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An implicit, one-step method for the restoration of  blurred and 
noisy color images is presented. Using a nonlinear partial 
differential equation (PDE)-based variational restoration 
approach, it is shown that a single iteration yields a result that 
is visually superior to performing Gaussian low-pass filtering,
followed up by unsharp masking, a conventional linear process.  
The governing equation is constructed by examining ways to 
achieve the optimal balance between the two competitive forces, 
that of denoising and deblurring, at the same time. For the 
solution, the additive operator splitting (AOS) scheme is 
implemented, which allows the separation of spatial variables.  
A stable and efficient algorithm results from the decomposition 
of the problem, that has recently been developed for denoising 
without deblurring. Deblurring is added to denoising in such a 
way that the tridiagonal structure in each one of the 
dimensions is preserved, so that the algorithm remains 
inexpensive despite the matrix inversions. Results indicate that 
this one-step implementation yields a robust filter that can be 
tuned to preprocess images for various applications. 
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1 Introduction

Nonlinear variational image restoration methods have recently gained much interest in image

processing. The success of the Total Variation (TV) norm in noise removal [9] and image

reconstruction, as well as related pioneering work on nonlinear di�usion �lters [8, 12], has led

to the development of e�cient methods [13] for solving the governing PDE. These methods

can potentially be used in numerous applications, tackling important problems in the areas

of image processing, analysis and computer vision.

One such traditional problem in image restoration is that of reconstructing a blurred and

noisy image, in which the resultant image should faithfully represent the original. Some

related past e�orts can be found in [6, 3, 2, 11, 7]. Here the motivation is to apply a

fast and e�cient method, based on nonlinear variational formulation and PDEs, to perform

denoising and deblurring in a singe large time step. The result is shown to be superior to

successively using a low pass-�lter for the denoising, and unsharp masking for the deblurring,

both operating linearly on the image to produce a fast result. By using an e�cient method,

the speed and complexity of the nonlinear approach to the problem is not far from the linear

case. By decomposing the problem, which comes naturally when using the additive operator

splitting (AOS) proposed in [13], it is also simpler to understand the e�ect of nonlinearities

in the governing equation on the restoration process by examining one-dimensional cross-

sections of the image.

The paper is divided as follows. Section 2 describes the problem formulation, starting from

an energy functional to be minimized. The Euler-Lagrange equation resulting from this

formulation is presented. In Section 3, numerical schemes are discussed for the solution

of the governing PDE. Section 4 presents the solution of the approach which was built in

the previous two sections, processing three color test images, and comparing the results

of di�erent regularizations and a conventional simple linear solution. Section 5 attempts

to understand the nonlinear processing that was performed, by examining one-dimensional

slices of the image. Section 6 concludes this work.

2 Problem Formulation

Let us assume that during an image acquisition stage, the original image is blurred by a

known point-spread function (PSF) and subsequently noise is added. The image degradation

model is of the form

f(x; y) = (d � u)(x; y) + n(x; y) (1)

where u(x; y) is the desired original image, d is the known blur PSF, � denotes the two-

dimensional convolution, f is the observed degraded image, and n denotes the additive noise

that is present in that image.
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Our goal is to reconstruct u from f . In order to optimally perform the reconstruction, we

would like to minimize some kind of image norm that measures the degree of smoothness,

denoted by  (jruj2), where  is called the smoothness potential

min
u(x;y)

Z



 (jru(x; y)j2) dx dy; (2)

subject to the constraint

Z



(d � u� f)2 dx dy = �2; (3)

where without loss of generality a unit support for the image is assumed (j
j = 1), x; y 2 


and � is the noise standard deviation. The constraint is responsible for keeping the estimated

image u close to the initial degraded image f . Instead of the minimization with a constraint in

Equations (2),(3), the problem can be formulated as that of minimizing the energy functional

min
u

Z



 (jruj2) + �(d � u� f)2 dx dy (4)

where � is a Lagrange-multiplier. Using calculus of variations, equation (4) satis�es the

Euler-Lagrange equation

0 = r � ( 0(jruj2)ru) + �d � (d � u� f) (5)

where  0 is the derivative of  . There are several methods for the solution of (5), see for

example [2, 11]. Moreover, one can solve (5) in a time-dependent framework, by advancing

the following PDE to its steady-state (t!1) solution

@u

@t
= r � ( 0(jruj2)ru) + �d � (d � u� f) (6)

The choice of an appropriate  is important, since the quality of the result is sensitive to

 0, the di�usivity term. For denoising, the total variation smoothness potential  (jruj2) =

jruj was used in [9], whereas in [14] a convex smoothing potential of the form  (jruj2) =

�
q
1 + jruj2=�2 + "jruj2, (�; " > 0), is applied. The latter potential is a generalization of

the former. In reference [6], the latter potential with " = 0 is chosen, which amounts to a

total variation potential. Common to our work, that paper attempts to solve equation (6)

numerically. However, unlike several iterations of an explicit algorithm, we take a di�erent

approach in trying to approximate the solution to (6) by using one iteration with an implicit

method. In [1], several other possibilities for a smoothing potential are explored in the

context of anisotropic di�usion �ltering, all of which are motivated by the analogy to robust

estimation. A related work on the connection between variational image restoration and

di�usion �ltering [10] examines some theoretical aspects of these potentials.
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After experimenting with many of these smoothing potentials, a particular version of the

regularized Perona-Malik �lter [8, 10] is chosen for the rest of this paper. The corresponding

smoothing potential is of the form  (jruj2) = ln(1+ jrL�uj
2) for the �lter's fullest version,

where L� is a convolution operator with a smooth kernel. The regularized Perona-Malik

�lter was recently revived in [10] where its well-posedness and convergence characteristics

were studied. The justi�cation for using this particular potential in our case for denoising

and deblurring is the notion of backward di�usion, that can be traced back to Perona and

Malik's original paper [8]. By allowing backward di�usion, it is possible to achieve edge-

enhancement along with edge-preserving smoothing. We will elaborate more on some other

possible choices of smoothing potentials in Section 4.

Choosing one particular type of a regularized Perona-Malik �lter, equation (6) becomes

@u

@t
= r �

 
1

1 + jrL�uj2=c
ru

!
+ �d � (d � u� f) (7)

where c = 1:0 was chosen for our calculations. The regularization operation, L�u, is a

presmoothing mechanism in which the image u is convolved with a Gaussian of standard

deviation �, the regularization parameter.

3 Implementation

This section describes the numerical scheme that we use to solve (7) e�ciently. It starts from

the one-dimensional semi-implicit scheme, which will be applied for the analysis in Section

5, and then builds upon the one-dimensional scheme to describe the two-dimensional scheme

that is implemented for processing the noisy blurred images in Section 4. More details about

the schemes can be found in [13], where they were originally proposed. Here, the AOS scheme

is implemented on a problem with a certain constraint. Examples for the implementation of

the AOS scheme on other type of constraints can be found in [4, 14].

First, let us review the derivation of the one-dimensional semi-implicit scheme. A simple

discretization for solving the anisotropic di�usion equation, an equation similar to (7), can

be written using a compact matrix notation as proposed in [13]. First, the nonlinear spatial

term is discretized by

r � (g(jruj2)ru) =
X

j2N (i)

gk
j
+ gk

i

2h2
(uk

j
� uk

i
) (8)

where N (i) is the set of two neighbors of i, one neighbor for the boundary pixels. It fol-

lows that equation (7) can now be discretized in full, and a compact way of writing this

discretization is

uk+1 � uk

�
= A(uk)uk + �d � (d � uk � fk); (9)
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where uk is a signal vector of size N and A(uk) = (aij(u
k)) is an N � N matrix whose

elements are given by

aij(u
k) =

8>><
>>:

g
k
i
+g

k
j

2h2
j 2 N (i);

�
P

n2N (i)
g
k
i +g

k
n

2h2
j = i;

0 otherwise.

(10)

Isolating uk+1 on the left hand side, we obtain

uk+1 = (I + �A(uk))uk + �d � (d � uk � fk): (11)

This scheme is known as the explicit scheme, since uk+1 is obtained explicitly from uk without

a matrix inversion. This scheme, that is based on forward Euler [5], is simple, straight-

forward, and computationally cheap because only matrix-vector multiplications are required.

However, it is conditionally stable and therefore limited to small time steps. A similar

scheme was also used in [6], and requires several iterations with small time steps because of

the stability constraint. Our goal is to implement (7) with the fewest number of iterations

as possible, preferably even a single iteration. In order to use a single large time step, we

explore another scheme that was proposed in [13], which is based on backward Euler

uk+1 � uk

�
= A(uk)uk+1 + �d � (d � uk � fk); (12)

Rearranging terms, so that uk+1 is on the left hand side and uk is on the right hand side, we

obtain

(I � �A(uk))uk+1 = uk + �d � (d � uk � fk): (13)

This scheme is known as the semi-implicit scheme, since uk+1 is obtained implicitly from uk by

inverting a matrix. Although a matrix inversion is in general an expensive O(N3) operation,

the matrix in equation (13) is a tridiagonal matrix which can be inverted e�ciently with a

complexity of O(N). The semi-implicit scheme is unconditionally stable, with no constraints

on the time step due to stability considerations. A straight-forward extension of the one-

dimensional semi-implicit scheme (13) to higher dimensions is

 
I � �

mX
l=1

Al(u
k)

!
uk+1 = uk + �d � (d � uk � fk); (14)

where m is the number of coordinates. The matrix Al(u
k) corresponds to the derivatives

along the l-th coordinate axis. The scheme is again unconditionally stable. It is worthwhile

noticing that the only drawback when moving to higher dimensions is in the e�ciency of (14):

the matrix
P

m

l=1Al(u
k) is no longer tridiagonal and therefore the matrix inversion at each

time step is costly. Therefore, split-operator methods [5] are proposed for gaining e�ciency
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by the concept of separation of variables. The operator splitting scheme proposed in [13] as

the method of choice, the additive operator splitting (AOS), is

1

m

mX
l=1

�
I �m�Al(u

k)
�
uk+1 = uk + �d � (d � uk � fk): (15)

The scheme in (15) is unconditionally stable, reliable and e�cient, and will be used for solving

(7) numerically. Moreover, the results are obtained with a single time step of �t = 10:0,

which means that only two tridiagonal matrix inversions are enough to get to a point near

the optimum of the functional in (4) that is visually satisfactory. For the blurring d, in all

our experiments we �rst construct the matrix D:

D =

8><
>:

0:5 if i = j

0:25 if ji� jj = 1, or (i; j) = (1; N), (N; 1)

0 otherwise

(16)

where the matrix is of size N � N , corresponding to a square image. For an image U ,

d � U is equivalent to DUDT . We assume that the noise is an additive random noise with

a variance of �2 = 6:0, with zero mean. Finally, the regularization step for calculating the

presmoothing operation L�u in (7), is done by solving the linear di�usion equation for a

very small time step of size T = �2=2 before each iteration. Since the equation is linear, a

simpler splitting scheme than the AOS can be used for the regularization step. We chose

the locally one-dimensional (LOD) scheme, described in [13], for the implementation of the

regularization step in our experiments.

4 Results

Figure 1 presents an original color image which is used to test our algorithm. After blurring

and adding noise to the original image by using the parameter values speci�ed in Section 3, we

reach the degraded image observed in Figure 2. A straight-forward method to approximate

the original image, starting from the degraded image, is to apply a median �lter for the

denoising and then use unsharp masking for the deblurring. Experimenting with several

parameter values to �nd the best combination, we reach the restored image in Figure 3.

The variational nonlinear restoration approach, described in the previous sections, can now

be applied to improve the degraded image in Figure 2. We note that throughout this work, we

remain in RGB color space treating each channel independently. In order to add a perceptual

component to our model, let us propose a slight modi�cation that takes into account the

fact that the human eye tends to prefer sharp images. Instead of the constraint in (3),

keeping the image u close to the initial degraded image f , let us keep the image u close to a

deblurred initial image d�1�f . Our initial condition remains the image f . As a consequence,

the resulting Euler-Lagrange equation is slightly modi�ed compared to equation (7). It now
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becomes

@u

@t
= r �

 
1

1 + jrL�uj2=c
ru

!
+ �(d � d � u� f): (17)

Since d � d�1 � f = f . The term associated with the parameter � is responsible for the

deblurring. Figures 4,5 illustrate the di�erence between applying equations (7),(17) respec-

tively, after tuning each of the two for best restoration of our reference test image. We will

see that in Table 1, where quantitative (non-visual) comparison of the amount of closeness

to the original image in Figure 1 is performed, the modi�cation done in equation (17) ac-

tually causes a larger deviation from the original, as expected. However, qualitative visual

examination of Figure 5 reveals a somewhat shaper looking image compared to Figure 4 (it

is sometimes di�cult to observe this e�ect on a printed paper, an image viewer can highlight

the di�erence). Our experiments on the other test images indicate that this way of introduc-

ing extra sharpening before the tuning can produce some visually more pleasing results with

no extra e�ort. As long as we anticipate its e�ect, this modi�cation is sound and within the

general framework of our model.

Using the one step implicit method to approximate the solution to (17), we try di�erent

values for the regularization parameter �. As expected, zero regularization produces an

over-sharpened image, as in Figure 6, whereas � = 0:5 generates an image that is too

smooth (see Figure 7). The right balance is achieved with a regularization of � = 0:25, as

in Figure 5, which is closer to the original image in Figure 1 than the attempt in Figure 3.

The solution method applied to approximate (17) uses a single iteration of �t = 10:0 with

an implicit method. We note that performing 10 iterations of �t = 0:1, has a minor e�ect on

the resultant image. In addition, applying the explicit Forward-Euler instead of the implicit

Backward-Euler does not succeed to get far from the initial degraded image in a single time

step. This is expected, since the di�usion equation has an in�nite propagation speed [5].

The Backward-Euler has an in�nite numerical signal propagation speed, i.e. information

propagates throughout the entire physical space during each time step. The Forward-Euler

has only a �nite numerical propagation speed, therefore its performance is substantially

limited when using a single time step.

The procedure of designing the �lter is as follows. It is possible to tune the parameters once,

using a natural test image. Then, di�erent di�usivity functions g(jruj2) can be picked,

along with adapting the threshold as desired. We note that the regularized Perona-Malik

discussed in Section 2 is relatively insensitive to the threshold - a single threshold can be

used for all subsequent images. If we use the CLMC �lter (see [13]), more smoothing can

be achieved on at regions but the noise is not distributed evenly over the whole image as

a consequence. When we use the convex smoothing potential [14], it is possible to achieve

evenly distributed noise but the image remains noisier. This is somewhat similar to the

behavior analyzed in [14]. The regularized Perona-Malik is a good compromise between the
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two for the purpose of obtaining an initial satisfactory deblurred and denoised image, but

further performance improvements and di�usivity choices depend on the application at hand.

Finally, Figures 8,9,10,11,12,13 apply (17) to improve two other test images which were de-

graded using the same model described in Section 3. The same parameters that were tuned

for the previous test image are used with the new images as well.

Table II: l2 norm deviation from original

Image Initial Output (17) Output (7)

Grapes 0.371 0.304 0.300

Packard 0.725 0.686 0.667

Circles 1.463 1.441 1.398

In Table II, the relative l2 norm deviations are calculated for the three test images. The cal-

culation is performed as follows. Let v denote the original image before the degradation. Let

u denote the approximate restoration result. The relative error percentages are calculated

by

ku� vk2

kvk2
: (18)

The deviation results are expected from our model. As mentioned earlier, the deviations of

Output (7) are smaller than the ones of Output (17). In both cases, an improvement in the

deviation from the original is achieved due to the �ltering operation, compared to the initial

deviation of the degraded image from the original. In the next section, we will try to further

understand our output results by analyzing the 1D constituents of our model.

Figure 1: Original image.
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Figure 2: Blurred noisy image.

Figure 3: Median with a 3x3 window followed by unsharp masking with 60% enhancement factor.
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Figure 4: deblurring and denoising with the one step implicit method according to equation (7),

� = 0:24, regularization of 0.075.

Figure 5: deblurring and denoising with the one step implicit method according to equation (17),

� = 0:08, regularization of 0.25.
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Figure 6: deblurring and denoising with the one step implicit method according to equation (17),

no regularization.

Figure 7: deblurring and denoising with the one step implicit method according to equation (17),

regularization of 0.5.
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Figure 8: Original image - Packard.

Figure 9: Original image - Circles.
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Figure 10: Blurred noisy image - zoom in.

Figure 11: Deblurred and denoised image with the one step implicit method according to equation

(17), regularization of 0.25.
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Figure 12: Blurred noisy image - zoom in.

Figure 13: Deblurred and denoised image with the one step implicit method according to equation

(17), regularization of 0.25.
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5 Analysis

Besides being an e�cient scheme, an additional advantage of the AOS scheme is that the

2D scheme consists of 1D building blocks. Therefore, for the analysis, one can easily process

1D slices of the image by using parts of the code that was written for the implementation,

or perform an analysis through run-time.

In Figure 14, a one-dimensional horizontal slice of the image that contains the collar of the

bottle is plotted, intensity of the red as a function of position. The edge in the middle is

clearly visible, both the original edge (Figure 14, left) and the noisy blurred edge (Figure

14, right) are shown.

Although the one-channel (the red) and particular image slice that was chosen can not

represent the entire color image in a quantitative manner, their qualitative behavior reveals

some important aspects. In Figure 15, it is seen how denoising and deblurring was performed

on Figure 14 (right). The one step implicit method result obtained in Figure 15 was able

to achieve an edge-sharpening, much like the color image in Figure 5. The method is found

to perform the best and achieve the correct trade-o� with � = 0:25. The two extremes are

shown in Figure 10: � = 0 results in a strong sharpening of the edge but more noise remains,

whereas � = 0:5 does the opposite.

Some explanation for the behavior of di�erent smoothing potentials and parameters on the

restoration process can be found by examining the nonlinear di�usivity term in our 1D

slice. The di�usivity term is dependent on the gradient, where we apply the gradient on the

noisy blurred signal of Figure 14 (right). In Figure 17, it is seen how the correct trade-o�

is achieved: the peak responsible for the edge in the middle of the collar is sharp, and in

between the peaks the di�usivity is almost decayed completely. This sharpness surrounding

edges is even more pronounced with � = 0, Figure 18 (left), but at the expense of increasing

the noise. On the contrary, when increasing the regularization to � = 0:5, it can be deduced

that the edges seen in Figure 16 (right) are less sharp due to the bumps inside the troughs

as observed in Figure 18 (right), located in between edges.

6 Conclusions

The problem of deblurring and denoising color images can not be convincingly solved by

linear means to produce visually pleasing results, since a correct treatment around edges re-

quires a nonlinear model. In addition, deblurring and denoising are two competing forces that

are interfering with each other, which makes the problem even harder. Nonlinear restora-

tion approaches should be used to tackle this problem, but they tend to be computationally

expensive and cumbersome.
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Figure 14: Cross section of the original image and the noisy blurred image.
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Figure 15: Cross section after processing: one step implicit method with regularization � = 0:25.
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Figure 16: Cross section after processing: one step implicit method with regularizations � = 0:0,

� = 0:5.
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Figure 17: Di�usivity in cross-section: one step implicit method with regularization � = 0:25.
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Figure 18: Di�usivity in cross-section: one step implicit method with regularizations � = 0:0,

� = 0:5.

A nonlinear variational restoration approach is proposed which is an extension to recently

developed methods for the problem of denoising. The method that results from this approach

is fast and e�cient, and in a single iteration it is possible to achieve visually pleasing results.

Iterative methods may reach closer to the minimum of the functional at hand, but the

one-step method might be considered a good trade-o� between performance and expense of

computation for some applications. It can also be used as a pre-processing step to facilitate

further processing. The method is based on the additive operator splitting (AOS) scheme [13]

that allows the separation of variables. In addition, it is possible with the AOS to determine

which terms and parameters in the equation are critical to the success of the solution, by

examining simpler calculations on one-dimensional selected slices of the image. By tuning

the parameters we obtain an inexpensive algorithm to deblur and denoise color images in

one large time step.
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