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Discrete event systems provide a useful abstraction for 
modelling a wide variety of systems: digital circuits, 
communication networks, manufacturing plants, etc. Their 
dynamics—stability, equilibrium states, cyclical behaviour, 
asymptotic average delays—are of vital importance to system 
designers. However, in marked contrast to continuous 
dynamical systems, there has been little systematic 
mathematical theory that designers can draw upon. In this 
paper we survey the development of such a theory, based on the 
dynamics of maps which are nonexpansive in the l 8  norm. This 
has its origins in linear algebra over the max-plus semiring but 
extends to a nonlinear theory that encompasses a variety of 
problems arising in other mathematical disciplines. We 
concentrate on the mathematical aspects and set out several 
open problems. 
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1 Introduction

In this paper we shall study functions F : Rn ! R
n which are homogeneous

� 8x 2 R
n ; 8h 2 R; F (x1 + h; � � � ; xn + h) = (F1(x) + h; � � � ; Fn(x) + h) H

and monotonic with respect to the usual product ordering on R
n

� 8x; y 2 R
n ; x � y ) F (x) � F (y) : M

As we shall see, such functions must necessarily be nonexpansive in the `1 norm

� 8x; y 2 R
n ; kF (x) � F (y)k � kx� yk N

where kxk = max1�i�n jxij. Functions of this kind have arisen recently in several contexts,

[2, 30, 33, 37, 47], and we follow Gunawardena and Keane in calling them topical functions.

We shall be concerned with their dynamics: with the behaviour of the functions under

iteration and with such related questions as the existence of �xed points and the behaviour

of trajectories F k(x) as k !1.

Topical functions encompass maps and operators arising in a remarkable variety of mathe-

matical disciplines: matrices over the max-plus semiring, nonnegative matrices of classical

Perron-Frobenius theory (after suitable transformation), Leontie� substitution systems of

mathematical economics, dynamic programming operators of games and of Markov deci-

sion processes, nonlinear operators arising in matrix scaling problems and demographic

modelling, renormalisation operators associated to di�usions on fractals, etc (see x2).

The motivation for developing a theory of topical functions comes, in part, from the problem

of modelling discrete event systems. These are best de�ned informally as systems comprising

a �nite set of events each of which can occur repeatedly. This is a convenient abstraction by

which to study a variety of systems arising in real life: digital circuits, in which the events

might be the voltage transitions on the wires in the circuit; communication networks, in

which the events might be the arrival of packets at nodes in the network; manufacturing

systems, in which the events might be the completion of a job at a machine. In designing

such systems, engineers have to grapple with dynamical questions: the existence of equilibria

or cyclical behaviour, whether or not the system is stable, how fast or slow the system

is operating and what it might do \in the long term". However, in marked contrast to

continuous dynamical systems, there has been little systematic mathematical theory that

designers can draw upon.

To see why topical functions might be relevant to answering such questions, consider the

following scenario. Choose some ordering of the events in the discrete event system, so

that each event is associated to one of the numbers f1; � � � ; ng. Let xi denote the time of

occurrence of event i, relative to some arbitrarily chosen origin of time. Suppose that the

time evolution of the system is such that, for some function F : Rn ! R
n , the time of next

occurrence of event i is given by Fi(x). In this case, the evolution of the system is captured

by the dynamics of the function F , which conceals within itself the details of the system.
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Given this scenario, what properties should be expected of F ? First, since the origin of time

is irrelevant, the times of occurrences of all events can all be changed by the same amount.

This is exactly the property of homogeneity. Second, it is not unreasonable to ask that,

if the times of occurrences of some events are delayed then this cannot cause any event to

occur more quickly. This corresponds exactly to monotonicity with respect to the product

ordering on R
n . In this scenario, topical functions arise very naturally.

There are discrete event systems of practical importance which can be modelled even in

this restricted manner. In particular, matrices over the max-plus semiring have provided

a linear algebraic foundation for an important class of discrete event systems (see x2.1.1).

Topical functions may be seen as a nonlinear generalisation of this. However, there are

obvious limitations to the scenario above. It does not allow for nondeterminism|from

any given state x 2 R
n , the system evolves to one and only one state, F (x)|nor for

stochastic uncertainty in the system description. The theory of a single topical function

can be broadened to accommodate both of these. Nondeterminism can be modelled in

terms of the semigroup generated by a set of topical functions: fFa j a 2 Ag. The state of

the system can then change to any of the states Fa(x). This is exactly the way in which

nondeterminism is modelled in automata theory. Stochastic behaviour can be modelled

by using random topical functions: the single topical function F is replaced by a random

variable from some suitable measure space into the space of topical functions.

Both of these directions lie outside the scope of the present paper and are discussed further in

[29]. This paper concerns itself with the theory of a single topical function. This provides the

foundation for all broader applications and already presents challenging unsolved problems.

A more serious diÆculty with the scenario above is the assumption of monotonicity. This

is not as compelling as that of homogeneity: it is easy to construct systems in which

monotonicity is not satis�ed. Nevertheless it is a convenient assumption which holds for

many systems of practical interest. Glasserman and Yao have used a form of monotonicity

as the foundation for their treatment of discrete event systems in [21]. In our context, it is

crucially related to the property of nonexpansiveness, as shown by the following result of

Crandall and Tartar.

Proposition 1.1 ([12, Proposition 2]) If F : Rn ! R
n satis�es H then it satis�es M if,

and only if, it satis�es N.

A proof is given in x2. Nonexpansiveness lies at the heart of the present paper. It implies

that all trajectories are asymptotically equivalent (see (13)). We shall use this to de�ne

functionals which are independent of the starting conditions or the trajectory taken (Lem-

mas 3.1 and 4.1). We shall further show that these functionals encode much information

about the dynamical behaviour of topical functions, in particular about the existence of

�xed points, or equilibria, (Corollary 3.1 and Theorem 4.2).

The usual notion of a �xed point, F (x) = x, is inappropriate for discrete event systems. In

the scenario above the events would have to occur in�nitely fast! De�nition 3.2 will allow

for the possibility that there is some h 2 R such that Fi(x) = xi + h for all 0 � i � n.

This is mathematically appropriate in the light of property H and is a reasonable model of

equilibrium for a discrete event system: each event occurs at the same rate. The number h

amounts to an additive eigenvalue and will be recovered through the cycle time vector, one
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of the functionals mentioned above.

The results of x3 and x4 suggest a new perspective on the study of �xed points of nonexpan-

sive functions. We recall that for a contraction, for which kF (x)� F (y)k � �kx� yk with

0 < � < 1, the Banach Contraction Principle tells us that there is a unique �xed point to

which all trajectories converge at an exponential rate, [22, Chapter 2]. When the function

is only nonexpansive, so that � = 1, the existence of �xed points is a classical problem

of functional analysis. Work on this has developed in two main directions. One, arising

out of the work of Browder and others in the 1960s, seeks geometric conditions (usually

convexity properties) on the ambient Banach space which imply that every nonexpansive

function has a �xed point, [22]. The other, arising originally from attempts to extend the

Brouwer �xed point theorem, has sought properties of the function (such as the vanishing

of the Leray-Schauder degree) which imply the existence of a �xed point, [6].

The present paper shows that dynamical properties, in the form of averages over trajectories,

also give information on the existence of �xed points (see Corollary 3.1). It remains unclear,

at present, to what extent this is special to the theory of topical functions and the `1 norm

or is part of a broader approach to the classical �xed point problem for nonexpansive

functions.

The `1 norm is well known to have singular properties. It is a polyhedral norm: the unit

ball is a polyhedron and hence a combinatorial object. This discreteness is particularly

appropriate to the study of discrete event systems. It also limits the cyclical behaviour that

a system can have. A point x 2 R
n is said to be a periodic point of F with period p if

F p(x) = x and F k(x) 6= x for all 0 < k < p. The following result is due independently to

Sine and Nussbaum.

Theorem 1.1 ([38, 45]) There exists M 2 N, depending only on the dimension n, such

that if F : Rn ! R
n is any function satisfying N and p is the period of any periodic point

of F , then p �M .

This should be contrasted with the case of the `2 (Euclidean) norm. Even when n = 2 there

are rotations (which, being isometries, are necessarily nonexpansive) having periodic points

with arbitrarily large periods. Nussbaum has conjectured that M can be taken to be 2n,

which would be best possible. This remains an important open problem and a more detailed

discussion of the literature surrounding it can be found in [36]. For topical functions, it

is conjectured that the best upper bound on the period is the binomial coeÆcient nC[n=2],

[31].

We were originally led to study topical functions because they arose naturally from attempts

to model certain discrete event systems, [26]. However, as pointed out above, it is not the

case that all discrete event systems, or even most discrete event systems, can be modelled

in this way.

Attempts to study discrete event systems are haunted by the bewildering complexity of real

engineering practice. So many additional features must be incorporated to describe speci�c

engineering situations that mathematical generality is all too often lost. While this may

still have value for speci�c problems, it sacri�ces the ultimate goal of identifying general

theorems that engineers can use in their daily work. We take a di�erent approach here.

The mathematical understanding of the dynamics of discrete event systems is extremely
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incomplete. The strategic need to improve this situation outweighs, in the long term, the

tactical gains to be had in modelling individual systems. In the work described here we

limit our attention to some simple assumptions, which nevertheless occur in practice, and

try to answer the kinds of questions that confront engineers.

The next section introduces the main examples that will be studied in this paper: the aÆne

hierarchy, and, at the other extreme, nonnegative matrices. x3 introduces the cycle time

vector and sketches the proof of the main result on the aÆne hierarchy, Theorem 3.2. x4

speculates on how this result can be extended to nonnegative matrices and general topical

functions.

The results discussed here draw on the work of the author and several collaborators, in

particular St�ephane Gaubert, Michael Keane and Colin Sparrow. It is a pleasure to thank

them as well as the many others who have contributed to the development of this area.

The support of the European Commission through the research network ALAPEDES (Al-

gebraic Approach to Performance Evaluation of Discrete Event Systems) is also gratefully

acknowledged.

2 Examples and applications

We begin with some notation and then give a short proof of Proposition 1.1. We then

exhibit a series of examples, summarising along the way the role that some of them play

in the applications to discrete event systems. These examples provide the raw material for

the discussions in x3 and x4.

We use throughout this paper the following vector-scalar convention: if, in a binary oper-

ation or a relation, a vector and a scalar appear together, the corresponding operation is

applied to, or the corresponding relation is taken to hold, on each component of the vector.

For instance, if x 2 R
n and h 2 R, then x + h will denote the vector (x1 + h; � � � ; xn + h).

This allows us to restate the property of homogeneity more succinctly as follows:

F (x+ h) = F (x) + h :

Similarly, x � h, means xi � h for all 1 � i � n. The symbol h always stands for a real

number.

The standard partial order on R is denoted by a � b. We use in�x operators for the

lattice operations of least upper bound and greatest lower bound: a _ b = lub(a; b) and

a ^ b = glb(a; b). The same notations are used for partially ordered sets derived from R,

such as the function space X ! R, where the partial order is taken pointwise: f � g if,

and only if, f(x) � g(x) for all x 2 X. If Rn is identi�ed with f1; � � � ; ng ! R, then this

corresponds to the usual product ordering on R
n .

We assume that + always has higher binding than either _ or ^. Hence, x1 + 2 _ x2 � 1 =

(x1 + 2) _ (x2 � 1).

It is helpful to pick out the following functions: t; b : Rn ! R (top and bottom, respectively),

where

t(x) = x1 _ � � � _ xn

b(x) = x1 ^ � � � ^ xn :
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Note that kxk = t(x) _ �b(x) and that both t and b satisfy the properties H and M. In

particular, addition distributes over both _ and ^: t(x+h) = t(x)+h and b(x+h) = b(x)+h.

We make extensive use of the vector-scalar convention in the following argument, which

follows that given in [30, x1].

Proof (of Proposition 1.1): Let F : Rn ! R
n satisfy H. Assume �rst that F also satis�es

M. Choose x; y 2 R
n . Since y + b(x � y) � x � y + t(x � y) it follows by M and H that

F (y) + b(x� y) � F (x) � F (y) + t(x� y). Hence,

b(x� y) � F (x)� F (y) � t(x� y) (1)

and so kF (x) � F (y)k � kx� yk as required.

Now assume that F satis�es N. It is simplest to show �rst that (1) must hold. So choose

x; y 2 R
n . Let h = t(y�x) and z = x+h. Note that y � z so that kz � yk = t(z�y). By H

and N, F (x)�F (y) = F (z)�F (y)�h � t(z�y)�h = t(x�y). Since t(x) = �b(�x) and x; y

were chosen arbitrarily, it is easy to see that the other inequality, b(x� y) � F (x)� F (y),

must also hold, thereby showing (1).

Now suppose that x � y. Then 0 � b(y � x) � F (y) � F (x) and so F (x) � F (y). This

completes the proof.

2

As the proof shows, rather more is true that is stated in the result of Crandall and Tartar;

see [30, Proposition 1.1] for a more detailed account.

We can now begin to explore the space of topical functions. Let Top(n; n) denote the set of

topical functions in dimension n. It is easy to construct simple examples, such as coordinate

substitutions.

De�nition 2.1 A function F : Rn ! R
n is said to be simple if each component Fi has the

form Fi(x) = xj for some 1 � j � n. The set of simple functions in dimension n is denoted

Sim(n; n).

Simple functions do not have to be permutations: the same xj may be used for di�erent xi.

To put it another way, the matrix corresponding to this linear function has a 1 in each row

but not necessarily in each column.

It is also easy to see that a number of operators preserve the properties H and M.

Proposition 2.1 Suppose that F;G 2 Top(n; n). Choose u 2 R
n and choose �; � 2 R such

that 0 � �; �, �+ � = 1. Then F + u; F _G; F ^G; �F + �G; FG 2 Top(n; n).

We now have a number of ways to construct classes of topical functions by starting with

simple functions and closing under some sequence of operators from Proposition 2.1. It is

helpful to have some notation for this, which we take from [19]. Let A denote the following

set of operator symbols, A = fmax;min;+; Eg. If S � Top(n; n) then de�ne the following

constructions which, by Proposition 2.1, all yield further subsets of Top(n; n).

max(S) = f
_
F2A

F j A � S; A �niteg
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min(S) = f
^
F2A

F j A � S; A �niteg

E(S) = f
X
F2A

�FF j A � S; A �nite; 0 � �F ;
P

F2A �F = 1g

+(S) = fF + u j F 2 S; u 2 R
n
g

If �1; � � � ; �p is a sequence of operators symbols with �i 2 A, then the notation (�1; � � � ; �p)

will denote the subset �1(�2(� � � (Sim(n; n)) � � �)) � Top(n; n).

2.1 The aÆne hierarchy

We now examine the simpler classes of topical functions arising from Proposition 2.1, with

speci�c examples mostly drawn from dimension 2. We then show how these can be viewed

as elements of a hierarchy.

2.1.1 (max;+): matrices over the max-plus semiring

F1(x1; x2) = x1 + 0:2 _ x2 � 1

F2(x1; x2) = x1 + 1:6
(2)

The standard properties of _ can be used to reduce all elements of (max;+) to the general

form exempli�ed above. Consider now the following trick, whose origins go back at least as

far as Cuninghame-Green, [13] (see also [14] for historical references). Adjoin the element

�1 to R and rede�ne the operations of addition and multiplication to be maximum and

addition, respectively. Note, as mentioned above, that addition distributes over maximum

and that, furthermore, �1 acts as a zero for maximum. The resulting semiring is called

the max-plus semiring and denoted Rmax . It is easy to see that (2) can now be rewritten

as a matrix equation over Rmax : F (x) = Ax, where x is now a column vector and A is the

max-plus matrix

A =

 
0:2 �1

1:6 �1

!
: (3)

More precisely, there is a one-to-one correspondence between elements of (max;+) in di-

mension n and n�n matrices over Rmax satisfying the following non-degeneracy condition:

81 � i � n; 91 � j � n; such that Aij 6= �1 : (4)

In the remainder of this paper we shall sometimes use max-plus notation (so that custom-

ary symbols or abbreviations will have their max-plus meanings) and sometimes ordinary

notation (customary symbols have their customary meanings); the context will make clear

which interpretation is intended.

A great deal is now understood about the spectral theory|the theory of eigenvectors and

eigenvalues|of matrices over Rmax . Part of the impetus for studying this has come from

the realisation that eigenvalues of max-plus matrices give performance measures for discrete

event systems. This is the most highly developed area of application and we outline some

of this material here with references to the literature.
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If A is an n � n matrix over Rmax , then x 2 (Rmax)
n is said to be an eigenvector of A

with eigenvalue � 2 Rmax , if Ax = �x. For purposes of illustration, assume that A satis�es

(4), so that A : Rn ! R
n , and restrict attention to real eigenvectors: eigenvectors lying in

R
n . Suppose that x; y 2 R

n are two such real eigenvectors of A with eigenvalues � and �

respectively. By matrix multiplication we see that Akx = �kx and Aky = �ky. By property

N, however, kAkx�Akyk � kx� yk. Rewriting this in ordinary notation, we see that

k(k�+ x)� (k�+ y)k � kx� yk for any k. Dividing throughout by k and letting k !1,

we see that � = �. Any two real eigenvectors have the same eigenvalue.

Use of the nonexpansiveness property in this manner|to show that certain functionals are

well de�ned and independent of initial conditions|will recur throughout this paper (see

Lemma 3.1 and Lemma 4.1). Similar results hold for the other eigenvalues, corresponding

to eigenvectors in (Rmax)
n, but di�erent arguments are needed. The full spectral theory,

applicable to arbitrary eigenvectors, is described by Wende et al in [48] and independently

in Gaubert's thesis, [18].

What can be said about the eigenvalue corresponding to a real eigenvector? Unlike classical

Perron-Frobenius theory, in which only bounds are known for the eigenvalues of a nonneg-

ative matrix, [35, Chapter 2], there are formulae for the eigenvalues of a max-plus matrix.

These emerge from the close relationship between matrices and graphs.

The precedence graph of A, denoted G(A), is the directed graph with labelled edges which

has nodes f1; � � � ; ng and an edge from j to i if, and only if, Aij 6= �1. The label on this

edge is then the real number Aij. (The opposite convention for the direction of edges is

sometimes used.) The existence of an edge from j to i is denoted i  j. A path in this

graph has the usual meaning of a chain of directed edges: a path from im to i1 is a sequence

of nodes i1; � � � ; im such that 1 < m and ij  ij+1 for 1 � j < m. A circuit is a path which

starts and ends at the same node: i1 = im. A circuit is elementary if the nodes i1; � � � ; im�1
are all distinct. The matrix A is said to be irreducible if G(A) is strongly connected: there

is a path connecting any pair of distinct nodes. Equivalently, A is irreducible if there is no

permutation of the rows and columns which brings it into upper triangular block form. The

matrix of example (3) is irreducible.

The weight of a path p, jpjw, is the product in Rmax of the labels on the edges in the path,

or, in ordinary notation:

jpjw =

m�1X
j=1

Aij ij+1
:

Matrix multiplication has the following interpretation in terms of path weights: As
ij
is the

maximum weight among all paths of length s from j to i. Hence problems of optimal path

�nding in graphs can be treated by methods of matrix algebra over Rmax , [3, 9, 23].

The length of a path, jpj`, is the number of edges in the path: jpj` = m� 1. If g is a circuit,

its cycle mean, denoted m(g), is de�ned, in ordinary notation, by m(g) = jgjw=jgj`. Let

�(A) 2 Rmax denote the maximum cycle mean:

�(A) = maxfm(g) j g a circuitg : (5)

This is well de�ned: by virtue of (4), G(A) has at least one circuit, and although it therefore

has in�nitely many, it is easy to see that only the elementary ones are needed to determine

�(A). For the matrix of example (3), �(A) = 0:3.
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Proposition 2.2 ([1, Theorem 3.23]) Let A be any n�n matrix over Rmax . The eigenvalue

of any real eigenvector is �(A) and this is the largest eigenvalue of A. Furthermore, if A is

irreducible, it has a real eigenvector.

�(A) is sometimes called the spectral radius or Perron root of A, through the close analogy

between Proposition 2.2 and the �rst Perron-Frobenius theorem for nonnegative matrices.

Proposition 2.2 is one of the basic results of max-plus spectral theory and has been redis-

covered so many times that it is hard to ascribe priority to any particular source. The

stated reference is to one of the standard texts in the subject.

Max-plus matrices can be used to describe the time evolution of discrete event systems in

which the timing constraints are all maximum ones. These are the timed versions of systems

in which the causal relationships between events are represented by a partially ordered set:

the AND causality between events being transformed naturally into a maximum timing

constraint. A well-known model with this property is that of event graphs (sometimes

called marked graphs). These are Petri nets in which each place is the input to at most

one transition and the output to at most one transition. This leads to the observation that

\timed event graphs are max-plus linear systems", [1, Theorem 2.58]: the evolution of a

timed event graph can be described by a linear equation over Rmax of the form

x(k) = A0x(k) +A1x(k � 1) + � � � +Asx(k � s) :

The vector x(k) 2 R
n describes the times at which the n transitions in the event graph �re

for the k-th time, as in the scenario described in the Introduction. This approach and its

consequences are described further in [1, 11, 24].

Because of the widespread importance of event graphs and related models, many special

cases and ad hoc results about their timing behaviour have appeared in the literature,

[8, 16, 40, 41, 42]. More recently, max-plus matrix methods have been used more directly:

by Ferrari and Montanari in developing cost calculi for communicating processes, [17], and

by Hulgaard et al in studying the time separation of events problem, [32]. A recurring

theme in some of this work is the construction of performance measures which turn out to

be nothing other than the spectral radius, �(A), of the underlying max-plus matrix. We

shall recover this performance measure for general topical functions in the guise of the cycle

time vector of x3.

The max-plus semiring is an example of a dioid, or idempotent semiring: a semiring in

which addition satis�es the idempotent law, a + a = a. Another example well known to

computer scientists is the dioid of formal languages over an alphabet A, in which addition

corresponds to union of languages and multiplication to concatenation. The subject of

idempotency, which encompasses both such examples, is discussed further in [25].

2.1.2 (min;+): matrices over the min-plus semiring

This is dual to the case of (max;+). The min-plus semiring, Rmin , is the set R [ f+1g

with addition and multiplication de�ned as minimum and addition, respectively. The map

x ! �x establishes the duality between Rmax and Rmin and is also an isomorphism of

idempotent semirings.
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2.1.3 (min;max;+): min-max functions

F1(x1; x2) = (x1 � 2 _ x2 + 1) ^ (x1 � 3 _ x2 + 3) ^ (x1 � 4 _ x2 + 2)

F2(x1; x2) = (x1 � 2 ^ x2 + 1) _ (x1 ^ x2 � 2)
(6)

The properties of _ and ^ can be used to reduce any element of (min;max;+) to the

general form above, where there is no �nite bound on the number of terms which may

appear. Topical functions of this kind are called min-max functions. Special cases of them

were considered by Olsder in [39] while min-max functions themselves were introduced in

[28].

Min-max functions appear in analysing the timing behaviour of digital circuits. For instance,

Sakallah, Mudge and Olukotun (SMO) developed a model for analysing circuits containing

storage latches controlled by a central clock, [44]. In such circuits, the incoming signal at

a latch must arrive and stabilise within a certain setup time in order for the signal to be

correctly stored when the latch opens. The opening and closing of the latches is controlled

through a clocking schedule, which allows overlapping of latch operation so as to optimise

performance. Once a clocking schedule has been chosen, it must be veri�ed to meet the

setup constraints.

The SMO model can be formulated as follows, [46]. Assume that the latches are numbered

from 1 to n and that j ! i is the \fans out to" relation on latches. That is, j ! i, if, and

only if, there is a path of combinational logic from the output of j to the input of i. De�ne

the min-max functions D; d : Rn+1 ! R
n+1 by the following equations:

Di(x) = (_j!ifxj +�j;ig) ^ (xn+1 +Bi) for 1 � i � n

Dn+1(x) = xn+1

di(x) = (^j!ifxj + �j;ig) ^ (xn+1 +Bi) for 1 � i � n

dn+1(x) = xn+1

where �i;j, �i;j and Bi are constants de�ned by the clocking schedule and the minimum and

maximum delays through the combinational logic, [46, Figure 2]. xn+1 is a dummy variable

whose only purpose is to make it clear that D and d are genuine min-max functions. While

d is min only, D is min-max.

It can be shown that if D(x) = x then xi � xn+1 is the latest signal departure time from

latch i, [46, Figure 2]. Similarly, if d(x) = x then xi � xn+1 is the earliest signal departure

time from latch i. If these �xed points can be found and the arrival times can be shown to

satisfy the setup constraints, then the clock schedule is veri�ed. Hence the problem of clock

schedule veri�cation can be reduced to that of �nding a �xed point for a min-max function.

See [26] for further discussion.

Another example of the use of min-max functions is provided by the work of Hulgaard,

Burns, Amon and Borriello, [32]. If tka denotes the time of k-th occurrence of event a in

a discrete event system, then the time separation of events problem asks for bounds on

the separation, tka � tl
b
, between the k-th occurrence of a and the l-th occurrence of b.

The data for this kind of problem consists not of individual delays but instead of delay

bounds, [u; v], where 0 � u � v < +1. This is commonplace in hardware systems, as in

the clock schedule veri�cation problem above, where manufacturers provide minimum and

maximum propagation delays in component speci�cations. The presence of both minimum

9



and maximum constraints leads naturally to a min-max formalism and Hulgaard et al make

use of an algebra of min-max functions to calculate exact bounds for the time separation

problem.

2.1.4 (E): row stochastic matrices

Suppose that fa; b; c; dg � [0; 1] and that a+ b = 1 and c+ d = 1. It is easy to verify that 
a b

c d

!
= a

"
c

 
1 0

1 0

!
+ d

 
1 0

0 1

!#
+ b

"
c

 
0 1

1 0

!
+ d

 
0 1

0 1

!#

A glance at this should convince the reader of the following elementary observation, which is

amusingly similar to Birkho�'s famous result on the structure of doubly stochastic matrices,

[35, x5.3].

Lemma 2.1 A matrix is row stochastic if, and only if, it is a �nite convex combination of

substitution matrices.

It follows that (E) in dimension n is exactly the set of n� n row stochastic matrices.

2.1.5 (min;+; E): Bellman operators of Markov decision processes

Let U be a �nite index set and, for each u 2 U , let cu 2 R
n and Au be a n�n row stochastic

matrix. In the light of Lemma 2.1, the function

F (x) =
^
u2U

cu +Aux (7)

gives the general form of an element in (min;+; E). Functions of this kind are well known

in optimal control as the dynamic programming (Bellman) operators associated to Markov

decision processes. U indexes the set of possible decisions. The choice of decision in
uences

the transition probabilities, Au, of moving between the n states of the process. Each decision

comes with an associated state-dependent cost, cu 2 R
n . Fi(x) is the minimal expected cost

of a single process step starting from state i, given that xj is the cost of ending in state

j. By Bellman's optimality principle, F k(x) gives the corresponding minimal expected cost

associated to k process steps. A �xed point of F corresponds to an optimal cost vector,

whose existence and calculation are important problems in decision theory, [5].

This completes our survey of the simpler examples arising from Sim(n; n) through repeated

use of Proposition 2.1. On the face of it, there are many more complex functions arising

from longer sequences of operator symbols. It is helpful to have a linear hierarchy in which

all these functions eventually appear. To this end, de�ne the sequence A0
� A

1
� � � � �

Top(n; n) as follows.

A
0 = Sim(n; n)

A
i =

[
�2A

�(Ai�1) for 1 � i

A
� =

[
i

A
i

10



The following result shows that this hierarchy collapses sooner than one might think and

that many of the functions in A� have already arisen in the examples above. The proof is

straightforward but tedious and is left to the reader and [19, x2.2].

Proposition 2.3 ([19, Proposition 12]) A� = A4 = (min;max;+; E).

Functions in A� consist of a �nite number of aÆne pieces. Hence the phrase \aÆne hierar-

chy" to describe A�. This property plays an important role in the proof of Theorem 3.2.

We now turn to a quite di�erent class of topical functions, which may be thought of as lying

at the opposite extreme to the aÆne hierarchy within Top(n; n).

2.2 Functions on the positive cone

Let R
+ denote the positive reals. Let exp : R

n ! (R+)n and log : (R+)n ! R
n be

de�ned componentwise: exp(x)i = exp(xi) and log(x)i = log(xi). These establish a bijective

correspondence between R
n and (R+)n. This correspondence is an isometry from R

n with

the `1 norm to (R+)n equipped with Thompson's metric, [37, Proposition 1.6]. Let A :

(R+)n ! (R+)n be any function on the positive cone and let E(A) : Rn ! R
n denote the

function log(A(exp)). The functional E transports functions on the positive cone bijectively

to functions on R
n . It is easy to see that E(AB) = E(A)E(B). In particular, E(Ak) = E(A)k

so that the dynamic behaviour of A and E(A) are equivalent and interchangeable and the

dynamics may be studied either on R
n or on (R+)n.

If x; y 2 (R+)n, then x � y will denote the product ordering on (R+)n. (This coincides

with the cone ordering, [37, Chapter 1].) The properties of monotonicity and homogeneity

have obvious counterparts on (R+)n. Let A : (R+)n ! (R+)n. It follows easily from the

well-known properties of exp and log that E(A) satis�es H if, and only if, A satis�es

8x 2 (R+)n; 8� 2 R
+ ; A(�x) = �A(x)

and that E(A) satis�es M if, and only if, A satis�es

8x; y 2 (R+ )n; x � y ) A(x) � A(y) :

Nonexpansiveness in the `1 norm in R
n corresponds to nonexpansiveness with respect to

Thompson's metric in (R+)n but this will not be needed here.

This correspondence between functions on R
n and functions on (R+)n immediately suggests

a fresh source of topical functions.

2.2.1 Nonnegative matrices

Suppose that A : (R+)n ! (R+)n is represented by a nonnegative matrix with respect to

the standard basis. A given nonnegative matrix will de�ne a function on the positive cone

if, and only if, it satis�es a similar non-degeneracy condition to (4):

8i; 9j; such that Aij 6= 0 : (8)

11



It follows from the discussion above that E(A) is a topical function. For instance, the matrix

A =

0
B@ 1 2 3

0 4 0

5 0 6

1
CA

becomes the topical function

E(A)1 = log(exp(x1) + 2 exp(x2) + 3 exp(x3))

E(A)2 = log(4) + x2
E(A)3 = log(5 exp(x1) + 6 exp(x3)) :

Although A is aÆne on (R+)n, E(A) is very far from aÆne on R
n . Lemma 2.1 can now be

used to create new families of topical functions and this process once again yields examples

that have been studied extensively in other �elds. The Leontie� substitution systems of

mathematical economics, for instance, arise as maxima of sets of nonnegative matrices, [7].

This completes our discussion of examples of topical functions. There are many others (see,

for instance, Theorem 3.1 below) and a more detailed map of the geography of topical space

can be found in [31].

3 Cycle times and �xed points

The examples and applications discussed in the previous section reveal two related general

questions. First, if a topical function represents the time evolution of a discrete event

system then how can the performance of the system be measured? Second, under what

circumstances does a topical function have a �xed point? The main result of this section is

Theorem 3.2 which gives a detailed answer to these questions for functions in A�.

Suppose that F : Rn ! R
n is a topical function which models a discrete event system under

the scenario described in the Introduction. The delay between event occurrences can be

measured by F (x)� x. If this is averaged over several occurrences, it yields

(F k(x)� F k�1(x)) + � � � + (F (x) � x)

k
=

F k(x)� x

k

which reduces asymptotically to limk!1 F k(x)=k, provided the limit exists. Assume for

the moment that it does exist and that its value is � 2 R
n . This measures the asymptotic

average delay between event occurrences assuming the system is started at the times x 2 R
n .

What happens at other starting times? Choose y 2 R
n and � > 0. We may choose k so

large that ky � xk=k � �=2 and kF k(x)=k � �k � �=2. Then, by nonexpansiveness,

kF k(y)=k � �k � k(F k(y)� F k(x))=kk + k(F k(x)=k � �)k � ky � xk=k + �=2 � �

for all suÆciently large k. It follows that limk!1 F k(y)=k = �. We have proved

Lemma 3.1 Let F 2 Top(n; n). If limk!1F k(x)=k exists for some x 2 R
n , then it exists

for every x 2 R
n and has the same value.

12



De�nition 3.1 The cycle time vector of a topical function, denoted �(F ), is de�ned to be

limk!1 F k(x)=k 2 R
n , when this limit exists, and is unde�ned otherwise.

The cycle time vector does not always exist and � de�nes only a partial functional from

Top(n; n) to R
n . However, all the examples discussed in x2 can be shown to have cycle

time vectors (see below) and examples for which it does not exist have to be constructed

carefully.

Theorem 3.1 ([30, Theorem 3.1]) Let a1; a2; � � � 2 [0; 1] be any sequence of numbers drawn

from the unit interval. There exists F 2 Top(3; 3) such that

F k(0; 0; 0)2 = a1 + � � � + ak :

It follows, by suitably choosing the sequence faig, that there are topical functions F for

which �(F ) does not exist. It remains an important open problem to characterise those

topical functions for which �(F ) does exist. There is not even a reasonable conjecture

regarding this, although there is unpublished evidence relating the existence of the cycle

time to the possibility of extending E�1(F ) : (R+)n ! (R+)n continuously to the boundary

of the positive cone.

The cycle time vector is a performance measure for discrete event systems under the scenario

described in the Introduction. It is also the appropriate generalisation of the eigenvalue to

a nonlinear context. To see this, it is helpful to �rst introduce �xed points. As mentioned

in the Introduction, it is appropriate to broaden the usual de�nition.

De�nition 3.2 Let F 2 Top(n; n). The vector x 2 R
n is said to be a �xed point of F if

there exists h 2 R such that F (x) = x+ h.

If F has a �xed point x 2 R
n , then homogeneity implies that F k(x) = x + kh. It follows

that �(F ) = h. Hence, any function that has a �xed point must also have a cycle time

vector. This immediately gives examples where the cycle time vector exists and shows,

moreover, that it is a natural generalisation of the eigenvalue for both max-plus matrices

and nonnegative matrices. For the former, if A is a n� n matrix over Rmax satisfying the

nondegeneracy condition (4), then a �xed point corresponds precisely to a real eigenvector

of A: x 2 R
n such that, in max-plus notation, Ax = �x. It follows that �(A) = � and

we know from Proposition 2.2 that � = �(A), the maximum cycle mean of A de�ned in

(5). If A is a nonnegative matrix satisfying the nondegeneracy condition (8), then a �xed

point of E(A) corresponds precisely to a positive eigenvector of A: x 2 (R+)n such that,

in the usual notation, Ax = �x. It follows that log(x) is a �xed point of E(A) and that
�(E(A)) = log(�). In both cases, it can be shown that the cycle time vector always exists,

even when the function does not have a �xed point, [27, Proposition 2.1], [31].

The existence of a �xed point implies a stronger constraint on the cycle time because of

its vectorial nature: each component must have the same value. In the context of discrete

event systems, an equilibrium can only exist if each event occurs, asymptotically on average,

13



at the same rate. It is interesting to ask to what extent this is also a suÆcient condition for

the existence of a �xed point. Is it the case that �(F ) = h if, and only if, there exists x 2 R
n

such that F (x) = x+h? For an important class of topical functions, an even stronger result

is true.

De�nition 3.3 Let F 2 Top(n; n). The vector x 2 R
n is said to be a generalised �xed point

of F if there exists v 2 R
n such that F k(x) = x+ kv for all k.

It is clear that if F has a generalised �xed point, then �(F ) = v. However, because v is no

longer a scalar, the iterative behaviour of F at x cannot be deduced from the homogeneity

property. The de�nition of a generalised �xed point requires, in principle, an in�nite amount

of information about the trajectory starting from x.

Theorem 3.2 ([19, Theorem 15]) Any function in A� has a generalised �xed point.

This result has a number of useful and interesting consequences.

Corollary 3.1 If F 2 A� then �(F ) exists. Moreover, F has a �xed point if, and only if,
�(F ) = h for some h 2 R.

The problem of calculating �(F ) is not solved in general. However, for the class of min-

max functions, Theorem 3.2 implies the positive solution of the Duality Conjecture, [20,

Corollary 2], which yields a systematic method of calculation, albeit one of exponential

complexity. The problem of calculating �xed points is also unsolved in general but for

min-max functions an algorithm that works well in practice is described in [10, x2.3].

The proof of Theorem 3.2 starts from the following observation, inspired by the discounting

arguments used in stochastic optimal control. Let F 2 Top(n; n). Choose 0 < � < 1 and

let F�(x) = F (�x). Then, by nonexpansiveness,

kF�(x)� F�(y)k � �kx� yk ;

which shows that F� is a contraction. By the Banach Contraction Principle, [22, Theo-

rem 2.1], F� has a unique �xed point, x� 2 R
n , where F�(x�) = x�. In other words,

F (�x�) = x� : (9)

This procedure de�nes a function, � ! x� : (0; 1) ! R
n . The asymptotics of x� as � ! 1

from below (denoted �! 1�) reveals a great deal about the cycle time vector. For instance,

suppose that there are vectors u�1; u0 2 R
n such that, as �! 1�,

x� = u�1(1� �)�1 + u0 + o(1) ; (10)

corresponding to a truncated Laurent series expansion about 1. The notation is intended

to mean that the remainder term x� � u�1(1� �)�1 � u0 de�nes a function g : (0; 1)! R
n

such that g(�) ! 0 as � ! 1�, [15]. Using (9) and nonexpansiveness, it is not diÆcult to

show that

F (�(1 � �)�1u�1 + u0) = u�1(1� �)�1 + u0 + o(1) :
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Suppose now that we take � = 1� 1=k with k 2 N. As k !1, �! 1�1. Then

F (u0 + (k � 1)u�1) = u0 + ku�1 + o(1) (11)

from which it can be deduced by induction that F k(u0) = u0 + ku�1+ o(1). It follows that
�(F ) = u�1, so that the residue of x�|the coeÆcient of (1��)�1|is the cycle time vector

of F .

More can be said for functions in A� because of their aÆne structure. If F 2 A� then any

straight line, if extended far enough in R
n , must be mapped by F onto a straight line. This

implies that the remainder term in (11) must vanish:

F (u0 + (k � 1)u�1) = u0 + ku�1 ;

for all suÆciently large k. It follows that there is some K 2 N such that u0 +Ku�1 is a

generalised �xed point of F .

The proof of Theorem 3.2 now reduces to showing that x� has a truncated Laurent series

expansion of the form shown in (10). For functions in the class (+; E), which are of the

form c+A where A is a row stochastic matrix, this follows from standard results in matrix

theory. For functions formed by taking minima of maxima of these, the result follows by

using the fact that Laurent series like (10) are componentwise totally ordered under the

lexicographic ordering on the pair (u�1; u0). The full details are given in [19].

It is too much to expect that the �xed point theorem in Corollary 3.1 holds in general.

Consider, for example, the nonnegative matrix

A =

 
1 1

0 1

!
: (12)

An easy calculation shows that Ak(1; 1)t = (k + 1; 1)t. Hence, �(E(A)) = 0. However, A

does not have a positive eigenvector. To understand this phenomenon it is necessary to go

beyond the cycle time vector. In the next section we discuss some ideas in this direction.

4 Lower order asymptotics

If F 2 Top(n; n), the cycle time vector of F can be de�ned as the vector � 2 R
n such

that F k(x) = k� + o(k) as k ! 1. As above, this notation is intended to mean that

(F k(x) � k�)=k ! 0 as k ! 1, [15]. The argument of Lemma 3.1 was essential here to

show that � was well de�ned. The implication is that all trajectories are asymptotically

linear, at least up to order o(k). But what can be said about the growth of F k at rates

slower than k?

Consider functions u : N ! R such that u(k)!1 as k !1. We call these rate functions.

The inclusion function will be denoted by 1: 1(k) = k. If F 2 Top(n; n) and x; y 2 R
n , the

nonexpansiveness property implies that, for any rate function, u,

F k(x)� F k(y) = o(u(k)) as k !1 : (13)

In other words, all trajectories are asymptotically equivalent, at all rates. If u and v are

rate functions, the notation u � v will indicate that v(k)=u(k) ! 0 as k !1. This relation

is clearly transitive: if u � v and v � w then u � w.

15



De�nition 4.1 A sequence of rate functions (u1; u2; � � � ; um) is said to be an asymptotic

scale if u1 � u2 � � � � � um.

Let F 2 Top(n; n) and choose an asymptotic scale (1; u1; u2; � � � ; um). Suppose that for

points x; y 2 R
n there are vectors �0; �

1; � � � ; �m 2 R
n and �0; �1; � � � ; �m 2 R

n such that, as

k !1,
F k(x) = k�0 + u1(k)�

1 + � � �+ um(k)�
m + o(um(k))

F k(y) = k�0 + u1(k)�
1 + � � � + um(k)�

m + o(um(k)) :
(14)

Lemma 4.1 Under the circumstances above, � i = �i for 0 � i � m and �0 = �(F ) = �0.

Proof: Let u0 = 1. It follows from the transitivity of � that the equations in (14) continue

to hold with i in place of m, for any 0 � i � m. In particular, for i = 0, F k(x) = k�0+ o(k)

and F k(y) = k�0 + o(k). It follows immediately from Lemma 3.1 that �0 = �(F ) = �0.

Furthermore, for any 0 � i � m,

F k(x)� F k(y) = k(�0 � �0) + u1(k)(�
1
� �1) + � � � + ui(k)(�

i
� �i) + o(ui(k))

Assume as an inductive hypothesis that � i = �i for 0 � i < r, where 0 < r � m. Using (13),

we see that ur(k)(�
r � �r) = o(ur(k)). Hence, �

r = �r and the result follows by induction.

2

We shall say that F has cycle times with respect to the asymptotic scale (u1; � � � ; um) if

an equation of the form in (14) holds. In this case the notation �(F; ui) will denote the

corresponding vector � i, which we have just shown to be uniquely determined by F and

the chosen asymptotic scale. The cycle time vector of De�nition 3.1 corresponds to �(F; 1).

This notation is potentially misleading since the value of �(F; ui) depends on the chosen

scale as well as on the speci�c rate function ui. The scale should be clear from the context

and we prefer to keep the notation lightweight.

The point of this additional complexity is that if F has a �xed point, so that F (x) = x+h,

then F k(x) = kh+o(u(k)) for any rate function u. Hence, by Lemma 4.1, F has cycle times

for any asymptotic scale, (1; u1; � � � ; um), and, furthermore, �(F; 1) = h and �(F; ui) = 0 for

all 1 � i � m. This is a much stronger necessary condition than just requiring �(F; 1) = h.

It suggests the form that a generalised �xed point theorem could take.

Conjecture 4.1 Let C � Top(n; n) be a subset of topical functions, such as the subset of

nonnegative matrices. Does there exist an asymptotic scale (1; u1; � � � ; um) such that F 2 C

has a �xed point if, and only if, F has cycle times with respect to this scale, �(F; 1) = h for

some h 2 R and �(F; ui) = 0 for 1 � i � m?

We have allowed for the possibility that there is no single asymptotic scale that works for

all topical functions. There is no a priori reason why scales should not be in�nite or even

continuous, as in the scale (k1=a) where 1 � a 2 R
+ , but we have not allowed for this. The

paragraph above is less a conjecture than a suggestion as to the form that an answer might

take.
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What evidence is there for Conjecture 4.1? Theorem 3.2 can be reinterpreted as saying

that the scale (1) works for the class A�. The functions with aÆne structure require only

the linear growth rate. More interestingly, two old results in the literature on nonnegative

matrices can also be reinterpreted in this language and show that the conjecture does explain

the �xed point behaviour of examples like (12).

First, Rothblum and Whittle investigated growth rates for Markov decision processes in

[43]. We claim that their results can be reinterpreted as follows.

Theorem 4.1 If A is a n� n nonnegative matrix satisfying (8) then E(A) has cycle times

with respect to the asymptotic scale (1; log).

In other words, as k !1,

E(Ak)(x) = k�(E(A)) + log(k)�(E(A); log) + o(log(k)) :

�(E(A)) and �(E(A); log) correspond to the geometric and algebraic growth rates, respec-

tively, of [43].

Second, an old result, going back to Gantmacher in the 1950s, gives a necessary and suÆcient

condition for a nonnegative matrix to have a positive eigenvector, [4, Theorem 3.10]. We

claim that this can be reinterpreted as follows.

Theorem 4.2 If A is a nonnegative matrix satisfying (8) then A has a positive eigenvector

corresponding to its spectral radius r if, and only if, �(E(A)) = r and �(E(A); log) = 0.

Proofs of these assertions will appear in due course. It may be helpful to work out the

2 � 2 case, where the calculations can be easily done. Let fa; b; cg � R
+ . Consider the

nonnegative matrix

B =

 
a b

0 c

!
:

(The other cases in dimension 2 are either trivial or uninteresting.) We can work out the

eigenvector problem in 3 di�erent ways. A simple calculation with the eigenvalue equation

B(x; y)t = �(x; y)t shows that B has a positive eigenvector if, and only if, c > a.

In the language of [4, Theorem 3.10], B has two strongly connected components (classes)

corresponding to the vertices 1 and 2 and f2g is the unique �nal class. The spectral radius

of B is c_a. A class is basic if the spectral radius of the corresponding irreducible submatrix

equals the spectral radius of B. [4, Theorem 3.10] states that B has a positive eigenvector if,

and only if, the basic classes coincide with the �nal classes. There are hence 3 possibilities

Condition Final classes Basic classes

c > a f2g f2g

c = a f2g f1g; f2g

c < a f2g f1g

(15)

of which only the �rst gives a positive eigenvector.
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The asymptotics of the trajectories of B can be calculated as follows. Write

Bk =

 
ak rk
0 ck

!
;

where rk = ak�1b+ rk�1c. It follows that rk=a
k = b=a+ (rk�1=a

k�1)(c=a) and hence

rk =

8<
:

ak
�
b

a

��
1�(c=a)k

1�(c=a)

�
if a 6= c

ak
�
b

a

�
k if a = c

:

It is now easy to check that E(B) has cycle times with respect to the asymptotic scale

(1; log) and that their values are as follows.

Condition �(E(B)) �(E(B); log)

c > a (log(c); log(c))t (0; 0)t

c = a (log(c); log(c))t (1; 0)t

c < a (log(a); log(c))t (0; 0)t

(16)

According to Theorem 4.2, E(B) has a �xed point if, and only if, c > a. Comparing (16)

with (15) gives some insight into the workings of Theorems 4.1 and 4.2.

We can answer positively the question raised in Conjecture 4.1, at least for the subset of

nonnegative matrices. This gives some encouragement that the ideas of asymptotic scales

and cycle times are the right ones for formulating a general �xed point theorem for topical

functions.

5 Summary

Engineers who build discrete event systems have to confront dynamical problems as a matter

of course. For the most part, they have had little mathematical support to do this, despite

the considerable understanding of dynamical systems arising from classical mechanics and

the study of chaos. As we have seen in this paper, discrete event systems give rise to very

di�erent issues. They can lead naturally to dynamics which are nonexpansive in the `1

norm. Nonexpansiveness constrains the dynamical behaviour and forces all trajectories to

have the same asymptotics. It is this fundamental observation that allows performance

measures like the cycle time vector to be de�ned.

What is interesting and unexpected is the close relationship that has emerged between cycle

times and �xed points. This would not have been expected from the linear examples and

there is little hint of it in Perron-Frobenius theory. The results surveyed in this paper show

that the existence of �xed points can be deduced from the asymptotics of trajectories; a

new dynamical insight into an old classical problem.
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