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EXISTENCE OF EIGENVECTORS FOR MONOTONE

HOMOGENEOUS FUNCTIONS

ST�EPHANE GAUBERT AND JEREMY GUNAWARDENA

Abstract. We consider functions f : Rn ! R
n which are additively homo-

geneous and monotone in the product ordering on Rn (topical functions). We

show that if some non-empty sub-eigenspace of f is bounded in the Hilbert

semi-norm then f has an additive eigenvector and we give a Collatz-Wielandt

characterisation of the corresponding eigenvalue. The boundedness condition

is satis�ed if a certain directed graph associated to f is strongly connected.

The Perron-Frobenius theorem for non-negative matrices, its analogue for the

max-plus semiring, a version of the mean ergodic theorem for Markov chains

and theorems of Bather and Zijm all follow as immediate corollaries.

1. Introduction

1.1. Notation. The partial order on R will be extended pointwise to functions

f; g : X ! R so that f � g if, and only if, f(x) � g(x) for all x 2 X . The

least upper bound and greatest lower bound with respect to this ordering, will be

denoted in in�x form by _ and ^, respectively: (f _ g)(x) = max(f(x); g(x)) and
(f ^ g)(x) = min(f(x); g(x)). In particular, taking X = f1; � � � ; ng, this gives the
product ordering on R

n with its usual structure as a distributive lattice.

It will also be convenient to use the following vector-scalar convention: if, in an

operation or a relation, a vector and a scalar appear together, then the operation is

applied to, or the relation is taken to hold for, each component of the vector. For

example, if � 2 R and x 2 R
n , then �+ x = (�+ x1; � � � ; �+ xn) and x � � if, and

only if, xi � � for 1 � i � n.

1.2. Topical functions. A function f : Rn ! R
m is (additively) homogeneous if

8� 2 R and 8x 2 R
n ; f(�+ x) = �+ f(x) ;(1)

and monotone if

8x; y 2 R
n ; x � y =) f(x) � f(y) :(2)

Functions which are monotone and homogeneous have been called topical functions

in [12] and we adopt this terminology here. If f : Rn ! R
n is a topical function, we

say that x 2 R
n is an (additive) eigenvector for the eigenvalue � 2 R if f(x) = �+x.

The main results of this paper are existence theorems for eigenvectors, Theorems 1

and 2, and a Collatz-Wielandt characterisation of the eigenvalue, Proposition 1.

Our methods are elementary.
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2 ST�EPHANE GAUBERT AND JEREMY GUNAWARDENA

Topical functions include many examples that have been extensively studied:

non-negative matrices (see below); max-plus matrices, (see x4 and [2]), and other

models of discrete event systems, [3, 9, 10, 22]; operators arising in Markov decision

theory and the theory of stochastic games, [6, 13]; problems in �xed point theory,

[17, 19]; matrix scaling problems and related problems of entropy minimisation,

[15, 20]. This paper shows the emergence of elementary general results of wide

applicability: we recover some well-known theorems as immediate corollaries of our

main results.

1.3. The multiplicative context. Non-negative matrices are familiar in a multi-

plicative form so it will be helpful to note �rst that the additive and multiplicative

contexts are interchangeable.

Let R+ denote the positive reals: R
+ = fx 2 R j x > 0g. The whole space,

R
n , can be placed in bijective correspondence with the positive cone, (R+ )n, via

the mutually inverse functions exp : Rn ! (R+ )n and log : (R+ )n ! R
n , where

exp(x)i = exp(xi), for x 2 R
n , and log(x)i = log(xi), for x 2 (R+ )n. If A : (R+ )n !

(R+ )n is any self-map of the positive cone then E(A) : Rn ! R
n will denote the

function de�ned by E(A)(x) = log(A(exp(x))). This induces a bijective functional

between self-maps of (R+ )n and self-maps of Rn . Clearly, E(AB) = E(A)E(B), so
that the dynamics of A on (R+ )n and E(A) on R

n are equivalent.

If A : (R+ )n ! (R+ )n is represented by a non-negative matrix in the standard

basis (for which the same notation, A, will be used) then it is easy to see that E(A)
is a topical function. Furthermore, x 2 R

n is an (additive) eigenvector of E(A),
with eigenvalue � 2 R, if, and only if, exp(x) 2 (R+ )n is an eigenvector of A in the

usual sense, with eigenvalue exp(�): A exp(x) = exp(�) exp(x).
Note that (additive) eigenvectors of E(A) correspond bijectively to the (multi-

plicative) eigenvectors of A all of whose components are positive. The word eigen-

vector will be used in both contexts; the reader should have no diÆculty inferring

the right meaning. Note further that a non-negative matrix A corresponds to a

topical function under E if, and only if, no row of A is the zero vector:

8i; 9j such that Aij 6= 0 :(3)

1.4. Nonexpansiveness. A key property of topical functions is their nonexpan-

siveness with respect to certain norms. Let t; b : Rn ! R be de�ned as (\top")

t(x) = x1 _ � � � _ xn, and (\bottom") b(x) = �t(�x) = x1 ^ � � � ^ xn, both of which

are topical functions. The supremum, or `1, norm on R
n can then be de�ned as

kxk1 = t(x)_�b(x). We shall also need the Hilbert semi-norm, kxkH = t(x)�b(x),
which de�nes a metric on the space of lines parallel to the main diagonal in R

n .

This metric is the additive version of the Hilbert projective metric while kxk1 gives

rise to the additive version of Thompson's \part" metric on (R+ )n, [17].

An elementary application of (1) and (2), [12, Proposition 1.1], shows that a

function f : Rn ! R
n is topical if, and only if,

8x; y 2 R
n ; t(f(x)� f(y)) � t(x� y) :

(This provides some justi�cation for the term topical.) We see immediately that a

topical function is nonexpansive with respect to both the supremum norm and the

Hilbert semi-norm: 8x; y 2 R
n ,

kf(x)� f(y)k1 � kx� yk1(4)

kf(x)� f(y)kH � kx� ykH :(5)
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In fact, as �rst observed by Crandall and Tartar [7], if f is homogeneous, then it

is monotone if, and only if, it is nonexpansive in the supremum norm, [12, Propo-

sition 1.1].

2. Sub-eigenspaces and the Collatz-Wielandt property

The results of the present paper originate in the study of sub-eigenspaces. Let

f : Rn ! R
n . For any � 2 R, de�ne the sub-eigenspace of f associated to �,

S�(f) � R
n , by

S�(f) = fx 2 R
n
j f(x) � �+ xg :

If S�(f) 6= ; then � is said to be a sub-eigenvalue, and any x 2 S�(f) is a sub-

eigenvector. Let �(f) � R denote the set of sub-eigenvalues: �(f) = f� 2 R j

S�(f) 6= ;g. For any functions f; g : Rn ! R
n and any �; � 2 R, the following are

easily seen to hold.

f � g ) S�(f) � S�(g) ;(6a)

� � � ) S�(f) � S�(f) ;(6b)

S(�+�)(f) = S�(f � �) :(6c)

It follows immediately from (6b) that for any function f : Rn ! R
n , �(f) must

be an interval of the form (�1;1), (a;1) or [a;1) and it is easy to see that all

three forms can appear. For a topical function the �rst form can be ruled out. To

see this, it is helpful to recall �rst some well-understood facts about the asymptotic

dynamics of a topical function, f : Rn ! R
n .

First, (4) implies that all trajectories of f are asymptotically the same:

fk(x) = fk(y) +O(1) as k !1 :(7)

Second, an elementary argument using (1) and (2) shows that the sequence t(fk(0))
is sub-additive,

t(fk+l(0)) � t(fk(0)) + t(f l(0)) :

It follows from (7) that the sequence t(fk(x)=k) converges as k !1 and that the

limit is independent of x, [12, 22]. The upper cycle-time of f , �(f) 2 R, is de�ned

as

�(f) = lim
k!1

t(fk(x)=k) :

Dually, the lower cycle-time is �(f) = limk!1 b(fk(x)=k). The existence of the

cycle-time vector of f , �(f) = limk!1 fk(x)=k, is another matter altogether. It

does not always exist, [12, Theorem 3.1], and one of the central problems in the

�eld is to characterise those topical functions for which it does.

Now suppose that f : Rn ! R
n is a topical function and that f(x) � � + x for

some x 2 R
n and some � 2 R. Using (1) and (2), fk(x) � k�+ x. Hence,

t(fk(x)=k) � �+ t(x=k) ;

from which the following lemma immediately follows.

Lemma 1. If f : Rn ! R
n

is a topical function then either �(f) = (a;1) or

�(f) = [a;1), where �(f) � a.
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Both possibilities can occur. It follows from Proposition 1 and (10a) below that

if f has an eigenvector, f(x) = �+ x, then �(f) = [�;1]. If f = E(A) where A is

the non-negative matrix below �
1 1

0 1

�

then it is easy to see that �(f) = (0;1).

We shall now show that �(f) = a. This requires the following simple but crucial

observation.

Lemma 2. Let f : Rn ! R
n
be a topical function and let k be any positive integer.

If S�(f
k) 6= ;, then S�=k(f) 6= ;.

Proof. If S�(f
k) 6= ;, then fk(x) � �+ x for some x 2 R

n . Let

y = x ^ (f(x)� �=k) ^ � � � ^ (fk�1(x)� (k � 1)�=k) :

Using (1) and (2) we see that

f(y) � f(x) ^ (f2(x) � �=k) ^ � � � ^ (fk(x) � (k � 1)�=k)

� f(x) ^ (f2(x) � �=k) ^ � � � ^ (x + �=k)

= y + �=k :

Thus, y 2 S�=k(f) 6= ;.

Lemma 2 allows us to give the following characterisation of �(f) which may be

thought of as a generalised Collatz-Wielandt formula, [16, x1.3].

Proposition 1. Let f : Rn ! R
n
be a topical function. Then,

inf �(f) = inf
x2Rn

t(f(x) � x) = �(f) :(8)

Proof. Let a = inf �(f). Since f(x) � x + � if, and only if, t(f(x) � x) � � the

�rst equality in (8) follows easily. Lemma 1 has already shown that �(f) � a. Now
choose � > 0. For suÆciently large k, fk(0) � (�(f)+�)k. Hence, S

(�(f)+�)k(f
k) 6=

;. By Lemma 2, S�(f)+�(f) 6= ;. Hence, a � �(f) + �. Since � was chosen

arbitrarily, a � �(f) and so a = �(f).

A result on topical functions can be dualised by applying it to the topical function

�f(�x). Using this method on the Collatz-Wielandt formula, we deduce that

�(f) = sup
x2Rn

b(f(x) � x) :(9)

If f has an eigenvector, so that f(x) = �+ x then it follows from (1) that

�(f) = � = �(f) and(10a)

�(f) = (�; � � � ; �) :(10b)

3. Existence of eigenvectors

3.1. The main result. It is convenient for the proofs that follow to make use of

the normalised sub-eigenspace, S0
�
(f) � R

n , de�ned by

S0�(f) = fx 2 R
n
j f(x) � �+ x and b(x) = 0g :
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If b(x) = 0 then kxkH = kxk1. It follows that if f is homogeneous then S�(f)
is non-empty and bounded in the Hilbert semi-norm if, and only if, S0

�
(f) is non-

empty and bounded in the supremum norm.

Theorem 1. Let f : Rn ! R
n
be a topical function for which some sub-eigenspace

is non-empty and bounded in the Hilbert semi-norm. Then f has an eigenvector.

Proof. Assume that S�(f) is non-empty and bounded in the Hilbert semi-norm.

Let a = inf �(f). Evidently a � �. We may assume, without loss of generality,

that a = �. To see why, suppose that a < �. Since S�(f) is bounded in the Hilbert

semi-norm, the sets S0
b
(f), for a < b � � are compact in the supremum norm.

It follows easily from (6b) that S0a(f) =
T
a<b��

S0
b
(f). The right hand side is a

decreasing intersection of non-empty compact sets and so S0a(f) is also non-empty

and compact. Hence Sa(f) is non-empty and bounded in the Hilbert semi-norm,

as claimed.

Let g = �a+ f . By (6c), �(g) = [0;1), so that we can �nd x 2 R
n such that

g(x) � x. Hence gk+1(x) � gk(x) and gk(x) 2 S0(g) = Sa(f) for all k 2 N. If

limk!1 t(gk(x)) = �1, then gk(x) � �1 + x, for some suÆciently large k and

Lemma 2 shows that S�1=k(g) 6= ;, contradicting �(g) = [0;1). Hence t(gk(x))

is bounded from below as k ! 1. By hypothesis, kgk(x)kH remains bounded and

this can only happen if gk(x) itself remains bounded. Let y = limk!1 gk(x). Then
by continuity of g, g(y) = y, so that f(y) = a+ y.

The following examples are instructive in the light of this result. Consider the

topical functions f; g : R2 ! R
2 de�ned by

f1(x) = ((x1 � 1) _ x2) ^ (x1 + 1)

f2(x) = x1 _ x2
and

g1(x) = x1 ^ x2
g2(x) = x1 _ x2 :

We leave it to the reader to show that �(f) = [0;1) and

S�(f) =

�
fx 2 R

2 j ��+ x1 � x2 � �+ x1g for 0 � � < 1

fx 2 R
2 j ��+ x1 � x2g for � � 1 :

It follows that S�(f) is bounded for 0 � � < 1 and unbounded for 1 � �. As for

g, it has the eigenvector (0; 0) and �(g) = [0;1) but S�(g) = f(x1; x2) 2 R
2 j

x1 � � + x2g is unbounded for all � � 0. (The dual super-eigenspaces are also

unbounded.)

3.2. Graphs associated to topical functions. If A is a n � n non-negative

matrix, its associated graph, G(A), is the directed graph with vertices f1; � � � ; ng
and an edge from i to j if, and only if, Aij 6= 0, [5, Chapter 2]. The matrix A is

irreducible if, and only if, G(A) is strongly connected: if there is a directed path

between any two vertices. The Perron-Frobenius theorem (see Corollary 1 below)

asserts that an irreducible non-negative matrix has an eigenvector all of whose

components are positive. We now generalise this to topical functions.

Let f : R
n ! R

n . De�ne the associated graph of f , G(f), to be the di-

rected graph with vertices f1; � � � ; ng and an edge from i to j if, and only if,

lim�!1 fi(�ej) =1, where ej is the j-th vector of the canonical basis of Rn .

Theorem 2. Let f : Rn ! R
n

be a topical function whose associated graph is

strongly connected. Then all non-empty sub-eigenspaces of f are bounded. In par-

ticular, f has an eigenvector.
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Proof. For each edge from i to j of G(f) de�ne hji : R ! R [ f�1g by

hji(x) = supf� 2 R j fi(�ej) � xg ;

where we use the convention that sup ; = �1. For any � 2 R, let h�
ji
(x) =

hji(�+x). Let S�(f) be any non-empty sub-eigenspace of f and choose x 2 S�(f),
which we may assume to satisfy b(x) = 0. Let i 2 f1; � � � ; ng be the component

for which xi = 0. Choose any other component j 2 f1; � � � ; ng. By hypothesis

there exists a directed path from i to j in G(f). Suppose that the nodes on this

are i = i1; � � � ; ik = j, where there is an edge from ip�1 to ip for 1 < p � k. Since
b(x) = 0, we must have xipeip � x. Hence

fip�1(xipeip) � fip�1(x) � �+ xip�1

and so xip � h�
ipip�1

(xip�1). Putting these together we �nd that

xj � h�ikik�1 Æ � � � Æ h
�

i2i1
(0) :

It follows that S�(f) is bounded in the Hilbert semi-norm. By Theorem 1, f has

an eigenvector.

Amghibech and Dellacherie state a similar but weaker result in [1]. They use a

di�erent graph which is, in general, not strongly connected for the examples studied

in the next section, with the exception of that in Corollary 3. However, the proof

technique of [1], based on an approximation procedure, could be used to obtain an

independent proof of Theorem 2.

Consider the topical function f : R3 ! R
3 de�ned by

f1(x) = x1 _ (x2 ^ x3)
f2(x) = x1 _ x2 _ x3
f3(x) = x1 _ x2 _ x3 :

G(f) is not strongly connected since there are no edges from 1 to 2 and from 1 to

3. Nevertheless it is easy to check that f has bounded sub-eigenspaces. Is there

a combinatorial object associated to a topical function which determines when the

function has bounded sub-eigenspaces? This is an interesting problem which we

hope to address elsewhere.

For convex topical functions, Theorem 2 has a converse. Recall that a function

h : Rn ! R is convex if, for all x; y 2 R
n ,

h(�x+ �y) � �h(x) + �h(y) ;(11)

where 0 � �; � � 1 and � + � = 1. A function f : Rn ! R
m is convex if each

component function fi : R
n ! R is convex. A simple deduction from (11), which

is left to the reader, captures the intuition that the derivative of h is increasing.

With the same notation as above, let x0 = �x+ �y = x+ �(y � x) = y � �(y � x).
Then,

h(x0)� h(x)

�
�

h(y)� h(x0)

�
:(12)

For any function f : Rn ! R
n de�ne its syntactic graph, Gs(f), to be the

directed graph with vertices 1; � � � ; n and an edge from i to j if, and only if, fi
depends on xj in the following sense: there is no map h : Rn�1 ! R such that

fi(x) = h(x1; : : : ; xj�1; xj+1; : : : ; xn).
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Proposition 2. Let f : Rn ! R
n

be a convex topical function. Then G(f) =

Gs(f). Moreover, Gs(f) is strongly connected if, and only if, all sub-eigenspaces of

f are bounded in the Hilbert semi-norm.

Proof. Clearly, an edge of G(f) is an edge of Gs(f). Conversely, if there is an

edge from i to j in Gs(f), then we can �nd x; x0 2 R
n such that xk = x0

k
for

all k 6= j, xj 6= x0
j
, and fi(x) 6= fi(x

0). Without loss of generality, assume that

x0
j
> xj . Choose � > 0 and let y = x0 + �ej . Let � = x0

j
� xj + �, � = �=� and

� = (x0
j
�xj)=�. Evidently, 0 � �; � � 1 and �+� = 1 and it is easy to check that

x0 = �x + �y, in accordance with the notation used in (12). Using this inequality

we see that

fi(y)� fi(x
0)

�
�

fi(x
0)� fi(x)

�
;

which can be rewritten as

fi(x
0 + �ej) �

�

x0
j
� xj

(fi(x
0)� fi(x)) + fi(x

0) :

Since this holds for any � > 0, it follows that lim�!1 fi(x
0 + �ej) = 1. But,

x0 + �ej � t(x0) + �ej . Using (2), we see that fi(�ej) � fi(x
0 + �ej)� t(x0) and so

lim�!1 fi(�ej) = 1. It follows that there is an edge from i to j in G(f) and so

Gs(f) is identical to G(f).
If Gs(f) = G(f) is strongly connected then Theorem 2 shows that all the sub-

eigenspaces of f are bounded. Conversely, suppose that Gs(f) is not strongly

connected. Then, by standard arguments, [5, Chapter 2], we can, after possibly

reordering, partition the variables so that x = (y; z), where y 2 R
p , z 2 R

q ,

n = p+ q and f(x) = (g(y; z); h(z)), for some topical functions g : Rp � R
q ! R

p ,

and h : Rq ! R
q . Suppose that S�(f) is non-empty and choose x 2 S�(f). Since

f(x) � � + x, we must have g(y; z) � � + y and h(z) � � + z. Now choose � � 0.

Using (1) and (2) it follows that g(�+ y; z) � g(�+ y; �+ z) � � + � + y. Hence
(� + y; z) 2 S�(f) for all � > 0 and so all non-empty sub-eigenspaces of f are

unbounded in the Hilbert semi-norm.

4. Applications

We now show that several well-known theorems are immediate corollaries of the

elementary results above.

Corollary 1. (Perron-Frobenius theorem, [5]) Let A be a n� n non-negative ma-

trix. If A is irreducible then its spectral radius is an eigenvalue, for which A has

an eigenvector all of whose components are positive.

Proof. Since A is irreducible the nondegeneracy condition (3) holds. Let f = E(A).
It is easy to see that G(f), the graph associated to f , is identical to G(A), the graph
associated to A. Since A is irreducible, G(A) is strongly connected and so, by The-

orem 2, f has an eigenvector: f(x) = r + x. Evidently, A exp(x) = exp(r) exp(x),
where exp(x) has all its components positive. It remains to show that exp(r) is
the spectral radius of A. For completeness, we reproduce the standard argument

using the Collatz-Wielandt property. Suppose that z 2 C
n is a (multiplicative)

eigenvector of A with eigenvalue � 2 C : Az = �z. Let jzj 2 R
n be the vector of

absolute values: jzj = (jz1j; � � � ; jznj) and let x = log(jzj). A simple application
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of the triangle inequality shows that Ajzj � j�jjzj. Hence f(x) � log(j�j) + x. It

follows, using (9) and (10a), that

log(j�j) � b(f(x)� x) � �(f) = r

and so exp(r) is the spectral radius of A.

The function R
2 ! R which takes x 7! log(exp(x1) + exp(x2)) is convex, from

which it follows that E(A) is a convex topical function. Hence we could have used

Proposition 2, together with Theorem 1 in the proof of Corollary 1. This applies

also to the topical functions in the corollaries below, which are all convex.

Property (1) applied to the function t : R2 ! R illustrates that addition dis-

tributes over maximum. It follows that the set R [ f�1g equipped with the oper-

ations of maximum (as addition) and addition (as multiplication) forms an idem-

potent semiring (a semiring whose addition satis�es a+a = a), called the max-plus

semiring and denoted Rmax , [11]. Suppose that A is a n � n matrix over Rmax

which satis�es a similar nondegeneracy condition to (3):

8i; 9j such that Aij 6= �1 :

If x 2 R
n then it is easy to see that x 7! Ax de�nes a topical function. For instance,

the matrix on the left below gives rise to the function on the right.�
2 �1

�1 4

�
f1(x) = (x1 + 2) _ (x2 � 1)

f2(x) = x2 + 4 :

If A is a n � n matrix over Rmax , its associated graph, G(A), is the directed

graph with vertices f1; � � � ; ng and an edge from i to j if, and only if, Aij 6= �1.

It is customary, in max-plus theory, to adjoin labels (\weights") to the edges in

G(A), [2]. This unlabelled version will be suÆcient for our purposes. A is said

to be irreducible if G(A) is strongly connected. It is easy to see that if f is the

topical function corresponding to A then the graphs G(A) and G(f) coincide. The
following result follows immediately. The cited reference is to a standard source

but the result has been proved independently many times.

Corollary 2. (Perron-Frobenius for max-plus, [2, Theorem 3.28]) An irreducible

max-plus matrix has an eigenvector.

In max-plus theory, the eigenvectors of a matrix lie in (R [ f�1g)n. The point

of Corollary 2 is that such an eigenvector can be found in R
n . The formula for the

eigenvalue, based on the structure of the circuits of G(A), lies outside the scope of
the present paper, [2].

For the next result, assume that P is the transition matrix of a Markov chain

(so that P is row-stochastic) and let f(x) = c+ Px, for some c 2 R
n . Evidently, f

is a topical function. By (10b), if f has an eigenvector with eigenvalue �, then

(1 + P + � � �+ P k�1)c

k
=

fk(0)

k

converges to (�; � � � ; �). The next result can hence be thought of as a version of

the mean ergodic theorem for Markov chains, [23, Chapter XIII, x1, Theorem 2].

Corollary 3. Let c 2 R
n
and let P denote a n�n irreducible row-stochastic matrix.

The function f(x) = c+ Px has an eigenvector.

Proof. f is a topical function and G(f) is strongly connected so the result follows

from Theorem 2.
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A family of non-negative matrices fP ugu2U is said to be communicating if the

matrix supu2U P u, obtained by taking entrywise suprema, has �nite entries and is

irreducible. The following result is due to Bather.

Corollary 4. (Bather's theorem, [4, Theorem 2.4]) Let fP ugu2U be a communi-

cating family of row-stochastic matrices, and let fcugu2U be a family of vectors

cu 2 R
n

that is bounded above. Then the function f(x) = sup
u2U

(cu + P ux) has

an eigenvector.

Proof. It is easy to check that G(f) = G(supu2U P u). Since the latter is strongly

connected by hypothesis, the result follows immediately from Theorem 2.

The next result was proved by Zijm in the special case of a �nite communicating

family. It follows by combining the argument of Corollary 4 with that of Corollary 1.

Corollary 5. (Zijm's theorem, [24, Theorem 3.4]) Let fAugu2U be a communicat-

ing family of non-negative matrices. Then the function f(x) = supu2U Aux has a

(multiplicative) eigenvector.

As a last illustration of the ideas developed here, consider the topical function

E(f) where f : (R+ )3 ! (R+ )3 is de�ned by:

f1(x) = 2x1 _ 3x2

f2(x) =
p
x1(4x2 + 15x3)

f3(x) = x2 :

None of the above corollaries can be applied to f . However, G(E(f)) is strongly
connected. By Theorem 2, f has a (multiplicative) eigenvector. In fact, f(3; 3; 1) =
3(3; 3; 1).

5. Conclusions

An alternative approach to the eigenvector problem stems from the observation

in (7) that all trajectories of a topical function f are asymptotically equivalent.

This suggests that the asymptotics of fk(x) contain information on the existence

of �xed points, an idea con�rmed in recent work, [8, 10].

Topical functions can be de�ned and studied on cones in Banach spaces, as Krein

and Rutman have done for Perron-Frobenius theory. Some attractive examples

have emerged here, [21], but with the exception of Nussbaum's work, [17, 18], little

general progress has been made.
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