
UDP Lite for Real Time Multimedia
Applications

Lars-Åke Larzon*, Mikael Degermark*†, Stephen Pink*†

Extended Enterprise Laboratory
HP Laboratories Bristol
HPL-IRI-1999-001
April, 1999

E-mail: [11n,micke,steve]@cdt.luth.se

UDP,
internet protocols,
checksums,
Ipv6, real time
applications

We introduce UDP Lite – a lightweight version of UDP with
increased flexibility in the form of a partial checksum. It
allows senders to specify packets as partially insensitive to
errors. The coverage of the checksum is specified by the
sending application on a per-packet basis. Because of its close
relationship to UDP, UDP Lite is easily integrated into an
existing UDP implementation.
UDP is a simple best-effort transport protocol that adds
multiplexing and an optional checksum to IP. Unlike TCP,
UDP does not provide reliability, in-order delivery or
congestion control, which has made it especially popular
among delay-sensitive real-time applications.
Audio/video applications often prefer damaged packets over
lost packets. One way for an application to allow delivery of
damaged packets is to disable the UDP checksum. This would
mean, however, that important application-specific headers
might pass unverified. Also, in the next version of IP, Ipv6,
the UDP checksum is mandatory since there is no header
checksum in Ipv6. These applications could benefit from
using UDP Lite instead of UDP. By reflecting the UDP Lite
policy with a partial checksum onto the link layer, the gain
can be even higher.

*Luleå University of Technology, Luleå, Sweden
†Swedish Institute of Computer Science, Stockholm, Sweden

UDP Lite for Real Time Multimedia Applications

Lars-Åke Larzon1, Mikael Degermark1,2, Stephen Pink1,2

1Luleå University of Technology, Luleå
2Swedish Institute of Computer Science, Stockholm

{lln,micke,steve}@cdt.luth.se

Abstract
We introduce UDP Lite – a lightweight version of UDP with

increased flexibility in the form of a partial checksum. It allows
senders to specify packets as partially insensitive to errors. The
coverage of the checksum is specified by the sending
application on a per-packet basis. Because of its close
relationship to UDP, UDP Lite is easily integrated into an
existing UDP implementation.

UDP is a simple best-effort transport protocol that adds
multiplexing and an optional checksum to IP. Unlike TCP,
UDP does not provide reliability, in-order delivery or
congestion control, which has made it especially popular
among delay-sensitive real-time applications.

Audio/video applications often prefer damaged packets over
lost packets. One way for an application to allow delivery of
damaged packets is to disable the UDP checksum. This would
mean, however, that important application-specific headers
might pass unverified. Also, in the next version of IP, IPv6, the
UDP checksum is mandatory since there is no header checksum
in IPv6. These applications could benefit from using UDP Lite
instead of UDP. By reflecting the UDP Lite policy with a
partial checksum onto the link layer, the gain can be even
higher.

1 Introduction
The number of applications that are sensitive to network

delay is increasing. Examples include real-time
communication between two or more hosts, media on
demand, networked multiplayer games, streaming
applications, etc. Most of these applications use the User
Datagram Protocol (UDP)[5] as their transport protocol.
UDP has properties that make it suitable for these kinds
of applications:
• The data rate is defined by the sending application.
• Incoming packets are delivered immediately to the

receiving application, even if they arrive out of order.
• Lost packets will not cause retransmissions by the

transport layer.
• For validation purposes, the Internet checksum [6] can

verify the UDP headers and the data payload.
The UDP protocol headers are shown in figure 1.

Shaded fields are the fields of the pseudo header provided
by the IP layer, and white fields belong to the UDP
header. The UDP checksum covers the conceptual IP
pseudo-header in order to protect against misrouted
packets.

If the checksum is enabled and fails at the receiving
side, e.g., due to a single-bit error, the entire packet is
discarded. Many real-time applications encode
audio/video in a format that handles single-bit errors in
the data payload better than the loss of a full packet. A
packet with a few bit errors will cause a glitch in the
experienced audio/video, while a lost packet can cause an

Source address

Destination address

UDP lengthProtoZero

Source port Destination port

Length Checksum

IP

 p
se

ud
o-

h
e

a
de

r
U

D
P

h
e

a
de

r

Figure 1: The UDP headers, from RFC 768 [5].

annoying pause for audio or a noticeable disturbance for
video. There are coding schemes for which a packet loss
can make subsequently received packets unusable since
they depend on data in the lost packet. In such cases it
would be better to avoid interruptions by delivering
packets with acceptable errors to the application.

This is relatively easy to do when using IPv4 since the
UDP checksum is optional.1 By turning the checksum off,
it is up to the receiving application to detect if there are
errors, and if they are acceptable. This will add extra
processing overhead and complexity at the receiving side.
A better solution would be to move parts of this
functionality away from the user application into the
transport layer. Moreover, disabling the checksum
completely is dangerous because errors in network or
transport layer headers can cause packets to be
misdelivered; guarding against this kind of error is an
important function of the transport layer.

UDP Lite is designed to provide a partial checksum that
only covers as much of the user data that the sending
application specifies as necessary. Errors in the rest of the
packet are ignored because they are assumed to be
acceptable for the destination application. This increased
flexibility is achieved while maintaining the simplicity of
UDP. UDP Lite can be easily integrated into or derived
from most existing UDP implementations.

With a partial checksum such as the one provided by
UDP Lite, it is undesirable that link layers drop packets
due to errors that are acceptable according to the sender.
We have investigated two ways to reflect the UDP Lite
policy onto the link layer.

The paper is organized as follows. First, we present the
UDP Lite protocol in section 2. In that section we also
present ways to reflect the UDP Lite policy onto the link
layer. A brief description of measurements of UDP traffic
is presented in section 3, together with comments on the
results. A brief discussion of how different applications
could benefit from UDP Lite is presented in section 4.
Finally, conclusions are presented in section 5.

2 UDP Lite

2.1 BASIC DESIGN
When designing a network protocol, there is a tradeoff

between simplicity, flexibility and optimality. One reason
for using UDP for delay-sensitive applications is the low
protocol overhead. Adding new functionality for in-order
delivery or error recovery would most likely increase
delay. Therefore, the design of UDP Lite is focused on

1 In IPv6 [8] however, the UDP checksum is mandatory since there is no IP
header checksum.

increasing the flexibility of classic UDP while preserving
its simplicity.

The motivation behind UDP Lite is the hypothesis that
with an increasing number of real-time applications that
use UDP, the number of packets dropped due to a few
single-bit errors that might be acceptable for the
destination application will also increase. Applications
with real-time audio/video data transmissions often use
coding algorithms where some bit errors in the data are
preferred over a lost packet. Therefore, it would be best if
the data validation mechanism did not drop packets
because of a few acceptable bit errors. This requires that
packets are divided into sensitive and insensitive parts.
Errors in the sensitive part of a packet should result in
dropped packets, while errors in the insensitive part
should not.

By using a partial checksum that only covers the
sensitive part of a packet, this policy can be achieved.
Since the receiver will only calculate the checksum over
the sensitive data, errors in the insensitive part will be
ignored. The amount of sensitive data in a packet is
specified by the sending application in the UDP Lite
header. To avoid complexity, the protocol requires that
the sensitive data in a packet start at the beginning. With
this requirement, the only new information needed in the
header is how many bytes at the beginning of the packet
are sensitive to errors. This new design has the effect of
allowing the next-level protocol above UDP, e.g., RTP,
the Internet Real Time Protocol [7], to have its header
checksummed without having to checksum the RTP user
data.

This means that the only difference between classic
UDP and UDP Lite is that the UDP Lite header carries
information about how many bytes from the beginning of
the packet are included in the checksum calculation. As
shown in figure 1, there is redundant information about
the packet length in the UDP headers. The UDP Length
field in the IP pseudo-header is calculated by subtracting
the size of the IP header2 from the packet length field in
the IP header. The Length field in the UDP header is the
length of the UDP header plus the UDP payload. The
UDP Length and the Length fields mismatch only when
there is padding after the UDP payload.3 By replacing the
Length field with a Coverage field, we obtain the headers
shown in figure 2.

The Coverage field specifies how many bytes, starting
from the first byte of the UDP Lite header, are sensitive

2 For IPv6, the sizes of extension headers are also subtracted.
3 Our investigations show that packets with padding after the UDP payload

are rare. Such padding does not fill any purpose.

to errors. In addition to this, the UDP Lite header and the
IP pseudo-header are always verified by the checksum,
which means that the least acceptable value of the
coverage field is eight (the number of bytes in the UDP
Lite header). With a checksum coverage value equal to
the packet length, UDP Lite packets are treated just as
classic UDP packets with the checksum enabled.

2.2 THE LINK LAYER
The key feature of UDP Lite is the partial checksum. It

allows senders to specify packets as partially insensitive
to errors. It can be argued, however, that the link layer
will already have dropped such packets before they are
received by the UDP Lite protocol. A response to this
argument is that Internet traffic studies have shown that
many errors are generated inside nodes rather than during
transmission.

An exception to this reasoning is that some network
links are naturally lossy; some wireless links cannot be
made reliable due to delay and spectrum efficiency
considerations. For these kinds of links, the UDP Lite
policy with a partial checksum can make a difference to
the application. We will examine two approaches to how
this can be achieved.

2.2.1 A PARTIAL LINK LAYER CHECKSUM

The most straight-forward solution would be to have a
partial checksum at the link layer for each hop along the
path between two endpoints. This is clearly the
architecturally cleanest alternative. However, as it
requires replacement of, or changes to, several existing
standards for link layer framing it is not feasible as a
short-term solution. Changing the link-layer standards
and deploying these new standards will take a long time if
at all possible. Moreover, there is little gain from doing
this over links with low error rates.

For links known to cause many errors, normally
detected by link layer protocols, one should design a new
link layer protocol where frames carry a partial

checksum. Such would be the case for wireless LANs or
cellular radio networks with a high ratio of real-time
flows. Coverage by the link layer checksum could be
determined by peeking at the checksum coverage field in
the UDP Lite header when sending a frame carrying a
UDP Lite packet.

2.2.2 IGNORING LINK LAYER CHECKSUM ERRORS

The most promising short-term approach, we think, is
not to have a partial checksum at the link layer level, but
to modify the device driver to ignore checksum errors for
incoming frames carrying UDP Lite packets. This
modified driver can be installed on arbitrary computers in
the network without disturbing other nodes. If this
modification is implemented in a gateway for a lossy
network, errors will not cause packets to be dropped by
the gateway. Instead, damaged packets will traverse the
network to the receiving host, where they are dropped if
the errors were in the part of the packets specified as
sensitive. To use this approach, there must be a way for
the hardware to ignore link layer checksum errors.
Currently, there are several hardware devices for various
link layer types that support this.

We believe that ignoring the link layer checksum is the
best short-term approach for reflecting the UDP Lite
policy onto the link layer without introducing new link-
layer framing. It can be deployed at strategic places in the
network without requiring changes to other computers.

3 Measurements
To investigate the need for UDP Lite, we have

performed two types of tests: passive and active tests.
During the passive tests, UDP traffic was tapped out of a
shared network segment by the tcpdump application. In
the active tests, well-known packet sequences were sent
to a specific receiver. In both cases, the traffic was stored
in trace files for later analysis.

3.1 PASSIVE TESTS
The analysis of the passive tests shows how often UDP

packets will be dropped by the receiving host due to a
failing checksum. There were 3 passive test sequences:
• 1,500,000 UDP packets that have travelled at least 10

hops each.
• 3,500,000 UDP packets from a university subnet with

~350 connected computers.
• 10,000,000 UDP packets from a city network with

about 200 home users connected through ADSL and
cable modems.

Source address

Destination address

UDP LengthProtoZero

Source port Destination port

Coverage Checksum

P
se

ud
o

h
e

a
de

r
U

D
P

 L
ite

h
e

a
de

r

Figure 2: The UDP Lite headers

The results from analysing these test sequences show
that roughly 0.8%, or 1 out of 125, of the UDP packets
that reach the destination will be discarded due to a
failing checksum. A closer study of the traces shows that
the majority of the UDP traffic in the first case comes
from streaming multimedia with its source in the US. For
the last two traces, most of the errors – around 95% - are
related to multiplayer games. In both cases, the errors
detected belong to a low number of flows – typically less
than 3.

This is an indication of the frequency of erroneous
packets that are detected by the Internet checksum used in
UDP. Packets lost along the way are not shown in this
analysis, nor are the error patterns in the packets. These
limitations are the motivation for the active tests.

3.2 ACTIVE TESTS
The traffic sent in these tests was generated by a random

traffic generator which given a seed value generates a
sequence of packets which vary in size and content. For
each test sequence, 100,000 packets with a size varying
from 120 to 640 bytes were sent from a sender to a
receiver at a rate of 20 packets per second (50ms between
the start of each packet). At the receiving side, the traces
were compared to the packet sequences generated. The
test sequences were as follows:
• Between two computers on the same Ethernet segment

with no background traffic.
• Between two computers interconnected via ADSL

modems over a 1 km copper wire.
• Between two computers on the same cable modem

segment with no background traffic.
• Between two computers connected to the Internet via

Ethernets. There are 6 routers between the two
computers.

• Same as above, but with 13 routers between the two
computers.

The results from these test sequences can be
summarized as follows. The number of erroneous packets
delivered to the receiver does not increase with distance.
The first test sequence with two computers on the same
Ethernet segment experienced 0.70% erroneous packets
while the last test sequence with 13 routers between the
endpoints experienced 0.73% erroneous packets. The
number of lost packets on the other hand increased from 1
out of 12,500 to 1 out of 7,200. Reordering of packets
never occurred in any test sequence. The Internet
checksum never failed in detecting erroneous packets.
When errors occurred, there were mostly single-bit errors.

At most, 4 consecutive bits were inverted. It never
happened that two consecutive packets contained errors.

3.3 COMMENTS TO THE RESULTS
It is not uncommon that the kind of applications

mentioned in section 3.1 have a sending rate of 25-30
packets per second. Given that 1 out of 125 packets are
erroneous, packets will be dropped every 4-5 seconds.
Since different applications suffer differently from packet
losses, a general statement about the harm caused by this
kind of loss can not be easily made.

4 Usage of UDP Lite
Much research has gone into providing application

reliability above UDP. Examples include new coding
schemes, application-specific protocols, forward error
correction, statistical studies of UDP traffic and more.
UDP Lite should be added to this list, but it takes a
different approach. Instead of trying to compensate for
packet loss due to errors, we assume that many are
acceptable in real-time usage scenarios and instead add a
mechanism to let the sending application specify which
part of a packet is sensitive and which is not. In this
section, we briefly discuss how different types of coding
schemes could benefit from UDP Lite.

4.1 PROGRESSIVE CODING SCHEMES
In progressive coding schemes, data is divided into

multiple segments. First a segment with a coarse
description is transmitted, followed by segments with
increased level of detail. For video codings, you could
first transmit a blurry image and then let the following
data refine it until the entire picture has the correct
resolution. Audio codings can first transmit the amplitude
for chosen key frequencies and then refine the sound by
transmitting side frequencies. One example of an
application that uses this kind of coding scheme is the
popular RealPlayer [4] used for receiving streamed video
and/or audio.

With UDP Lite, the sending application can choose to
checksum the first coarse description while letting the
following segments pass unverified. Errors at the
receiving side appear as errored pixel segments in a video
picture or sound glitches in audio transmissions. Without
UDP Lite, errors would most likely cause a greater
amount of data to be lost since whole packets are
discarded.

4.2 PCM AUDIO
PCM codings are popular for audio conferencing and IP

telephony. A common configuration is a sample
frequency of 8 kHz with 40 ms sound clips. This will
generate packets with a payload of 640 bytes, headers
excluded. Assuming that the RTP protocol [7] is used, an
extra 12-bytes header is used. With classic UDP, the
entire packet is verified which gives a total of 672 bytes.
Single-bit errors that result in dropped packets will be
handled in different ways depending on the application.
Some replace the lost sound clip with 40 ms silence,
while others insert noise or repeat the last sample. For the
PCM case, the best replacement for a damaged sound clip
is usually the damaged sound clip itself. UDP Lite can be
used to verify only the protocol headers while accepting
errors in the sound data. The headers are in total 32 bytes,
which means that only 4.7% of the entire packet will be
validated by the checksum. This reduces the risk of lost
packets significantly, especially in environments with
high error rates, such as some wireless environments.

4.3 OTHER EXAMPLES
MPEG video codings send data using three different

frame types; I-, P- and B-frames. I-frames hold
information about an entire video frame, while P- and B-
frames only include the differences to other frames. Loss
of I- or P-frames will affect other frames as well. Usually,
it is better to deliver damaged P- and B-frames than
discarding them. UDP Lite can be used to implement this.

There are of course many coding algorithms that do not
cope well with single-bit errors. For example, when the
data is heavily compressed, single-bit errors are normally
harder to accept.

5 Conclusions
We have described UDP Lite, a new transport protocol

that is a more flexible version of the commonly used
UDP. Its main feature is its ability to divide the packet
into two parts; one that is more sensitive to errors and one
that is less sensitive. Using this mechanism, the sending
application can specify that errors are acceptable in part
of the data payload in order to reduce the number of
unnecessarily discarded packets.

To avoid frames carrying UDP Lite packets from being
discarded by the link layer due to errors in the insensitive
part of the packet, we suggest as a short-term solution that
the receiving network interface ignores link layer
checksum errors for frames with UDP Lite packets.
Damaged packets will be delivered to UDP Lite, which

then decides whether the packet should be discarded or
not.
 For links that can deliver a significant ratio of damaged
packets, it is important to reflect the UDP Lite policy of
sensitive and insensitive data onto the link layer. Designs
for new link layer protocols for such links should allow
checksums to be partial; the insensitive part of the
payload should not be covered by a checksum.

5.1 CURRENT AND FUTURE WORK
In addition to the analysis of the test data, we have two

independently implemented prototypes of the UDP Lite
protocol, in NetBSD and FreeBSD respectively. A
modified version of VAT [3] with UDP Lite support has
also been implemented. After implementing modified
device drivers for various interfaces, we have a testbed
which will be used to evaluate the end-user experience
within various network environments.

Further, we plan to investigate whether the Internet
checksum used by UDP is the best choice with a possibly
disabled link layer checksum. We will see if there is a
checksum with stronger error detection properties than
the Internet checksum and small additional computational
overhead.

References
[1] Fluckiger, F., Understanding Networked Multimedia –

Applications and Technology, Prentice-Hall 1995, ISBN
0-13-190992-4

[2] Goralski, W., ADSL and DSL Technologies, McGraw-Hill
1998, ISBN 0-07-024679-3

[3] Jacobson, V., McCanne S., Vat – X11-based audio
conferencing tool, Lawrence Berkeley Laboratory,
University of California, Berkeley.

[4] RealNetworks homepage, URL: http://www.real.com/.
[5] Postel, J., User Datagram Protocol, Internet Request for

Comments RFC 768, August 1980.
[6] Braden, R., Borman, D., and Partridge, C., Computing the

Internet checksum, Internet Request for Comments RFC
1071, September 1988.

[7] Schulzrinne, H., Casner, S., Frederick, R., and Jacobson,
V., RTP: A transport protocol for Real-Time Applications,
Internet Request for Comments RFC 1889, January 1996.

[8] Deering, S., Hinden, B., Internet Protocol, version 6
(IPv6) Specification, Internet Request For Comments RFC
1883, December 1995.

