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Abstract

We �nd limits for the relative entropy (to stationarity) of a com-

monly used model for ri�e-shu�ing a deck of n cards m times. We

establish the somewhat surprising fact, which was predicted by Tre-

fethen and Trefethen in a recent numerical study, that for m < log2 n

the relative entropy decreases linearly and for m > log2 n it decreases

geometrically. Thus there is a kind of secondary phase transition,

which may be to some extent general in nature. The deck becomes

random in relative entropy after m = 3

2
log2 n shu�es.

1 Introduction

The ri�e-shu�e model of Gilbert, Shannon and Reeds [5] is a random walk on

the symmetric group Sn. Statistical experiments presented in [3] show that

it is a realistic description of the way people really shu�e cards. Aldous [1]

and Bayer and Diaconis [2] have shown that, under the GSR model, it takes

m = 3

2
log2 n shu�es to randimise a deck of n cards. This is to say, they show

that this is the point at which there is a sharp cuto� (from 1 to 0) in the total

variation distance between the law of the deck con�guration and the uniform

distribution, assuming n is large. Bayer and Diaconis obtain more precise

asymptotics in the region of the cuto�. The use of total variation distance to

measure rates of convergence to equilibrium for Markov chains (and random

walks on groups) is largely a matter of convention, although often bounds
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are obtained on the l2 distance which in turn provide bounds on the total

variation distance. The relative entropy (which typically lies somewhere in

between the two) has not been considered to the same extent, particularly

in the context of cuto� phenomena. There is a chapter in the thesis of Su [6]

which is devoted to this topic, where some elementary inequalities relating

the relative entropy to total variation distance and l2 distance, as well as

detailed asymptotics for the random walk on a hypercube, are presented.

Similar inequalities are discussed by Diaconis and Salo�-Coste [4].

In a recent numerical study, Trefethen and Trefethen [7] observed that

for the GSR model:

(a) the threshold at m = 3

2
log2 n shu�es is also observed in relative en-

tropy;

(b) after exactly m = 3

2
log2 n shu�es, 0:0601 bits of information remain;

(c) the relative entropy decays linearly for m < log2 n, and geometrically

for m > log2 n.

The purpose of this note is to make these observations precise, by careful

analysis of the GSR model.

The observation (a) is not surprising, and can be expected to hold quite

generally. However, the observation (c) is rather puzzling and it is not clear

in what sense it might be a general phenomena. Consider, for example, the

(continuous time) random walk on a hypercube, where the relative entropy

between the position of the walker after time t and the uniform distribution

on an n-dimensional cube is given by

n

2

h
(1� e�2t=n) log2(1� e�2t=n) + (1 + e�2t=n) log2(1 + e�2t=n)

i
:

For this model, there is a sharp threshold in total variation distance at t =
1

4
n lnn, and the same threshold is observed in relative entropy. There is also

a similar kind of secondary phase transition at t = n: for t << n, the relative

entropy is

n + t log2
2t

n
+O(t)

and for t >> n, the relative entropy is

n

2
e�4t=n +O

�
ne�6t=n

�
:
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The rate of decay before the transition is not linear, but we do see a sudden

switch to geometric decay. If one were to speculate on what might be a

general rule, perhaps it would be that there is a kind of `pre-threshold',

at some point earlier than the absolute cuto�, at which point the relative

entropy begins to decay geometrically.

In the next two sections we state and prove the main results of the paper,

on the relative entropy to equilibrium in the GSR model.

2 The main results

Let m be the number of times a deck of n cards is shu�ed under the GSR

model and let Di, i = 1; 2; : : : ; n be i.i.d. variables taking values uniformly

at random on the the set f0; 1; 2; : : : ; 2m � 1g. The Di determine positions

to which cards in various `packets' are taken.

Let us illustrate the GSR model with an example. Suppose n = 8,

m = 2 and the values of the Di are D1 = 3, D2 = 1, D3 = 0, D4 = 0,

D5 = 2, D6 = 3, D7 = 0, D8 = 2. The end con�guration is repre-

sented by (3; 1; 0; 0; 2; 3; 0; 2) and the initial con�guration is represented by

(0; 0; 0; 1; 2; 2; 3; 3). The ith occurrence of a given value in the initial con�gu-

ration is mapped to the ith occurrence of that value in the end con�guration.

The corresponding permutation is

� =

 
1 2 3 4 5 6 7 8

3 4 7 2 5 8 1 6

!
:

In this way, the Di are mapped in a many-to-one fashion to Sn. We denote

the distribution on Sn induced by the GSR model with m shu�es and initial

mass concentrated on the identity e of Sn by Pn;m.

A rising sequence of a permutation � 2 Sn is a maximal subset of an

arrangement of cards consisting of successive values displayed in order. In

the example, the rising sequences are (1), (2), (3; 4; 5; 6) and (7; 8). The

number of rising sequences is denoted by r. It is shown in [2] that the value

of Pn;m(�) only depends on the number of rising sequences r = r(�) and

Pn;m(�) =

�
2m + n� r

n

�
2�mn:

Let U be the uniform distribution on Sn, so that U(�) = 1=n! for all � 2

Sn. It is well known that the GSR model has U as a stationary distribution.
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The relative entropy to stationarity H(Pn;mjU) is

H(Pn;mjU) =
X
�2Sn

Pn;m(�) log2 (n!Pn;m(�)) :

We get explicit limits forH(Pn;mjU), which reveal the surprising linear/geometric

transition in the decrease of H(Pn;mjU) at m = log2 n.

Theorem 1 Let !(n) be an arbitrary function such that !(n)!1 and let

� = log2 e
:
= 1:44270. Then,

H(Pn;mjU) = log2 n!�mn + o(n) for m = log2 n� !(n)

and

H(Pn;mjU) =
�

24
n32�2m +O(n42�3m) +O(n22�2m) for m = log2 n+ !(n):

Moreover, if m 2 [log2 n�O(1); log2 n� 2], then

(2� �)n+O(n1=2) � H(Pn;mjU) = O(n):

The �rst O(�) in the expression for H(Pn;mjU) for m = log2 n + !(n) domi-

nates the second O(�) when m = 2 log2 n�!(n), while the second dominates

the �rst when m = 2 log2 n+ !(n).

We display the linear/geometric transition more explicitly in our �rst

corollary.

Corollary 1 If m = log2 n� !(n), !(n)!1, then

H(Pn;m+1jU)�H(Pn;mjU) = �n + o(n):

If m = log2 n+ !(n), !(n)!1, then

H(Pn;m+1jU)

H(Pn;mjU)
=

1

4
+ o(1):

Proof The �rst statement follows automatically from Theorem 1. The sec-

ond statement results from n42�3m=(n32�2m) = n2�m = o(1) and n22�2m=(n32�2m) =

n�1 = o(1).

Our second corollary demonstrates that m = 3

2
log2 n is the threshold to mix

a deck of cards in relative entropy.
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Corollary 2 If m = 3
2
log2 n + c, c a real constant, then

H(Pn;mjU) =
�

24
4�c:

As we remwrked earlier, it was noted in [7] that H(Pn;mjU)
:
= 0:06011 when

m = log2 n, agreeing with our limit H(Pn;mjU)! �=24
:
= 0:060112293.

Corollary 2 may also be proven in the manner that [2] proves limits at

threshold for total variation distance: by using the normality of the Eulerian

numbers.

The proof of Theorem 1 for m = log2�!(n) uses estimates which are

uniform over all r 2 [1; 2m]. The proof for m = log2 n + !(n) uses an

expansion of the logarithm of the ratio of probability densities. Key tools are

estimates on the expectation and variance of the number of rising sequences

R under the measure Pn;m.

The way we use estimate E(R) is the through the identity (6), which basi-

cally corrects equation (4.23) of [1]. The number of ascents of a permutation

� is

A(�) = jfi 2 [1; n� 1] : �(i) < �(i+ 1)gj :

An estimate on the expectation of A after m reverse shu�es is given in

[1] to help prove the existence of a threshold in total variation distance at

m = 3
2
log2 n. The number of descents is D(�) = n � 1 � A(�) and a

permutation has r rising sequences if and only if its inverse has r�1 descents.

It therefore follows from Lemma 3 that the expected number of ascents after

m reverse shu�es is

Ereverse(A) = n�1�(E(R)�1) =
n

2
+

1

12
n
22�m�

1

2
+O(n32�2m)+O(n2�m):

The proof of (4.19) in [1] is valid with this modi�cation.

3 Proofs

Lemma 1, Lemma 2 and Lemma 4 handle the cases m = log2 n � !(n),

m = log2 n +O(1), and m = log2 n+ !(n), respectively.

Lemma 1 If m = log2 n� !(n), !(n)!1, then

H(Pn;mjU) = log2 n!�mn + o(n):
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Proof For r � 2m, de�ne A(r) to be

A(r) :=

�
n + 2m � r

n

�
�
�
n+ 2m

n

�
; (1)

so that

n!Pn;m(�) = n!2�mn
A(r): (2)

We use Stirling's formula:

log2 n! = � lnn!

= �n lnn� �n+O

�
n
1=2
�

= n log2 n� �n+O

�
n
1=2
�
: (3)

It follows from (3) and 2m = n2�!(n) that

log2

�
n+ 2m

n

�
= log2(n+ 2m)!� log2 n!� log2(2

m)!

= (n+ 2m) log2(n + 2m)� n log2 n� 2m log2 2
m +O

�
n
1=2
�

= o(n): (4)

Combining (2), (1), and (4) completes the proof.

Lemma 2 If m 2 [log2 n�O(1); log2 n� 2], then

(2� �)n+O(n1=2) � H(Pn;mjU) = O(n):

Proof The lower bound is given by

H(Pn;mjU) � log2(n!)�mn

= n log2 n� �n�mn +O(n1=2) (5)

� 2n� �n+O(n1=2):

The upper bound follows from (5) and

log2

�
n+ 2m

n

�
� log2

�
2n

n

�
= log2(2n)!� 2 log2(n!)

= 2n log2(2n)� 2(n log2 n) +O(n1=2)

= 2n+O(n1=2):
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Lemma 3 Let R be the random variable de�ned on the measure space of

permutations counting the number of rising sequences. If m = log2 n+!(n),

!(n)!1, then, under Pn;m,

E(R) =
n

2
�

1

12
n
22�m +

1

2
+ O(n32�2m) +O(n2�m)

and

Var(R) = O(n):

Proof Suppose that a realization of theDi takes on L distinct values between

0 and 2m� 1, so that L is a random variable, and list the values in order 0 �
c1 < c2 < � � � < cL�1 < cL � 2m � 1. Let Nj =

P
n

k=1 I [Dk = cj], j 2 [1; L],

count the number of times the value cj is taken on. Consider the distribution

of shu�es conditioned on F , the �-�eld generated by L, (c1; c2; : : : ; cL), and

(N1; N2; : : : ; NL). The values of the permutation generated by the Di that

are taken to fi : Di = c1g always begin a rising sequence. The values of

the permutation generated by the Di that are taken to fi : Di = cj+1g for

a �xed j 2 [1; L � 1] will begin a new rising sequence unless inffi : Di =

cj+1g > supfi : Di = cjg. The random variable counting the number of rising

sequences of the permutation generated by the Di's is therefore

R = L�
L�1X
j=1

Ij; (6)

where Ij are the indicator variables

Ij = I [inffi : Di = cj+1g > supfi : Di = cjg] :

Indicators Ij and Ik are independent whenever jj � kj > 1 and they have

means

E(Ij) =

 
Nj +Nj+1

Nj

!
�1

:

Let Jl1;l2 , 1 � l1; l2 � n, be the random variables de�ned by

Jl1;l2 =
L�1X
j=1

I [Nj = l1; Nj+1 = l2] :
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The conditional expectation of R is

E(RjF) = L�
L�1X
j=1

 
Nj +Nj+1

Nj

!
�1

= L�
L�1X
j=1

X
l1;l2

I [Nj = l1; Nj+1 = l2]

 
l1 + l2

l2

!
�1

= L�
X
l1;l2

L�1X
j=1

I [Nj = l1; Nj+1 = l2]

 
l1 + l2

l2

!
�1

= L�
X
l1;l2

Jl1;l2

 
l1 + l2

l2

!
�1

:

The expected value of R is

E(R) = E(E(RjF)) = E(L)�
X
l1;l2

E(Jl1;l2)

 
l1 + l2

l2

!
�1

: (7)

We calculate

E(L) = 2m
�
1�

�
1� 2�m

�n�
= 2m

�
n2�m �

�
n

2

�
2�2m +O

�
n
32�3m

��

= n�
�
n

2

�
2�m +O

�
n
32�2m

�
: (8)

Estimating the E(Jl1;l2) takes a substantial part of the rest of the proof.

Let Kl =
P

n

j=1 I[Nj = l] and note that

Kl =
X
l2

Jl;l2 + I[NL = l] (9)

=
X
l1

Jl1;l + I[N1 = l]: (10)

Taking l = 2 gives in (9) gives

K2 = J2;1 + J2;2 + � � �+ J2;n + I[NL = 2]: (11)

Since Jl;l2 � Kl and

E(Kl) = 2m
�
n

l

�
2�lm

�
1� 2�m

�n�l
(12)

� 2m
(n2�m)

l

l!
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we have

E(J2;3) + E(J2;4) + � � �+ E(J2;n) � E(K3) + E(K4) + � � �+ E(Kn)

�
1X
l=3

2m
(n2�m)

l

l!

= O(n32�2m): (13)

The expected value of J2;2 is

E(J2;2) =
X

1�s<t�2m

�
n

2

��
n� 2

2

�
2�4m

�
1�

1 + t� s

2m

�n�4

� n
42�4m

X
1�s<t�2m

�
1�

1 + t� s

2m

�n�4
;

where s and t represent cj with Nj = 2, the binomial coe�cients are the

number of ways of choosing two i such that Di = s and another two i such

that Di = t, 2�4m is the probability that the chosen Di are s and t, and the

other factor is the probability that none of the other Di's equal s or t or a

value in between them. The sum is bounded by

X
1�s<t�2m

�
1�

1 + t� s

2m

�n�4
� n

1X
k=2

 
1�

k

2m

!n�4

� n

1X
k=2

exp

 
�
k(n� 4)

2m

!

= n
exp

�
�2(n�4)

2m

�
1� exp

�
� (n�4)

2m

�
= O (2m) ;

hence

E(J2;2) = O(n42�3m): (14)

The expectation of the indicator in (11) is

P (NL = 2) =
2mX
k=1

�
n

2

�
2�2m

 
1�

k

2m

!n�2

;
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where n� k + 1 represents cL, so that

P (NL = 2) �
2mX
k=1

n
2

2
2�2m exp

 
�
k(n� 2)

2m

!

�
n
2

2
2�2m

exp
�
�2(n�2)

2m

�
1� exp

�
� (n�2)

2m

�
= O(n2�m): (15)

Putting (13), (14), and (15) into the expected value of both sides of (11)

gives

E(J2;1) = E(K2) +O

�
n
32�2m

�
+O

�
n2�m

�
: (16)

A similar argument using (10) produces

E(J1;2) = E(K2) +O

�
n
32�2m

�
+O

�
n2�m

�
: (17)

Letting l = 1 in (10) gives

K1 = J1;1 + J2;1 + � � �+ Jn;1 + I[N1 = 1]: (18)

If one takes expectations on both sides of (18), then by (16) and the argument

showing (13) one has

E(K1) = E(J1;1) + E(K2) + P (N1 = 1) +O(n32�2m) +O

�
n2�m

�
: (19)

By de�nition,

n = K1 + 2K2 + 3K3 + � � �+ nKn;

An argument like the one showing (13) implies

3E(K3) + � � �+ nE(Kn) = O(n32�2m);

so that

E(K1) = n� 2E(K2) +O(n32�2m): (20)

Note that

P (N1 > 1) =
nX

k=2

P (N1 = k)

=
nX

k=2

2mX
i=1

�
n

k

�
2�km

�
1�

i

2m

�n�k

=
dn=2eX
k=2

2mX
i=1

�
n

k

�
2�km

�
1�

i

2m

�n�k
+

nX
k=dn=2e+1

2mX
i=1

�
n

k

�
2�km

�
1�

i

2m

�n�k
:
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The �rst sum is bounded by

dn=2eX
k=2

2mX
i=1

�
n

k

�
2�km

�
1�

i

2m

�n�k
�

dn=2eX
k=2

2mX
i=1

n
k

k!
2�km exp

 
�
i(n� k)

2m

!

�
dn=2eX
k=2

2mX
i=1

n
k

k!
2�km exp

�
�

in

2m+1

�

�
dn=2eX
k=2

n
k

k!
2�km

exp (n2�m�1)

1� exp (n2�m�1)

= O

�
n
22�2m � 2mn�1

�
= O(n2�m):

The second sum is bounded by

nX
k=dn=2e+1

2mX
i=1

�
n

k

�
2�km

�
1�

i

2m

�n�k
� 2�(dn=2e+1)m

nX
k=dn=2e+1

2mX
i=1

�
n

k

�

� 2�dn=2em+n

Hence, P (N1 > 1) = O(n2�m) and

P (N1 = 1) = 1�O(n2�m): (21)

It follows from (19), (20), and (21) that

E(J1;1) = n� 3E(K2)� 1 +O(n32�2m) +O(n2�m): (22)

The sum in (7) for l1; l2 � 3 is bounded by

X
l1�3

0
@X
l2�3

E(Jl1;l2)

1
A �

X
l1�3

E(Kl1
) = O(n32�2m): (23)

Substituting (16), (17), (22), and (23) into (7), we have

E(R) = E(L)�
1

2
(n� 3E(K2)� 1)�

2

3
E(K2) +O(n32�2m) +O(n2�m)

= E(L)�
n

2
+

5

6
E(K2) +

1

2
+O(n32�2m) +O(n2�m): (24)
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If we let l = 2 in (12), we obtain

E(K2) =

�
n

2

�
2�m +O(n32�2m): (25)

Using (8) and then (25) in (24) gives us the �rst statement of the lemma,

E(R) =
n

2
�

1

6

�
n

2

�
2�m +

1

2
+O(n32�2m) +O(n2�m)

=
n

2
�

1

12
n
22�m +

1

2
+O(n32�2m) +O(n2�m):

In bounding the variance of R, it is helpful to de�ne I 0
k
, k = 1; 2; : : : ; n

by I 0
k
= Ik for k < L and I

0

k
= 1 for k � L. We may then write (6) as

R = 1�
L�1X
j=1

(Ij � 1) = 1�
nX

k=1

(I 0
k
� 1);

the variance of which expression is

Var(R) = Var

 
nX

k=1

(I 0
k
� 1)

!

=
nX

k=1

Var(I 0
k
� 1) + 2

X
1�k<j�n

Cov(I 0
k
� 1; I 0

j
� 1):

The covariances are

Cov(I 0
k
� 1; I 0

j
� 1) = E

�
(I 0

k
� E(I 0

k
))(I 0

j
� E(I 0

j
))
�

= E

�
E

�
(I 0

k
� E(I 0

k
))(I 0

j
� E(I 0

j
))jF

��
: (26)

If j > k+1 and j � L, then I 0
j
is identically 1 and the conditional expectation

in (26) is 0; while if j > k + 1 and j < L, then I
0

k
= Ik and I

0

j
= Ij are

independent and again it is 0. Therefore,

Var(R) =
nX

k=1

Var(I 0
k
� 1) + 2

X
1�k�n�1

Cov(I 0
k
� 1; I 0

k+1 � 1)

� n+ 2(n� 1) < 3n:
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Lemma 4 If m = log2 n+ !(n), !(n)!1, then

H(Pn;mjU) =
�

24
n
32�2m +O

�
n
42�3m

�
+O

�
n
22�2m

�
:

Proof The relative entropy is

H(Pn;mjU) =
X
�2Sn

Pn;m(�) log2(n!Pn;m(�)) = �
X
�2Sn

Pn;m(�) ln(n!Pn;m(�)):

(27)

We have

ln(n!Pn;m(�)) = ln
�
(2m + n� r)

n
2�mn

�

= ln

 
n�1Y
k=0

2m + n� k � r

2m

!

=
n�1X
k=0

ln

 
1 +

n� k � r

2m

!

=
n�1X
k=0

n� k � r

2m
�

1

2

n�1X
k=0

 
n� k � r

2m

!2

+O

�
n
42�3m

�

=

 
n(n+ 1)

2
� rn

!
2�m �

1

2

 
n
3

3
� rn(n+ 1) + r

2
n

!
2�2m

+O

�
n
42�3m

�
+O

�
n
22�2m

�
:

Therefore,

X
�2Sn

Pn;m(�) ln(n!Pn;m(�)) =

 
n(n+ 1)

2
� E(R)n

!
2�m

�
1

2

 
n
3

3
� E(R)n(n+ 1) +

�
Var(R) + (E(R))

2
�
n

!
2�2m

+O

�
n
42�3m

�
+O

�
n
22�2m

�
:

Lemma 3 and (27) give

H(Pn;mjU) =

�
1

12
�

1

6
+

1

4
�

1

8

�
�n

32�2m +O

�
n
42�3m

�
+O(n22�2m)

=
�

24
n
32�2m +O

�
n
42�3m

�
+O

�
n
22�2m

�
:
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