) = (x�; x+)

38



de�nes a �-negation onM. Given an operator  + on L that has the property

x ^ y = 0 )  +(x) ^  +(y) = 0;

then the extension  toM given by

 (x+; x�) = ( +(x+);  +(x�))

has the property

  =  ;

expressing the self-duality with respect to .

6 Conclusions

A theory for self-dual morphology was developed, in which the concept of self-duality

is de�ned in posets, by means of �-negations.

Two di�erent approaches for operator derivation were proposed on inf-semilattices.

The reference semilattice approach uses a given �xed function as the least element

of the inf-semilattice, and as a reference for self-duality. One practical way of using

reference semilattices is having the input signal be the reference element itself, and

use a transformation of this signal as starting point for self-dual processing. If this

processing is an opening, then the result is a �ltered version of the original signal.

Special attention is given to translation invariance, and two cases are considered: The

traditional translation invariance, and invariance to a new type of translation, called

signed translation.

The second approach is through lattice ordered groups. Through this approach, it

becomes simple to modify traditional lattice operators, so they become self-dual within

a lattice ordered group.
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