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Abstract

We apply the Stein-Chen method for Poisson approximation to spin-half Ising-

type models, in positive external �eld, which satisfy the FKG inequality. In particular

we show that, provided the density of minus spins is low and can be expanded as a

convergent power series in the activity (fugacity) variable, the distribution of minus

spins is approximately Poisson. The error of the approximation is inversely propor-

tional to the number of lattice sites (we obtain upper and lower bounds on the total

variation distance between the exact distribution and its Poisson approximation). We

illustrate these results by application to speci�c models, including the mean-�eld and

nearest-neighbour ferromagnetic Ising models.

KEY WORDS: Poisson approximation, Stein-Chen method, Ising models, nucleation

1 Introduction and Summary

A guiding principle in probability theory is the law of small numbers; that the distribution

of rare events is approximately Poisson. In recent years there have been signi�cant devel-

opments in quantifying this statement. In particular the `Stein-Chen method' has been

introduced which makes it possible to obtain good estimates on the accuracy of the Poisson

approximation. A survey of the method and its application in a variety of mathematical

problems can be found in [1].

The law of small numbers is often tacitly assumed in many areas of statistical physics. For

instance, when one thermodynamic phase nucleates within another, it is often assumed

that the distribution of nucleating droplets is Poisson, provided the density of nucleation

centres is su�ciently low. In recent experimental work on dewetting of polymer �lms from

solid surfaces [2, 3] the distribution of rupture sites was found to be Poisson, and the

authors concluded that the dewetting process was dominated by the nucleation of defects
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which are intrinsic to the polymer | implicit here is the assumption that nucleating sites

are Poisson distributed.

In this paper we apply the Stein-Chen method to classical lattice models in the low density

regime. We restrict our attention to two-state Ising spin models, in an external positive

�eld, which satisfy the FKG inequality. We give rigorous bounds for the error in the

Poisson approximation which hold quite generally, and demonstrate that these bounds

are, in some sense, the best possible. Our main result is that, roughly speaking, the

Poisson approximation (for the distribution of minus spins) is justi�ed, with error inversely

proportional to the number of lattice sites, if the density is low and can be expanded as a

convergent power series in the activity (fugacity) variable.

Barbour and Greenwood [4] have applied the Stein-Chen method to a class of Markov

random �elds, which includes the Ising model; the bounds they obtain for the Ising model

are not very explicit. Using quite di�erent methods, Fern�andez, Ferrari and Garcia [5]

establish the asymptotic Poisson distribution of contours in the nearest-neighbour Ising

model at low temperatures and zero external �eld.

The outline of the paper is as follows. In x2, we give a brief introduction to the Stein-Chen

method for Poisson approximation, and state the bounds which we shall apply. In x3, we

introduce the class of models under consideration, and apply the bounds of the previous

section to these models. Upper bounds are given in xx3.1. To demonstrate that these

are optimal, in some sense, we establish lower bounds for the error in the approximation

in xx3.2. Applications to speci�c models are presented in xx3.3. These include non-

interacting models (high temperature limit), mean-�eld models, and the nearest-neighbour

ferromagnetic Ising model. We �nish with a conclusion in x4 and some details needed for

xx3.3 are given in Appendix A.

2 Stein's Method

Suppose W =
P

�2� I�, where � is some index set and I� are Bernoulli random variables.

If �� := EI� is small enough and there is not much dependence between the I�, then the

`law of small numbers' says that W should have approximately a Poisson distribution.

This can be made precise. Suppose we can construct random variables U� and V� on the

same probability space such that

L(U�) = L(W ); L(1 + V�) = L(W jI� = 1)

where L(X) denotes the law of random variable X. If Z is a Poisson random variable

with mean � :=
P

� ��, then we write L(Z) = Po(�). The total variation distance, dTV(�),

between L(X) and L(Y ) on measure space (
;F) is de�ned as

dTV(L(X);L(Y )) := sup
A2F

jP(X 2 A)� P(Y 2 A)j: (1)

Then (see, for example, Theorem 2.A of [1])

dTV(L(W );Po(�)) � ��1(1� e��)
X
�2�

��E jU� � V�j: (2)
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The left-hand-side of (2) is a measure of how close the distribution of W is to the Poisson

distribution with mean �. Assuming that the ��'s are small, the notion of weak dependence

can now be expressed as \for each �, U� = V� with high probability."

The proof uses Stein's method, a powerful technique in probability theory used to ap-

proximate one distribution by another. The basic idea is to characterize the distribution

in some way, usually by a Stein operator on some function space. This operator is often

related to a Markov process which has the approximating distribution as its stationary

distribution.

The Stein operator, A�, for Po(�), the Poisson distribution with mean �, acts on bounded

functions f on the non-negative integers and is de�ned by

A�f(i) = �f(i+ 1)� if(i):

The operator A� is the generator of the immigration-death process with immigration rate

� and unit death rate, whose stationary distribution is Poisson with mean �. The key fact

is that EA�f(Z) = 0 for all bounded f de�ned on the non-negative integers if, and only

if, Z is Poisson with mean �. This suggests that if EA�f(W ) is small, for a su�ciently

rich class of functions f , then the distribution of W is close to Po(�).

This is indeed the case, and can be formulated as follows. The class of functions to consider

are solutions, g, to the equation

A�g = I[i 2 A]� P(Z 2 A);

with g(0) = 0, for each subset A of the non-negative integers. Here I is the indicator

function and L(Z) = Po(�). This is the Stein equation. It can be shown that if g is a

solution, for any particular A, we have

sup
i

jg(i + 1)� g(i)j � ��1(1� e��):

Using this fact, and the coupling described above, we have, for each A,

jP(W 2 A)� P(Z 2 A)j = jE [�g(W + 1)�Wg(W )]j

=

�����
X
�

��E [g(U� + 1)� g(V� + 1)]

�����
� ��1(1� e��)

X
�

��E jU� � V�j

as required.

It takes no more e�ort to get Poisson process approximations. Here we compare the whole

process of indicators (I�; � 2 �) with a Poisson process (J�; � 2 �), with EJ� = ��. (The

J 's are independent Poisson random variables.) It is convenient to describe the process as

an integer-valued measure on �: set � =
P

� I��� and � =
P

� J���, where �� denotes a

point mass at �, i.e., for A � �,

��fAg =

�
1 if A � �;

0 otherwise.
(3)
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We will denote the law of the Poisson random measure � by Po(��� ), where ��� := f��g�2�.

The total variation distance may be de�ned in a way similar to (1), but now we take

the supremum over subsets A of integer-valued measures. Suppose that for each � 2 �,

random measures 	� and �� can be realized on the same probability space, in such a way

that

L(	�) = L(�); L(�� + ��) = L(�jI� = 1):

Then Theorem 10.B of [1] states that

dTV(L(�);Po(��� )) �
X
�2�

��Ed(	� ;��); (4)

where

d(	�;��) =

X
�2�

j	�f�g � ��f�gj:

There is a natural partial ordering on f0; 1g� de�ned by x � y if x� � y� for all � 2 �.

Recall that the random variables I� are said to satisfy the Fortuin-Kasteleyn-Ginibre

(FKG) inequality [6] if, for all non-decreasing f and g on f0; 1g�,

E ff(I�; � 2 �)g(I�; � 2 �)g � Ef(I� ; � 2 �)Eg(I� ; � 2 �):

[We say that f is non-decreasing if f(x) � f(y) whenever x < y.]

If the FKG inequality is satis�ed, it is possible to choose U� and V� (resp. 	� and ��)

in such a way that we obtain the following bounds (see [1]):

dTV(L(W );Po(�)) � ��1(1� e��)

(
varW � �+ 2

X
�2�

�2�

)
(5)

dTV(L(�);Po(��� )) � varW � �+ 2

X
�2�

�2� (6)

The Poisson distribution has the property that the variance is equal to the mean. Although

this is not a characterisation, the above bounds are telling us that whenever the FKG

property holds, if the index set � is large and � is moderate, then

P
�2� �

2
� is small and

the distance to the Poisson approximation is essentially the extent to which the variance

exceeds the mean. This provides a useful rule of thumb.

Similar bounds can be obtained for the case of negatively associated indicator variables.

3 Application to Ising Models

Ising spins �i 2 f�1; 1g are placed on sites i of a d-dimensional lattice � � Zd
with a

total number of j�j = N sites. The Hamiltonian, H�(�), acting on each spin con�guration

� 2 f�1; 1g�, has the general form

H�(�) = �
X
A��

JA �
A �H

X
i2�

�i (7)
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where �A :=

Q
i2A �i , H is the applied magnetic �eld and the interactions JA are taken

to be translationally invariant. The probability distribution of �, P�(�), is given by the

Gibbs measure

P�(�) =
1

Z�(z; �)
e��H�(�)

(8)

where � is the inverse temperature, z is the `activity' variable z = e�2h with h = �H and

Z�(z; �) =
P

� e
��H�(�) is the partition function. The indicator for �i = �1 is denoted

by Ii = (1 � �i)=2. We consider values of H and � for which �i := EIi is small for all

i 2 � (for example by having H su�ciently large and positive). We de�ne W :=

P
i2� Ii

(total number of negative spins in �) and the density of negative spins, �, is de�ned by

� := N�1
P

i2� �i. We also de�ne the integer-valued measure, �, on � by � :=

P
i2� Ii�i

where �i is a point mass at site i [de�ned as in (3)].

In what follows we shall be applying expansions in the activity, z, so we re-express the

partition function as follows. On de�ning ��(�) := �
P

A�� JA�
A
we write

Z�(z; �) = e����(+)z�N=2Z�(z; �) (9)

where � = + denotes the con�guration with �i = +1 for all i 2 � and

Z�(z; �) = 1 +

NX
n=1

znQn(�; �) (10)

with

Qn(�; �) :=
X

�:W=n

e��[��(�)���(+)]: (11)

The density, �, can then be determined by

�(z) =
z

N

@

@z
lnZ�(z; �) (12)

from which follows the activity expansion

�(z) =

1X
n=1

an(�; �)z
n

(13)

provided convergence holds.

3.1 Upper Bounds

The aim here is to apply the bounds of Section 2 to the models de�ned by (7) and (8).

We shall restrict our attention to Ising models which satisfy the FKG inequality so that

bounds (5) and (6) are valid. This is certainly true if JA are non-negative. We have

varW =

X
i2�

X
j2�

cov(Ii; Ij) (14)

and � := EW =

P
i2� �i. The magnetisation on site i 2 � is de�ned as mi := E�i =

1 � 2�i, the average magnetisation across the lattice, m, is m := N�1
P

i2�mi and the

5



susceptibility, �, is � := @m=@h. It immediately follows from (14) that varW =
1
4
N� and

therefore

varW � � = N
�
1
4
�� �

�
: (15)

Alternatively, one notes that
1
4
� = z@�=@z. From hereon, for simplicity, we assume

homogeneity in that �i = � for all i 2 � although generalisations to cases where this does

not hold can easily be extended from what follows. Hence, we now have

varW � �+ 2

X
i2�

�2i = N

�
z
@�

@z
� �+ 2�2

�
(16)

with � = N�. We now state the following proposition.

Proposition 3.1 For values of H and � where � can be expressed as a convergent power

series (activity expansion) in z for all � in a sequence tending to in�nity and if � is

su�ciently small then the following bounds hold

dTV(L(W );Po(�)) �
1

N
�(1� e��)C(�)

�
1 +O

�
�

N

��
(17)

dTV(L(�);Po(��� )) �
1

N
�2C(�)

�
1 +O

�
�

N

��
(18)

where C(�) is a constant for �xed �.

Proof This follows easily from (16). We start from the activity expansion (13) which, for

a sequence of lattices � tending to in�nity, stays convergent in a region D � C and will

be simple for su�ciently small j�j. So clearly, one has

z
@�

@z
� � =

1X
n=2

(n� 1)an(�; �)z
n

(19)

which is also convergent and simple. For su�ciently small j�j it is possible to invert (13)

and write z as a convergent series of � which is also simple [7]. Substituting this into (19)

gives

z
@�

@z
� � =

1X
n=2

bn(�; �)�
n

(20)

and since this stays convergent for all � tending to in�nity one has

z
@�

@z
� �+ 2�2 � C(�)�2 +O(�3): (21)

Substituting this into (16) and applying Bounds (5) and (6) of Section 2 completes the

proof.

We now make some remarks:

Remark 3.2 The general condition for convergence of activity expansions for models

de�ned by (7) can be expressed in terms of � and JA (see, e.g., Ruelle [8] for details).

Certainly, if z is su�ciently small (H su�ciently large) convergence is assured.
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Remark 3.3 In the complex z plane, singularities in � = �(z) occur only at all those

values of z for which Z�(z; �) = 0 (though these cannot lie on the positive real axis,

i.e., the physical segment, when � is �nite) [9]. Thus, the activity expansion for �(z) is

convergent in the circle jzj < d� where d� is the distance from the origin to the nearest

zero of Z�(z; �) and therefore convergence is guaranteed for all � when H > �(2�)�1 lnd�

where d� = inf� d�.

Remark 3.4 For the case of models having pairwise ferromagnetic interactions only, i.e.,

JA = 0 whenever jAj 6= 2 and Jfi;jg � 0 for site pairs A = fi; jg, we can apply the theorem

of Lee and Yang [10]. This states that Z�(z; �) = 0 implies jzj = 1 for all �. Thus, from

Remark 3.3, the activity expansion for � is convergent for all positive H no matter how

small. However, if H is small positive, � needs to be large in order to keep � small so as to

satisfy the conditions of Proposition 3.1. Unfortunately, C(�) may well diverge as � !1

and this will prove to be the case in some of the examples considered below.

3.2 Lower Bound

It is possible to place a lower bound on the total variation distances by considering a

speci�c event. In particular, for the Ising models, the simplest would be to compare

P(W = 0) = P�(+) with P(Z = 0) = e��. We make the following proposition.

Proposition 3.5 For values of H and � where � can be expressed as a convergent power

series (activity expansion) in z for all � in a sequence tending to in�nity and if � is

su�ciently small then���P�(+)� e��
��� = 1

N
e���2

��1� 1
2
C(�)

�� �1 +O(N�1
)

�
(22)

where the constant C(�) is the same as that in Proposition 3.1.

Proof Start by noting that

P�(+) =

1

Z�(z; �)

= exp

�
�N

Z z

0

�(z0)

z0
dz0
�

(23)

where the second line follows directly from (12). Using the activity expansion (13) we

have Z z

0

�(z0)

z0
dz0 =

1X
n=1

1

n
an(�; �)z

n
(24)

= �+

1X
n=2

cn(�; �)�
n

(25)

where (25) followed from (24) by inverting (13) which is possible for su�ciently small j�j.

Therefore, putting � = N� we have���P�(+)� e��
��� = e��

�����1� exp

"
�

1X
n=2

cn(�; �)�
nN1�n

#����� (26)
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which, given that c2(�; �) = �1
2
b2(�; �) [where bn(�; �) are the same expansion coe�cients

used in (20)], completes the proof.

Remark 3.6 Clearly, jP�(+)� e��j provides a lower bound to dTV(L(�);Po(�)) for both

L(W ) and L(�) and therefore their upper bounds cannot be tighter than O(N�1
). Thus,

for �xed � and �, we have

dTV(L(�);Po(�)) �
1

N
(27)

as N gets large. [Here, we use the convention that f(N) � g(N) as N !1 denotes that

ln f(N)= ln g(N)! 1 as N !1.]

3.3 Examples

Here we consider some speci�c choices for JA in (7) and compute the constant C(�) for

these models.

3.3.1 Non-Interacting Model and the High-Temperature Limit

This model is de�ned by putting JA = 0 for all A � � (non-interacting paramagnet). The

results so obtained are, of course, equivalent to taking, in (7) and (8), the simultaneous

limit � ! 0, H !1 such that h = �H is kept �nite.

For this case, it is straightforward to show that � = z=(1 + z) from which it follows that

b2(0; �) = �1 and bn(0; �) = 0 for all n � 3. Also, cn(0; �) = 1=n in the expansion used

for Proposition 3.5. Hence, it immediately follows that C(0) = 1.

3.3.2 Mean-Field Model

Here, the interactions are in�nite-ranged pairwise ferromagnetic and de�ned by having

JA = 0 whenever jAj 6= 2 and Jfi;jg = ~J=N for all pairs A = fi; jg where ~J � 0. The

location of the zeros of Z�(z; �) are known for this model [11] and lie along the circle

jzj = 1 for all � | the same as those models where the theorem of Lee and Yang,

mentioned in Remark 3.4, can be applied. Therefore, the activity expansion for �(z),

Eq. (13), is convergent for jzj < 1.

In order to generate an expansion in z one needs to determine Qn(�; �). For the mean-�eld

model this can be expressed simply as

Qn(�; �) =

�
N

n

�
exp

h
2� ~Jn

� n
N
� 1

�i
(28)

and from this follows the expansion coe�cients fbn(�; �)gn�2. In particular, the �rst two

[obtained from Eqs. (35) to (39) of Appendix A] are given by

b2(�; �) = 4� ~J � 1 +O(N�1
) (29)

b3(�; �) = 8� ~J(2� ~J � 1) +O(N�1
) (30)
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and from (29) one obtains C(�) as follows

C(�) = 4� ~J + 1: (31)

3.3.3 Nearest-Neighbour Ferromagnetic Ising Model

We consider a lattice, �, with coordination number q (e.g., q = 2d for a d-cubic lattice) and

take JA = J � 0 for all A consisting of nearest-neighbour pairs whereas JA = 0 otherwise.
5

Again, the Lee-Yang theorem of Remark 3.4 applies here so that the expansion (13) is

convergent for jzj < 1. The expansion coe�cients fbn(�; �)gn�2 can be systematically

computed, the �rst two of which (see Appendix A) are given below

b2(�; �) = qe4�J � q � 1 (32)

b3(�; �) = q(q � 3)e8�J + 2q(2� q)e4�J + q(q � 1) (33)

and from (32) follows C(�) which is given by

C(�) = qe4�J � q + 1: (34)

Note that, as required, if we put J = ~J=q and take q ! 1 we recover the results of the

mean-�eld model given above with limq!1C(�) given by (31).

4 Conclusion

When an uniaxial ferromagnet is deep enough within the positively magnetized region

of the phase diagram, so that the probability of �nding a negative spin is su�ciently

small, it is usually assumed that the distribution of negative spins is Poisson. Here,

under quite general conditions for a range of interacting spin systems, we have been

able to rigorously quantify this picture and show that the distribution of minus spins is

approximately Poisson with an error inversely proportional to the number of lattice sites.

The two main conditions under which our proof holds are: (a) that the Gibbs measure

for the system satis�es the FKG property (this is certainly true if all interactions are

ferromagnetic) and (b) that the density of minus spins is su�ciently small and expandable

as a convergent power series in the activity (a property that generally holds if one is

su�ciently far from phase boundaries or if the temperature is high enough).

This may have implications in the study of nucleation. For, if at some subcritical tempera-

ture one suddenly reverses the magnetic �eld from a value deep within the positively mag-

netized region of the phase diagram to a negative value, the system becomes metastable

and will eventually decay into the stable negatively magnetized phase. The minus spins

present before the �eld reversal would act as `seed' sites for the nucleating negatively-

magnetized droplets. Thus, the distribution of droplets re
ects the distribution of these

negative spins and would therefore be approximately Poisson | in experimental situations

5In order to avoid more complicated lattice boundary considerations we assume, for simplicity, periodic

boundary conditions (i.e., � wrapped on a d torus). Of course, the resulting value for C(�) applies to more

general lattice boundaries.
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this is often taken as a signature that the decay process of the metastable phase was due

to nucleation rather than, say, through the formation of hydrodynamic-like instabilities

typical of spinodal decomposition.
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A Appendix

Here we give some details on how the expansion coe�cients fbn(�; �)gn�2 are computed.

We start by using Eq. (12) to generate the expansion for �(z) [Eq. (13)] where an(�; �)

(for n � 1) can be expressed in terms of fQm(�; �)g1�m�n. The �rst three coe�cients are

given by

N a1(�; �) = Q1(�; �) (35)

N a2(�; �) = 2Q2(�; �)�Q2

1(�; �) (36)

N a3(�; �) = 3Q3(�; �)� 3Q1(�; �)Q2(�; �) +Q3

1(�; �): (37)

If � = �(z) is a simple function (as it will be for su�ciently small j�j), one can invert

(13) and write z = z(�) as a power series in � which when substituted into (19) gives the

expansion coe�cients fbn(�; �)gn�2. The �rst two of these are given below

b2(�; �) = a2(�; �)=a
2

1(�; �) (38)

b3(�; �) = 2[a1(�; �)a3(�; �)� a22(�; �)]=a
4

1(�; �): (39)

For the nearest-neighbour Ising model of Subsection 3.3.3 (with periodic boundary condi-

tions) we �nd that

Q1(�; �)=N = uq (40)

Q2(�; �)=N = 1

2
(N � q � 1)u2q + 1

2
qu2q�2 (41)

Q3(�; �)=N = 1

6
[N2 � 3(q + 1)N + 3q2 + 3q + 2]u3q

+ 1

2
q(N � 2q)u3q�2 + 1

2
q(q � 1)u3q�4 (42)

where u = e�2�J . Equations (32) and (33) then follow after substituting (40) to (42) into

(35) to (39).
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