

Th e ULTR AVIS Syste m

Gunte r Knitte l
Clie n t and Med ia Syste m s Laboratory
H P Laboratorie s Palo Alto
H PL-2000-100
July 27th , 2000*

E-m ail: k nitte l@h pl.h p.com

com pute r
graph ics,
volum e
re nd e ring,
raycasting

Th is pape r de scrib e s arch ite cture and im ple m e n tation of th e
ULTRAVIS syste m , a pure softw are solution for ve rsatile and
fast volum e re nd e ring. It provide s pe rspe ctive raycasting, tri-
line ar inte rpolation, on -th e -fly classification using look -up
table s, gradie n t sh ading (both diffuse and spe cular re fle ction),
four ligh t source s, and alph a blend ing. For h igh fram e rate s,
e arly ray te rm ination and em pty space sk ipping are
im ple m e n ted . Furth e rm ore , subsam pling during m otion is
provided . Th e syste m acce pts raw data se ts of 8-bit voxe ls as
w e ll as pre -se gm e n ted data se ts contain ing up to 16 diffe re n t
m ate rials. For gradie n t sh ading, th e gradie n ts are
pre com puted and included in 32-bit voxe ls. Additionally, th e
syste m supports volum e an im ation, i.e ., th e d isplay of a
se qu ence of data se ts.

Th e syste m w as spe cifically de signed for Pe n tium III CPUs,
and m ak e s e xtens ive us e of MMX and Stre am ing SIMD
instructions. It is a m ulti-th re aded application and th us tak e s
advantage of m ulti - proce ssor platform s. Tim e -critical portions
of th e code h ave b e e n h and-optim iz e d in asse m ble r. As a re sult,
th e syste m can ach ie ve inte ractive to re al-tim e pe rform ance .

ULTRAVIS runs on th e W indow s NT 4.0 ope rating syste m on
standard PCs.

* Inte rnal Accession Date Only Approved for Exte rnal Publication
 Copyrigh t H e w le tt-Pack ard Com pany 2000

The ULTRAVIS System

Gunter Knittel
Hewlett-Packard Laboratories, Visual Computing Department, knittel@hpl.hp.com

al-
Each
ase
ll

vox-
gle
me
pres-
s.
 [2],
 of
 dis-
he
rent
d is

bout
 of

age
ure

ock
the
tail
ely.

ig-
li-
e/
w-
ame
ABSTRACT

This paper describes architecture and implementation of the
ULTRAVIS system, a pure software solution for versatile and fast
volume rendering. It provides perspective raycasting, tri-linear
interpolation, on-the-fly classification using look-up tables, gradi-
ent shading (both diffuse and specular reflection), four light
sources, and alpha blending. For high frame rates, early ray termi-
nation and empty space skipping are implemented. Furthermore,
subsampling during motion is provided. The system accepts raw
data sets of 8-bit voxels as well as pre-segmented data sets contain-
ing up to 16 different materials. For gradient shading, the gradients
are precomputed and included in 32-bit voxels. Additionally, the
system supports volume animation, i.e., the display of a sequence of
data sets.
The system was specifically designed for Pentium III CPUs, and
makes extensive use of MMX and Streaming SIMD instructions. It
is a multi-threaded application and thus takes advantage of multi-
processor platforms. Time-critical portions of the code have been
hand-optimized in assembler. As a result, the system can achieve
interactive to real-time performance.
ULTRAVIS runs on the Windows NT 4.0 operating system on stan-
dard PCs.

CCS Categories and Subject Descriptors: I.3.4 [Computer
Graphics]: Graphics Utilities - graphics packages; I.3.3 [Computer
Graphics]: Picture/Image Generation - display algorithms
Additional Keywords: volume rendering, raycasting

1 INTRODUCTION
It is commonly understood that real-time volume rendering requires
special-purpose hardware [13], multi-processor servers [10], [16] or,
with some restrictions, 3D texturing hardware [1], [5], [6], [8], [17].
On the other hand, the performance of commodity CPUs is increasing
at a tremendous speed. Furthermore, specialized multi-media hard-
ware extensions (e.g., MMX) can be used for many basic volume ren-
dering operations such as tri-linear interpolations. Also, memory
costs have decreased so much that all but the largest data sets can be
placed into main memory for easy access. Thus, the use of a high-end
PC for software-based volume rendering is intriguing.
However, one major obstacle towards high performance remains: the
limited memory bandwidth, even more so because volume rendering
requires three-dimensional access to the data set, and frequent access
to tables. Thus, the use of the on-chip caches decides on the achiev-
able performance.
There have been few attempts to achieve high-speed volume render-
ing in software on a single workstation or PC. Probably the most
l-
t

en-
prominent one is the Shear-Warp Factorization algorithm [9]. In this
method, a projection plane is defined which is perpendicular to the
largest component of the view vector. The slices of voxels parallel to
this plane are sheared according to the observer position. Then, a par-
allel projection is performed slice by slice in front-to-back order. The
resulting distorted image is then corrected (warped) and displayed.
Voxels are accessed in scan-line order, giving a good spatial coher-
ence. Furthermore, the voxels are run-length encoded in all three
dimensions, as well as the pixels in a scan line. Thus, runs of empty
voxels or opaque pixels can be skipped, reducing memory traffic and
processing time. The method achieved about 1frame/s for 2563 data
sets on a typical workstation of that time. However, the method
requires extensive pre-processing, and is only fast for parallel pro-
jections.
In [7], the grayvalues in a 3×2×2 block are reduced to only two v
ues such that mean and variance in the block are preserved.
voxel is assigned one bit selecting the corresponding value. In c
of 8-bit quantities, the data for one block fits into a 32-bit word. A
blocks of the volume are compressed redundantly such that all 8
els needed for tri-linear interpolation are available after one sin
memory access. Again, interactive operation in the order of 1fra
per second was achieved. However, the method uses lossy com
sion of the data set, which is unacceptable for many application
The data set is rendered into a set of layered depth images in
which are blended using 2D texturing hardware. Approximations
new views can quickly be generated by reusing some of the more
tant images, provided the new viewpoint is sufficiently close to t
previous one. Also, adaptive resolution can be used for the diffe
images, which reduces the total number of samples. The metho
used for interactive volume navigation, i.e., a viewing frustum of
limited depth is placed inside the data set. The authors achieve a
4-6 frames/s using a 300MHz Pentium II CPU, with a resolution
160×160 pixels and about 120k voxels in the view frustum.
The approach presented here aims at avoiding restrictions or im
quality compromises of these kinds. Furthermore, it should be a p
software system (with the exception of hardware-supported bit bl
transfers) and still achieve interactive operation. An overview of
ULTRAVIS architecture is given in section 2. Sections 3 and 4 de
the implementation and the performance of the system, respectiv

2 THE ULTRAVIS ARCHITECTURE
The block diagram of the different software modules is shown in F
ure 1. The ULTRAVIS system was designed as a client/server app
cation, allowing a thin client to connect to a powerful storag
rendering server or server farm. The primary target platform, ho
ever, is a single PC. Then, client and server are running on the s
machine.
The ULTRAVIS system currently supports four voxel types: 8-bit va
ues (V7..0) called V, 8-bit values plus identifiers for up to 16 differen

materials (16 bits, I3..0V7..0 with 4 MSBs unused) called IV, 8-bit

values and gradient components (Gz7..0Gy7..0Gx7..0V7..0), called

GV and the latter including material identifiers
(I3Gz7..1I2Gy7..1I1Gx7..1I0V7..1), called IGV. Maximum data set

dimensions are 256×256×256.
In this paper we will focus on the memory data structure and the r
dering operation.

3 IMPLEMENTATION

The ULTRAVIS system is a collection of well-known and new tech-
niques for fast raycasting. Most of its performance comes from the
unique cache optimizations and the use of the SIMD-extensions as
described in the following sections.

3.1 SIMD-Extensions of Pentium III CPUs
We can only give a very short description of this technology. Excel-
lent introductions can be found in [12] and [15].
SIMD extensions exist for both integer (MMX) and floating-point
(SSE) data types. MMX provides eight 64-bit registers (MM0-
MM7), which can hold one 64-bit operand, two 32-bit, four 16-bit or

Figure 1: Architecture of the ULTRAVIS System as a Client/Server Application

Dial
Box

Settings

Resam-
pling

Param.

Param.
Table
Editor

Tables

Editor

Classi-
fication

Param.

Param.
Editor

Param.

Server
Config.

Hostdata

Editor

Server Interface

Volume
Datasets

Load,
Save,
Re-

format

Client
Interface

Win-
Socket

API

Win-
Socket

API

C
om

pl
ex

 U
LT

R
A
V

IS
M

em
or

y
D

at
a

S
tr

uc
tu

re

Combined
Param.

Set

Front/
Back

Frame
Buffer

Win-
Socket

API

Front/
Back

Frame
Buffer

Association

LOCAL OR
REMOTE
RENDERING AND
STORAGE
SERVER

One
Render-
Thread

per CPU

LOCAL
CLIENT:
USER

DirectDraw /
2D Graphics

Hardware
StretchBitBlt

Remote Server(s): TCP over (wireless) Network

Remote Server(s): UDP over (wireless) Network

Final
Display
Buffer

LOCAL
DISPLAY
SERVER

INTERFACE

MP Pentium-III System(s)Low-Performance Desktop, Notebook, Handheld

Local Server:
Shared Memory

Local Server: renders into

Client
Interface
(Decom-
pression)

Server
Interface
(Com-

pression)

Win-
Socket

API

User
Pref-

erences
Manager

User
Prefs

On-line
Manuals

Help
System

Windows CE,
Windows 98
Windows NT

Windows NT

off-screen
Video

Memory
Main

Memory

off-screen video memory
Remote Server:

Setup

Shading
Param.
Editor

Header
Files

Load &
Save
User
Interf.

Association

Create
Acce-

leration
data

arts

 the
d on

 the
d the

her-

an
or-

er

ed
eight 8-bit operands each. An MMX-instruction is applied to all
operands in one or two MMX-registers. Most MMX-instructions
execute in one clock (except multiply).
SSE provides a set of eight 128-bit registers (XMM0-XMM7),
which can hold four single-precision floating-point operands each.
Again, an SSE instruction is applied to all four floating-point oper-
ands or operand pairs. As an example, an ADD has a latency of 4
clocks with a throughput of 1 every 2 clocks [4].

3.2 Cache Optimizations and Spread Mem-
ory Layout

As stated earlier, the limited memory bandwidth of a PC is the main
problem to solve. In our implementation, memory accesses occur
due to the following reasons:
q Access to the data set itself. For each raypoint, 8 voxels of 1, 2

or 4 bytes must be read for tri-linear interpolation.
q One access to a color/opacity table per raypoint.
q Additional accesses to rendering parameters such as thresholds,

shading coefficients and more per raypoint.
The means to alleviate this problem are the CPU caches, of which we
primarily consider the L1 cache. In case of a Pentium III CPU, the L1
data cache is a four-way associative cache with a total capacity of
16KByte. There is a separate instruction cache of the same size [3], [4].
We’ll start the discussion with the tables and parameters. Ideally,
these data items would be placed into a fast on-chip RAM, under full
software control, as it can be done on many DSPs (Digital Signal
Processors). In the absence of such feature on the Pentium III CPU,
we try to mimic a RAM using the L1 cache. To this end, a way must
be found to lock a data item into the cache once it has been read. This
is done using a “spread memory layout” as explained below.
First, let’s consider a direct mapped cache as shown in Figure 2. Seen
from the cache, the memory is organized as a set of consecutive pag-
es, equal in size to the cache. The cache memory itself is organized
in lines (32 bytes for the Pentium III). Data is transferred to and from
the cache in units of complete lines.
The most characteristic feature of a direct mapped cache is that a line
in memory at offset n can only go into the cache line at offset n. Thus,
if a program only accesses the gray memory lines in Figure 2, fre-
quent cache line replacements (or thrashing) will occur.

N-way associative caches alleviate this disadvantage. Conceptually,
a 4-way associative cache can be thought of as a collection of 4 direct
mapped caches, as shown in Figure 3.
Then, each memory line has four places to go, and a program can
access up to four lines at the same offset before a replacement occurs.
Now let’s consider how the volume data set is placed into memory.
We allocate memory space for four times the size of the data set, and
store the data set such that only the first quarter of each page is used,
such as shown in Figure 4a. As a consequence, voxels can only be
cached in the first quarter of each cache block. Put differently,

accesses to voxels can never cause replacement of data which hap-
pens to be in the other parts of the cache. This can be exploited for
frequently accessed tables by placing them into the remaining p
of the first four memory pages, as shown in Figure 4b.

In this way, frequently accessed data items are virtually locked in
cache for fast access. Up to 12KByte are available for this metho
a Pentium III CPU.
However, there are two disadvantages: the cache capacity for
volume data set has essentially been reduced to one fourth, an
required main memory size has been increased fourfold.
Let’s first consider the reduced cache size. For a good cache co
ence, we use the well-known technique of tile casting as shown in
Figure 5. The idea is, that voxels fetched for a given raypoint c
potentially be reused for many new raypoints in its 3D neighb
hood.

Still, storing the voxels in memory in a naïve way (for example, off-
set = Z7..0 Y7..0 X7..0) can produce thrashing since the observ

position is arbitrary. To avoid this, we use a cubic-interleav
address function, i.e.,

(1)

Figure 2: Direct Mapped Cache

Cache Main Memory

Page 0 Page 1 Page N

...

One Cache Line

40h
60h
80h
A0h
C0h
E0h

20h
00h

40h
60h
80h
A0h
C0h
E0h

20h
00h

40h
60h
80h
A0h
C0h
E0h

20h
00h

40h
60h
80h
A0h
C0h
E0h

20h
00h

Offset

Figure 3: 4-Way Associative Cache

Figure 4: Spread Memory Layout and Table Placement

Figure 5: Tile Casting, 4×4 Rays

Page 0

Main Memory4-Way Associative Cache

Page 1 Page 2 Page N

...

Page
k

Main Memory4-Way Associative Cache

Page
k+1

Page
k+2

Page
k+3

...

Volume Data

...

a)

b) Tables and other local data

Screen

One Iteration16 Raypoints

Plane n

Tile

Plane n+1

Z7…0 Y7…0 X7…0, ,() Z7Y7X7Z6Y6X6Z5Y5X5…→

…Z4Y4X4Z3Y300X3Z2Y2X2Z1Y1X1Z0Y0X0

o be
ion
un-

ain-
s the
ruc-

the
 is

ay’s
ary
to
w-
 to
ig-

ta set
le.

an
(In (1), we assumed 8-bit voxels. The two zero bits realize the spread
memory layout.) Then, any arbitrarily located cubic region of
dimension n occupies exactly n×n×n different cache locations (n
being a power of two, and n3 ≤ cache size). Thus, as long as the
bounding cube of the 16 raypoints fits into the cache, all voxels need-
ed for their processing can be cached without mutual replacement. If
the raypoint spacing is approximately the grid spacing, an 8×8×8
region can always hold the 4×4 raypoints. In case of 8-bit (32-bit)
voxels, this requires as little as 512Byte (2KByte) cache capacity.
Thus, even the algorithmically reduced cache capacity is sufficient
to achieve a high hit ratio. Another advantage is that cache line fills
always load a certain three-dimensional region.
However, the construction of the memory offset from the coordi-
nates of a voxel is quite complex. Here we use a table-based con-
version as reported in [14]. The bit patterns produced by the
individual coordinates are independent from each other, and can
therefore be looked up in three address translation tables (ATT) and
ORed together. Actually, two tables are always the same except for
a one-bit shift, see the Y- and Z-patterns in (1). Thus, the memory off-
set Ω of a voxel at X,Y,Z is given by

(2)

The ATTs have 1KByte each and, as one might expect, are locked
into the cache using the technique just described.
Next, intermediate results for the 16 rays must be stored in a tile-
buffer. For each pixel, we store the coordinates and the plane number
of the current raypoint, the vector to the next raypoint (all vector
components in a 16.16 fixed-point format), and the accumulated col-
ors (8.8) and translucency (0.16). The pixel entries are organized as
a double-linked list for early ray termination (see section 3.8).
1KByte is allocated for the tilebuffer in the cache, as well as for all
local variables and rendering parameters.
The next class of tables are the color look-up tables (CLUT). A
CLUT is accessed by the interpolated 8-bit function value of a ray-
point, yields a 32-bit RGBα-quadruple and has 1KByte. Each mate-
rial has its own CLUT. Thus, the size of all CLUTs exceeds the
remaining cache capacity. However, the CLUTs are stored such that
they can only replace themselves in the cache. Furthermore, ele-
ments of up to four CLUTs can be kept in the cache. Thus, if the data
set has four materials or less, this is again approximate to having a
dedicated on-chip RAM.
Finally included in the spread memory layout is an acceleration data
structure (ADS) for empty space skipping (see section 3.7). This
gives the memory layout as shown in Figure 6.

Although the addressing scheme and the memory layout seem t
quite convoluted, they are well worth the effort as outlined in sect
4. A single cache miss can consume as much time as literally h
dreds of CPU operations.
It should be noted, though, that the cache structure can only be m
tained during the actual frame generation. If the system execute
user interface, or during API calls or task switches, this cache st
ture will be corrupted.
The disadvantage of the increased memory footprint is simply
price we pay for high performance. However, memory capacity
much more easily available than bandwidth.

3.3 Ray-Volume Intersection Tests
Conditional branches can severely reduce performance on tod
deeply pipelined CPUs. For perspective raycasting from arbitr
viewpoints, the ray-volume intersection calculation is subject
these problems, even in the optimized form as given in [18]. Ho
ever, SSE and a modification to [18] allow an optimized algorithm
be used, which removes all conditional branches. As shown in F
ure 7, the observer can be in 27 sub-spaces: either inside the da
(not considered here) or outside with one, two or three faces visib

Given observer position and a viewing ray , the intersection

point with any of the volume faces is given by

(3)

One coordinate of is always known, and so t is determined. In the

case of the face ,

(4)

A maximum of three different candidates exist, for example

(5)

The just defined vector is constant for a given viewpoint, and c
therefore be precomputed as

(6)

Figure 6: Spread Memory Layout

Ω ATT0 X7…0() ATT1 Y7…0() ATT1 Z7…0() 1«∨ ∨=

Volume
Data

Param.,
Variables

Page

CLUT0

ADS

1K

Volume
Data

CLUT1

ADS

Tile-
Buffer

Volume
Data

CLUT2

ADS

ATT0

Volume
Data

CLUT3

ADS

ATT1

Volume
Data

CLUT4

ADS

Empty

Volume
Data

CLUT5

ADS

Empty

Volume
Data

CLUT15

ADS

Empty

Volume
Data

Empty

ADS

Empty

Volume
Data

Empty

Empty

Empty

Volume
Data

Empty

Empty

Empty

k+0
Page
k+1

Page
k+2

Page
k+3

Page
k+4

Page
k+5

Page
k+15

Page
k+16

... ... Page
k+256

Page
k+N

...

Figure 7: Intersection Tests

maxx

maxy

maxz

minx
miny
minz

z

x

y

R

P

E

E R

P

P E t R⋅+=

P

x maxx=

t
maxx Ex–

Rx
------------------------=

t1

maxx Ex–

Rx

Qx

Rx
------= = t2

miny Ey–

Ry

Qy

Ry
------= =

t3

maxz Ez–

Rz

Qz

Rz
------= =

Q

Qx

minx Ex– for Ex minx<

maxx Ex– for Ex maxx>

0 else

=

o be
wo
ne

ses

ay-
 is
ble

The

ates
.
d
o-
ear
ar-

d

i.e.,

n

e,

ef-

he
zed
per-

re
m
that

ents

re

 for
(Qy and Qz accordingly). After performing (5), the one possible can-

didate must be isolated. Since the bounding box of the data set is con-
vex, t is given by

(7)

Thus, by using (5)-(7), all 26 cases have been reduced to one. After

performing (3), however, the resulting intersection point must
still be tested for being on the bounding volume of the data set. The
following relations must be satisfied:

A fast SSE implementation of this algorithm is outlined in Figure 8,
which uses the SSE operations RCP (fast reciprocal, 2 cycle latency
with a maximum absolute error of 1.5×2-12), MUL, MAX (returns
the maxima in four pairs), CMP (returns all “1” if true, else all “0” in
destination register), AND (bitwise AND) and MOVMASK (special
instruction which transfers the four sign bits into an integer register).
Note that we perform 16 intersection tests in one loop (see Figure 5),
and that most constants can be kept in the SSE registers during that
operation for further speedup.1

3.4 Fetching the Voxels from Memory
It should be noted that only three accesses to the ATTs need t
done per raypoint for the tri-linear interpolation. This is because t
neighboring table entries can be loaded into an MMX-register in o
access, e.g., and , x being the x-coordinate

of the raypoint. From these six bit patterns, all eight voxel addres
are constructed by logical operations according to (2).

3.5 Tri-Linear Interpolation and Classifica-
tion

If the data set contains material identifiers, the first step for each r
point is to fetch the identifier of the nearest-neighbor voxel. This
the material i which is assigned to the raypoint. The user can disa
materials individually, if that has been done for i, the raypoint is dis-
carded. Otherwise the eight neighboring voxels are fetched.
material identifiers of all voxels are then compared to i. In case of a
mismatch, the corresponding voxel is set to zero. This gener
crisp material boundaries, especially if gradient shading is used
For the tri-linear interpolation we can exploit the Multiply-and-Ad
MMX-instruction, which can be used to perform two linear interp
lations. Thus, four such instructions are needed for one tri-lin
interpolation. If gradients are present, the components are tri-line
ly interpolated as well.
The resulting raypoint value VP is checked against a user-supplie

threshold and, if above, used as index into the proper CLUT,
 with λ={R,G,B}.

3.6 Gradient Shading
For data sets which include gradients, the following illuminatio
model is evaluated for each (valid) raypoint:

(8)

In (8), Iλ,P is the light intensity of a raypoint emitted towards the ey

ka, kd and ks are the ambient, diffuse and specular reflection co

ficients, respectively, i denotes the material identifier, is the
direction to the m-th light source with brightness Bm, and

. Also, .

The two remaining quantities ni and ai and the second and third term

in (8) require more explanation.
These terms are computed in floating-point format using SSE. T
interpolated gradient is transferred to the SSE-unit and normali
using the fast Square-Root-Reciprocal SSE-instruction (same
formance as RCP, see column to the left).
We assume white light sources at infinity. The light directions a
always relative to the main viewing direction, i.e., the direction fro
the eye to the center of the screen. One light direction is just
(similar to miner’s helmet), the other ones are 45° from the right, left
and above. Using the absolute value of the dot products implem
two-sided shading.
For the specular (third) term in (8), a number of simplifications a

made. First, we assume a constant viewing vector per tile (only

Figure 8: Fast Ray-Volume Intersection Test Using SSE

1 The problematic case ±∞ × 0 is forced to 0 by using a bitmask

derived from . Not shown for clarity.

t max t1 t2 t3, ,()=

P

minx Px maxx≤ ≤() miny Py maxy≤ ≤() minz Pz maxz≤ ≤()∧ ∧

XMM0

XMM1

RxRyRz-

1/Rx1/Ry1/Rz- RCP

RxRyRz

QxQyQz

-

-

t1t2t3-
XMM0

XMM1

XMM7
MUL

t1t2t3-

t2t3--
XMM1

XMM2

max(t1,t2)max(t2,t3)--

t2t3--

MOVE
SHUFFLE

XMM1

XMM2

MAX

ttt-

SHUFFLE

MAX

COPY

RxRyRz-

ExEyEz-

MUL

ADD

XMM0

XMM1

XMM6

PxPyPz-

RxRyRz-

ExEyEz-

XMM0

XMM1

XMM6

minxminyminz-

maxxmaxymaxz-
XMM4

XMM5

PxPyPz-

All 1 or 0-

-

XMM1

XMM4

XMM5

CMP <=

CMP >=
All 1 or 0All 1 or 0

All 1 or 0All 1 or 0All 1 or 0

All 1 or 0-

-

All 1 or 0All 1 or 0

All 1 or 0All 1 or 0All 1 or 0
XMM4

XMM5
AND

Mask
MOVMASK

Integer Register

Intersection Point is valid if {Bit2,Bit1,Bit0} = {111}

Q

ATT0 x() ATT0 x()

Cλ P, αP, CLUTi VP()=

Iλ P, ka i, Cλ P,⋅ kd i, Cλ P,⋅ Bm G Lm•⋅
m 0=

3

∑

ks i, Bm max ni G Hm• ai+⋅ 0,()⋅
m 0=

3

∑

+ +=

Lm

Hm
V Lm+

V Lm+
---------------------= ks i, 1 kd i,–=

V

ty.
 data

ich
lied

4×4

er-

cess
er-
rd,

tual
tion
ile-
ally

s
ust
his

rial
 sets,
pace
ff at

]. In
elow
om
ng,

ls
d in
 the

hip
n-

he
the
els
.
hot
ain
us,

g
les.
ng a

um
de.
and
 ani-
the shading, not for the raycasting) as the direction from the center of

the tile to the eye. Thus, the vectors are also constant and can be
precomputed prior to the rendering of a given tile. Second, the expo-
nentiation is replaced by a multiplication, an add and a clamp. This
is outlined in Figure 9. Essentially, the cosine is stretched by the mul-

tiplication and shifted such that , from which it

follows that . 1

This method shows a number of advantages. First, the function is
smooth around the origin where it is required most, even for large n.
This stands in contrast to table-based methods, which are always
prone to produce aliasing for narrow highlights. Second, the largest
deviation occurs for small values, and so the discontinuity may not
even be noticeable. Also, the approximation gets better for large n.
Finally, the method is computationally inexpensive since it avoids
the exponentiation.
Depending on the rendering mode, many products of the specular
term can be precomputed, in which case the computing requirements
are in the same order as diffuse shading.
SSE can speed up the required computations significantly. An exam-
ple is shown in Figure 10, which computes four dot products using

only five SSE instructions and also shows why there are exactly four
light sources.
Note that the user can set ka, kd and n for each material, and thus con-

trol the appearance (glossiness etc.) of each material individually.
Also, the user can set a threshold for the gradient magnitude below
which no shading is done. This can be used to highlight structures
inside the volume data set.

3.7 Empty Space Skipping
For empty space skipping, we use a separate acceleration data struc-

ture (ADS). Other than any form of Distance Coding [19], we use just
one bit to indicate whether or not a region of size 2×2×2 is emp
Note that for such a region 27 voxels are considered, and that the
set is divided into such regions in a space-filling manner.
A region is not empty if at least one voxel belongs to a material wh
is not currently disabled, and its value is above the user-supp
threshold for that material.
The bits are written into the ULTRAVIS memory structure such that
one byte and one quadword (64 bits) describe a region of size 4×
and 8×8×8, respectively.
Although the ADS itself is not hierarchical, the operations we p
form on its elements are so (a technique called hierarchy compres-
sion). This is because we can load one quadword in a single ac
into an MMX-register and test it for being all zero in one single op
ation. If the test fails, we can test an individual byte in that quadwo
and finally a single bit.
If a region is found empty, the plane of the next raypoint on the ac
ray is computed using a technique similar to that described in sec
3.3 (see also Figure 5). This plane number is written into the t
buffer. Processing of all intermediate raypoints on that ray basic
involves one read from the tile-buffer and one compare.
Additionally, if a region is found solid (not a single bit indicate
“empty”), the plane number for which the next empty space test m
be performed is computed, and also written into the tile-buffer. T
reduces the overhead of empty space skipping.
The ADS is rebuilt each time after the user either switches a mate
on or off or adjusts the thresholds. In case of a sequence of data
each data set has its own ADS. Since the overhead of empty s
skipping does not always pay off, the user can switch it on and o
any time.

3.8 Compositing and Early Ray Termination
Currently, the system only supports standard alpha-blending [11
case the accumulated translucency of the actual ray has fallen b
a user-supplied threshold, its entry in the tile buffer is removed fr
the double-linked list. Thus, despite the tile-oriented processi
these rays do no longer consume processing time.

3.9 DirectDraw
Using DirectDraw, an off-screen double buffer of 256×256 pixe
each (which is also the number of rays shot per frame) is allocate
the video memory of the graphics adapter, and made available to
rendering threads. Each completed tile is written from the on-c
cache via MMX registers directly to the video memory using no
temporal store instructions to avoid cache pollution [4]. After t
frame is completed, it is copied to the visible frame buffer and at
same time magnified to the final image resolution of 512×512 pix
using 2D graphics hardware, again under control of DirectDraw
In case of subsampling during motion, 128×128 rays are s
through the volume. The resulting 128×128 pixel images are ag
magnified to 512×512 screen pixels using fast 2D hardware. Th
the speed-up is typically greater than 3.5.

3.10 Multi-Threading
For each CPU in the PC, the ULTRAVIS system creates one renderin
thread. We use screen-space partitioning in units of 4×4 pixel ti
For an even workload, the threads assign themselves tiles usi
shared tile counter (dynamic self-scheduling).

3.11 Volume Animation
All data sets in a sequence must fit into main memory for maxim
performance. The threads run continuously in wrap-around mo
Still, however, the user has complete control over the operation
can move the data set and adjust rendering parameters while the
mation is running, due to the multi-threaded architecture.

Figure 9: Exponentiation Replacement

1 It is of course not the task to find an n which best approximates the

shape of a given cosq(x). The user can simply adjust n until the
results are satisfactory.

Figure 10: Computation of four Dot Products

Hm

cos(x)

cosq(x)

max(n*cos(x) + a, 0)

n 0()cos⋅ a+ 1=

a 1 n–=

XMM0

XMM1

L0xL1xL2xL3x

2 ADDs

L0yL1yL2yL3y

L0zL1zL2zL3z

GxGxGxGx

GyGyGyGy

GzGzGzGz

XMM2

XMM3

XMM4

XMM5 3 MULs

the
et to

 with
re-

 21,
8}

uires
ta set.
lin-

ires
er to
ot
 vol-
res
his
can
 for

ms
 the
es to
ers

 the
 8).

 lay-
n to

for-
me as
ring

tors
ed
me
 can
rom

 as
g

4 PERFORMANCE
The test machine is an HP Kayak XU PC with two 500MHz Pentium
III CPUs, 1GByte of main memory and a graphics adapter using the
TNT2 Ultra from NVidia. The test data sets are frequently used as
benchmarks: engine and MRI-head (courtesy UNC Chapel Hill).
The latter contains material identifiers for four tissue types. Both
data sets have about 256×256×110 voxels, however, the actual
bounding box can be smaller depending on the threshold values.
The VTune-tool from Intel, which monitors the CPU performance
using the various event counters of the processor, was used to mea-
sure the following performance details.

4.1 Ray-Volume Intersection Test
The pure ray-volume intersection test as shown in Figure 8 (includ-
ing all move, shuffle and logical instructions, but excluding type
conversion of the results) was implemented using 26 assembler
instructions. One test takes 30.82 clocks on average, and thus, the
intersection tests for one tile are performed in approximately 1µs.

4.2 Tri-Linear Interpolation
Decomposed into seven linear interpolations and performed using
the Multiply-and-Add MMX-instruction, the tri-linear interpola-
tions were implemented using between 14 (V) and 30 (IGV) assem-
bler instructions. One tri-linear interpolation takes between 12.6 and
19.5 clocks on average, giving a performance of 25M to 40M tri-lin-
ear interpolations per second per CPU. 1

4.3 Diffuse Shading
For GV and IGV, the user can select between no shading, diffuse-
only shading and combined diffuse and specular shading. Diffuse
shading (including gradient normalization) was implemented using
33 (GV) or 35 (IGV) assembler instructions. Diffuse shading for one
raypoint takes about 53 clocks or 106ns on average.

4.4 Diffuse and Specular Shading
For GV, combined diffuse and specular shading as defined in (8) was
implemented in 54 assembler instructions and takes 72.5 clocks or
145ns on average. Thus, this simplified method of generating high-
lights increases the computational expenses of diffuse shading by
only about 37% in this case.
For IGV, fewer terms can be precomputed since they depend on the
material identifier of the raypoint. Thus, 70 instructions are needed,
which take 102 clocks or 204ns on average per raypoint. Note that all
performance figures include the processing of four light sources.

4.5 Cache Hit Rate
For the images in Figure 11, we measured the cache hit rates for
accesses to the Address Translation Tables (ATT), to the volume data
set and to the CLUTs. Misses to both the L1 and L2 caches have been
counted. One L2 data cache miss always causes 32 bytes to be read
from main memory [3]. The measurements have been done using a
single-threaded version of the program. The results are summarized
in Table 2.
In all cases, the images have been generated using tri-linear inter-

polation, empty space skipping and early ray termination with
translucency threshold set to 1/256. The raypoint distance was s
0.75 grid units.
For Figures 11a-c, empty space was defined as the set of voxels
values below 30. Thresholds for the four different tissue types ce
brum, cerebellum, brain stem and all remaining tissue were {25,
23, -} (Figure 11d), {25, 21, 23, 41} (Figure 11e) and {51, 16, 6, 3
(Figure 11f).
For the engine data set, each raypoint in non-empty space req
three accesses to the ATTs and eight accesses to the volume da
The CLUT is only accessed for raypoints whose values after tri-
ear interpolation exceed the threshold.
For the MRI-head, each raypoint in non-empty space first requ
three accesses to the ATTs and one to the volume data set in ord
determine the material identifier of the raypoint. If the material is n
switched off, another three accesses to the ATTs and eight to the
ume data set follow. Since no materials are switched off in Figu
11e and f, column 4 = 6×column 3 and column 6 = 9×column 3. T
doesn’t hold for Figure 11d, since raypoints in non-empty space
still be in disabled material. Again, the CLUTs are only accessed
raypoints exceeding the corresponding threshold.
As can be seen in Table 2, the mechanism to virtually lock data ite
in the cache works very well. Note that columns 5 and 11 show
total number of cache misses during frame generation for access
the ATTs and CLUTs, respectively. In many cases the numb
imply that table elements are read from memory only once.
Equally important is the very high cache hit rate for accesses to
volume data set in main memory, which can exceed 98% (column
These results demonstrate the efficiency of the spread memory
out and the cubic-interleaved address function, and give reaso
hope that the performance of the ULTRAVIS system will scale well
with the CPU clock frequency.

4.6 Frame Rates

The frame rates were measured using the high-resolution per
mance counter of the PC. The rendering parameters were the sa
above, except that both CPUs were used. Subsampling du
motion was disabled. Table 1 summarizes the ULTRAVIS perfor-
mance on our test machine.

5 CONCLUSIONS AND FUTURE WORK

While it is undisputed that special-purpose hardware accelera
will always be superior in performance, efficient use of advanc
features of general-purpose CPUs can still result in a useful volu
rendering system. Furthermore, substantial performance leaps
be anticipated for the CPUs and PC systems of the near future, f
which the ULTRAVIS system will benefit automatically.
It is planned to include support for additional voxel types such
RGB, RGBα and IRGBα, as well as support for the mixed renderin
of polygonal and volume data.

1 The ray-volume intersection test needs 20 arithmetic FP operations.
Thus, a 500MHz Pentium III CPU achieves 1.19 clocks per instruc-
tion (CPI), 1.54 clocks per floating-point operation and
324MFLOPS in this part of the algorithm. In our implementation, a
tri-linear interpolation accounts for 24 arithmetic integer operations.
In case of V, one CPU achieves 0.9CPI and 0.53 clocks per arith-
metic integer operation. Thus, a 500MHz CPU achieves 952MIOPS
here.

Fig. Voxeltype Frames/s Typ. Range

11a V 10 6 - 14

11b V 2.2 1.5 - 2.5

11c GV 8 6 - 11

11d IV 6.2 4 - 7

11e IV 1.7 1.5 - 2.5

11f IGV 2.2 1.7 - 3

Table 1: Frame Rates (Examples)

,

,

-63

-
l

6 REFERENCES
[1] K. Akeley, “RealityEngine Graphics”, Proceedings SIG-

GRAPH 93, pages 109-116
[2] M. L. Brady, K. K. Jung, H. T. Nguyen, T. PQ Nguyen,

“ Interactive Volume Navigation”, IEEE Transactions on
Visualization and Computer Graphics, Vol. 4, No. 3, 1998,
pages 243-256

[3] Intel Corporation, “Intel Architecture Software Developer’s
Manual, Volume3: System Programming”, Order Number
243192, 1999, page 9-3

[4] Intel Corporation, “Intel® Architecture Optimization Refer-
ence Manual”, Order Number 245127-001, 1999

[5] T. J. Cullip, U. Neumann, “Accelerating Volume Recon-
struction with 3D Texture Hardware”, Technical Report
TR93-027, University of North Carolina at Chapel Hill, 1993

[6] A. Van Gelder, K. Kim, “Direct Volume Rendering with
Shading via Three-Dimensional Textures”, Proceedings
1996 Symposium on Volume Visualization, pages 23-30

[7] G. Knittel, "High-Speed Volume Rendering Using Redun-
dant Block Compression", Proceedings IEEE Visualization
’95 Conference, pages 176-183

[8] G. Knittel, “TriangleCaster - Extensions to 3D-Texturing
Units for Accelerated Volume Rendering”, Proceedings EG/
SIGGRAPH Workshop on Graphics Hardware ‘99, pages 25-
34

[9] P. Lacroute, M. Levoy, ”Fast Volume Rendering Using a
Shear-Warp Factorization of the Viewing Transformation”,
Proceedings SIGGRAPH ‘94, pages 451-458

[10] P. Lacroute, “Real-Time Volume Rendering on Shared Mem-

ory Multiprocessors Using the Shear-Warp Factorization”,
Proceedings IEEE/ACM ‘95 Parallel Rendering Symposium
pages 15-22

[11] M. Levoy, “Display of Surfaces from Volume Data”, IEEE
Computer Graphics & Applications, Vol. 8, No. 3, May 1988
pages 29-37

[12] A. Peleg, U. Weiser, “MMX Technology Extension to the
Intel Architecture”, IEEE Micro, Vol. 16, No. 4, August
1996, pages 42-50

[13] H. Pfister, J. Hardenbergh, J. Knittel, H. Lauer, L. Seiler,
“The VolumePro Real-Time Ray-Casting System”, Proceed-
ings SIGGRAPH 99, pages 251-260

[14] G. Sakas, M. Grimm, A. Savopoulos, “Optimized Maximum
Intensity Projection (MIP)”, Proceedings 6th Eurographics
Workshop on Rendering, Springer-Verlag 1995, pages 51

[15] S. (Ticky) Thakkar, T. Huff, “Internet Streaming SIMD
Extensions”, Computer, Vol. 32, No. 12, pages 26-34

[16] M. Wan, A. Kaufman, S. Bryson, “High Performance Pres-
ence-Accelerated Ray Casting”, Proceedings IEEE
Visualization ‘99 Conference, pages 379-386

[17] R. Westermann, T. Ertl, “Efficiently Using Graphics Hard-
ware in Volume Rendering Applications”, Proceedings
SIGGRAPH 1998, pages 169-177

[18] A. Woo, “Fast Ray-Box Intersection”, Graphics Gems,
edited by A. S. Glassner, Academic Press, 1990, page 395

[19] K. J. Zuiderveld, A. H. J. Koning, M. A. Viergever,
“Acceleration of Ray-Casting Using 3D Distance Trans
forms”, Proceedings of Visualization in Biomedica
Computing, 1992, pages 324-335

1 2 3 4 5 6 7 8 9 10 11

Fig. Type

Raypoints
in non-
empty
Space

Accesses
to ATTs

Cache
Misses
L1 / L2

Accesses
to Voxels

Cache
Misses
L1 / L2

Hit
Rates

L1 / L1+L2
(%)

Bytes
read
from

Volume
Data Set

(KB)

Accesses
to

CLUTs

Cache
Misses
L1 / L2

11a V 378,156 1,134,468 58 / 58 3,025,248 32,169 / 17,501 98.9 / 99.4 547 270,712 29 / 29

11b V 2,588,550 7,765,650 57 / 57 20,708,400 232,244 / 116,385 98.9 / 99.4 3,637 2,173,670 29 / 29

11c GV 319,143 957,429 124 / 58 2,553,144 98,185 / 56,125 96.2 / 97.8 1,754 211,059 29 / 29

11d IV 674,7831 3,538,812 90 / 90 4,713,351 61,980 / 49,952 98.7 / 98.9 1,561 497,921 48 / 48

11e IV 2,416,9762 14,501,856 118 / 118 21,752,784 424,562 / 268,059 98.0 / 98.8 8,376 1,886,104 91 / 68

11f IGV 1,064,492 6,386,952 239 / 119 9,580,428 363,976 / 184,496 96.2 / 98.1 5,766 627,973 61 / 60

Table 2: Cache Hit Rates

1 Raypoints in non-empty space, belonging to enabled material: 504,821
2 Measurement had to be terminated prior to image completion due to prohibitively long simulation times.

Figure 11: Sample Images, generated from 2562 Rays

a)

b)

c)

d)

e)

f)

	1 Introduction
	2 The UltraVis Architecture
	3 Implementation
	3.1 SIMD-Extensions of Pentium III CPUs
	3.2 Cache Optimizations and Spread Memory Layout
	3.3 Ray-Volume Intersection Tests
	3.4 Fetching the Voxels from Memory
	3.5 Tri-Linear Interpolation and Classification
	3.6 Gradient Shading
	3.7 Empty Space Skipping
	3.8 Compositing and Early Ray Termination
	3.9 DirectDraw
	3.10 Multi-Threading
	3.11 Volume Animation

	4 Performance
	4.1 Ray-Volume Intersection Test
	4.2 Tri-Linear Interpolation
	4.3 Diffuse Shading
	4.4 Diffuse and Specular Shading
	4.5 Cache Hit Rate
	4.6 Frame Rates

	5 conclusions and future work
	6 References

