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Abstract

We discuss two types of randomization for nested fractals based upon
the d-dimensional Sierpinski gasket. One type, called homogeneous random
fractals, are spatially homogeneous but scale irregular, while the other type,
called random recursive fractals are spatially inhomogeneous. We use Dirich-
let form techniques to construct Laplace operators on these fractals. The
properties of the two types of random fractal differ and we extend and unify
previous work to demonstrate that, though the homogeneous random frac-
tals are well behaved in space, the behaviour in time of their on-diagonal
heat kernels and their spectral asymptotics is more irregular than that of the
random recursive fractals. '

1 Introduction

The mathematical work in the area of analysis on fractals has been principally
concerned with the study of the Laplace operator on classes of exactly self-similar
deterministic fractals. Most emphasis has been on finitely ramified fractals where
it is possible to decompose the fractal into pieces only connected by a finite number
of points. A large class of such exactly self-similar finitely ramified deterministic
fractals can be treated in the framework of p.c.f. fractals, introduced in [15]. There
are very natural graph approximations to such fractals and Laplace operators can be
constructed either directly, as limits of discrete Laplacians on the approximations,
or probabilistically, as the generator of Brownian motion, the limit of a sequence
of random walks on the approximations. There are still open questions about
existence and uniqueness of the Laplacian for general p.c.f. fractals, but a number
of properties are known (18], [13].

The initial physical motivation for this work lies in the use of fractals as models
for disordered media. The study of the transport properties of such media leads
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naturally to the mathematical issues of defining and solving partial differential
equations on fractals. However the typical ‘fractal’ model considered by physicists
arises when a system is near a phase transition, such as the infinite cluster in the
percolation model where it is believed that ‘at criticality’ the infinite cluster has
large scale fractal structure. These ‘fractals’ arise as random subsets of some lattice
and are far from exactly self-similar. This suggests introducing randomness into the
mathematical models to determine how this affects some of the analytic properties
of the fractal.

In this paper we will work in the class of compact nested fractals F, a subclass
of p.c.f. fractals, embedded in R?, as defined in [21]. The existence and uniqueness
of the Laplacian is known for these fractals, [24]. We will begin by defining two
natural randomizations for finitely ramified fractals and concentrate on Sierpinski
gaskets as the existence problem is easy to solve and these provide a natural test
bed for more general results. The two randomizations lead firstly to scale irregular
but spatially homogeneous fractals, [10],{2],[14], which we call homogeneous random
fractals, and secondly to spatially irregular fractals, first constructed in [8],[5],[22]
and discussed in [11],[12], which we call random recursive fractals. In Section 2 we
will construct these two types of random fractal and describe them using random
trees.

The random fractals are finitely ramified and based on the Sierpinski gasket
which enables us to approximate the fractal via a sequence of resistor networks.
The Laplacian on the fractal is then constructed via its Dirichlet form, as a suitable
limit of forms associated with the discrete Laplacians o n these approximations. In
the spatially homogeneous case it is clear what we mean by a Laplacian, however in
the random recursive case we need to consider what the ‘natural’ Laplace operator
should be.

The analytic properties of the sets we consider are the spectral properties of
the Laplacian and the behaviour of the heat kernel. We recall that there are two
fundamental exponents which arise in analysis on fractals; the Hausdorff dimen-
sion of the set, denoted df, and the spectral dimension, dy, which describes the
asymptotic scaling in the eigenvalues of the ‘natural’ Laplacian. A third exponent,
the walk dimension, d,,, often appears in the literature. This describes the rate
at which the ‘natural’ Brownian motion moves through the fractal and in all the
cases so far considered, where these exponents can be defined, they are related by
ds/2 = dg/d,,.

Using the connection between the heat equation and Brownian motion, we know
that the heat kernel is the transition density of the Brownian motion on the fractal.
There have been a number of results on the transition density for Brownian motion
on deterministic finitely ramified fractals, [4, 19, 6, 13] which show that, in the
compact case, where the set F' is symmetric, there are short time bounds of the

form
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where d(z,y) is a shortest path metric on the fractal and the constants differ in the
upper and lower bounds. Note that in Euclidean space R? we have d; = d,d; = d
and d, = 2 and we recover the usual Gaussian heat kernel bounds. If the fractal
is not symmetric, then the off diagonal term is not so clean and it is possible for
there to be directions in which the decay is different [13]. Here we extend the on-
diagonal heat kernel bounds of homogeneous random and random recursive fractals
to nested d-dimensional Sierpinski gaskets. We will avoid discussing the off diagonal
bounds for random fractals and refer to [2] and [11] for results in this direction.
For the homogeneous random fractals the on-diagonal heat kernel has no spatial
variation, while in the random recursive case, the best bounds that we have suggest
that there is spatial variability and uniform upper and lower bounds are not tight.
The temporal oscillations in the homogeneous case are greater than the random
recursive case.
The other quantity that we discuss here is the spectral or eigenvalue counting
function for the Laplacian. In the Euclidean, if D C R? is a bounded open subset,
then the Laplacian is a compact operator on D and hence has a discrete spectrum
_consisting of eigenvalues. If we let N(\) denote the eigenvalue counting function,
- the number of eigenvalues of either the Dirichlet or Neumann Laplacian less than
)\, then the classical result of Weyl states that

lim NN _ By|D|
oo /2 (2m)e”’

where |D| denotes the d-dimensional volume of the set D and By the volume of the
unit ball in R?. This has led to extensive investigation of the effect of the boundary
of the domain on the second term in the asymptotic expansion of N()). For a
discussion of results in this direction and various conjectures about the behaviour
of the spectral counting function for fractals and domains with fractal boundary,
see [20].

We will be concerned with the behaviour of the function N(}), for the natural
Laplacian on our random fractal subsets of R?. As a consequence of [7] we have
the following result for N()) on the compact Sierpinski gasket,

.. N
0<11)1\11)g1f SYNE

. N(A
<hf\xls°1:p )\d(,/2) < 00, (1.1)

where d; = 2log3/log5. Indeed, this provides us with a justification for the defi-
nition of the spectral dimension of the fractal as

4, =2 1im 2BV
rsoo  log A

The fact that the limit in (1.1) does not exist is directly related to localization
phenomena for the eigenfunctions of the Laplacian on the Sierpinski gasket, [3]. For
the Sierpinski gasket it is the eigenvalues corresponding to localized eigenfunctions
which grow at the rate determined by the spectral dimension [17]. For the class
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of p.c.f. fractals, it has been shown [18] that the existence of the limit in (1.1) is
the generic case. However, whenever there is a lot of symmetry in the fractal this
limit will not necessarily exist. Intuitively the reason that the limit does not exist
is that, in the symmetric case, there are many localized eigenfunctions with the
same eigenvalue, producing large jumps in the spectral counting function.

For the two types of random fractal the spectral counting function exhibits
rather different behaviour. For the homogeneous randomization the spatial sym-
metry leads to large oscillations in N(A), giving even wilder behaviour than shown
in (1.1). In the case of random recursive fractals our results will provide natural
analogues of those of [18], in showing that the limit in (1.1) will typically exist.
It appears to be possible to have non-constant behaviour but as yet there are no
known non-trivial examples. The constant which appears when the limit in (1.1)
exists, will be a natural extension of that in [18] multiplied by a mean one random
variable. This random variable is a function of the limiting random variable for the
normalized population size of a general branching process and is a measure of the
volume of the fractal.

We conclude this introduction with an example to demonstrate the results.
Consider the following two random fractals constructed from the original Sierpinski
gasket, SG(2), and the fractal SG(3), as defined initially in [10] and illustrated in
Figure 1. As can be seen SG(2) is constructed from a family of 3 similitudes with

Figure 1: The first two levels in the construction of SG(2) and SG(3)

contraction factor 2, and SG(3) from a family of 6 similitudes with contraction
factor 3. The fractals are defined as the fixed points for these families of similitudes
acting on the set of compact subsets of R?. The Hausdorff and spectral dimensions
of each fractal can be computed using standard approaches, [10], and are given by

log 3 log 3
4(S6@) = o5, b(SGER) =2,

log 6 log6
d(SCE) = ooy  BISCE) = 2@(—5%.

We now construct our two types of random Sierpinski gasket from these two
families of similitudes. For both we construct a random tree which describes the
fractal. In the homogeneous case we take a sequence {a;,i € N}, called the envi-
ronment sequence, taking values in {2,3}. We will assume that this sequence is
generated by an iid sequence of random variables taking the value 2 with probabil-
ity p and the value 3 with probability 1 —p (though it is possible to work with any
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Figure 2: The graph approximation to the random recursive and homogeneous
random fractals built from SG(2) and SG(3)

sequence [2]). To construct the fractal we start with an initial equilateral triangle
and go from level F,':_l to F,f by looking at a, and if a, = b we divide all the
triangles in E_| into b? triangles and remove the downward pointing ones. Thus
we generate a random tree by adding 3 branches to every node at generation n, or
6 branches depending on whether a, = 2 or 3. The homogeneous random fractal
is then defined as F* = N, F!.

For the random recursive case we start with an equilateral triangle but now to
go from F7_, to F7 we choose independently for each triangle in Fy_, to divide
it according to SG(2) with probability p and according to SG(3) with probability
(1 — p). This generates a random tree in which at each node we either have 3 or
6 branches and such a tree corresponds to the sample path of a Galton-Watson
branching process. An extension to a general branching process will be useful in
describing the properties of the fractal. Again the fractal is defined to be F" =
N.F:. These two random fractals are shown in Figure 2. There is an underlying
probability space of possible random fractals and the two randomizations arise
from different probability measures on this space. From now on we will refer to
quantities associated with either the homogeneous random gasket or the random
recursive gasket with a superscript h or r respectively. If a quantity associated with
a random fractal is without a superscript h,r, then it applies to either fractal.

In order to state our results we will establish the dimensional exponents for the
two sets. Our results will show that for this homogeneous random Sierpinski gasket

h__plog3+(1—p)log6 gt = plog3+ (1 — p)log6
I~ plog2+ (1—p)log3’ °  plogs+ (1 —p)log(15/7)’

while for this random recursive Sierpinski gasket

£ = {s:p30) +(1-p6(z)° =1}

(o 3., 7.5
= Qm, where a = {s .p3(g) + (1 - p)6(—=)°* = 1}.
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In order to state our main results for these two fractals we define, for the homo-
geneous case, the function ((s) = v/sloglogs. Firstly, we consider the on-diagonal
heat kernel, p;(z, ).

Theorem 1.1 There ezist positive constants cy.1, €1.2,€1.3,C1.4 Such that
cl.lt—dﬁ'/Ze—m.zC(log(l/t)) < pi‘(:l:, ) < cl‘st—di‘ﬂeq.d(los(l/t))’ vr € F*, P" —a.s.
and there ezist positive constants c, s, C1.6, B, B, such that
crst~ %% (log (1/t)) 72 < pi(z, ) < cl'et_d§/2(log(1/t))[’, Vz e F', P" —a.s.

Note that the oscillation in the homogeneous random case is wilder than in the
random recursive case as exp(+/log(1/t)) > (log(1/t))? ast — 0 for all 3 > 0. In
Lemmas 4.1 and 4.4 we will describe this oscillation in a form which is best possible
up to constants. For the asymptotics of the spectral counting function we also see
that there is more regularity in the random recursive case.

Theorem 1.2 For the homogeneous random fractal, there exist positive constants
C1.7,C1.8 S‘U.Ch that

Nh()\)ecl,sC(log/\)

h
YR < oo, P"—a.s.

. N"())
0< lxgglf Nt /2ger.7C(log A)

< oo, 0<limsup

A—o00

For the random recursive Sierpinski gasket there ezists a mean 1 random variable
0 < W < 0o and a deterministic constant 0 < ¢;.9 < oo such that

lim NT(A)

—dr
A—00 _,\d-’/—z_ = Cl,gWI d,/2’ P a.s.
S

The constant c; g is the direct analogue of that arising in the p.c.f. case, [18] and
we will give an explicit expression for it in Theorem 5.6. The outline of the paper
is that in Section 2 we define the random fractals we will work with. In Section 3
we give a general construction technique for Laplace operators on finitely ramified
fractals and use this to construct natural Laplacians for the two cases. In Section 4
we introduce the heat kernels for the Laplacians and study their properties and
finally in Section 5 we discuss the spectral asymptotics for the Laplacian. Through
out the paper we will use c,; to denote a fixed constant in section n. Constants
written ¢; only remain fixed within a proof and have different values between proofs.

2 Random Sierpinski gaskets

As both the homogeneous random and random recursive Sierpinski gaskets will be
constructed from nested fractals, we begin by recalling from [21], the definition of
a nested fractal.



For | > 1, an l-similitude is a map ¥ : R¢ — R? suéh that
Y(z) = 1" H(z) + o, (2.1)

where H is a unitary, linear map and zo € R Let ¥ = {¢1,-..,%n} be a finite
family of maps where 1); is an [-similitude. For B C R¢, define

®(B) = UL %i(B),
and let
®,(B) =®o...0%(B).

The map ® on the set of compact subsets of R has a unique fixed point F, which
is a self-similar set satisfying F = ®(F).

As each 1; is a contraction, it has a unique fixed point. Let Fj be the set of fixed
points of the mappings ¢;, 1 <1 < m. A point z € Fy is called an essential fized
point if there exist 4,7 € {1,...,m}, i # j and y € F such that ¥i(z) = Yi(y). We
write Fy for the set of essential fixed points. Now define

VYiy.in(B) =i 0...0¢,(B), BC RP.

We will call the set Fj,, ;. = %i,.i.(Fo) an n-cell and E;,, ., = Yiy,...in (F) an
n-complez. The lattice of fixed points Fy, is defined by

Fo = @.(F), (22)
andv the set F can be recovered from the essential fixed points by setting
F = (U2 Fr).
We can now define a neéted fractal as follows.

Definition 2.1 The set F is a nested fractal if {11,...,%m} satisfy:

(A1) (Connectivity) For any 1-cells C and C", there is a sequence {C; : ¢ =0, .. ., n}
of 1-cells such that Co =C,C, =C'and C;_; NC; #0, i=1,...,n.

(A2) (Symmetry) If z,y € Fy, then reflection in the hyperplane H., = {z: |z—z| =
|z — y|} maps Fj, to itself.

(A3) (Nesting) If {i1,...,in}, {J1,---,Jn} are distinct sequences, then

Dirrsin (F) [V V5110 (F) = B, in (F0) [ D (FO)-

(A4) (Open set condition) There is a non-empty, bounded, open set V’ such that
the 1;(V) are disjoint and U2, 9;(V) C V.

Nested fractals were extended to the class of affine nested fractals in [6], by
allowing the similitudes to have different scale factors but still preserving the sym-
metry. A number of the results proved here can be extended to this class but we
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concentrate on nested fractals as the results are simpler to state and reveal the key
differences in the two randomizations.

Firstly we require a family of families of similitudes to construct our random
fractals. Let A be a finite set and we work in R for a fixed d > 1. For each a € A,
let

Pt ={YHi=1,...,ma},

denote a set of m, l,-similitudes in RY, with d+1 essential fixed points and satisfying
the axioms for nested fractals. As above there is a unique compact subset F’ (@) of
R? which satisfies

F@ = Jui(F®).
=1

Under the open set condition (A4), this set has Hausdorff dimension dj(F @) =
log m,/ logl,.

We are now ready to define the two random fractals we will consider. Both will
be described via random trees which are contained in the one-sided shift space on
M = supge4 M, Symbols (a rooted and labelled M-ary tree). Let I, = Up_ M*
and T = U, I, and write i = (i1,1%2,...) for an element of I. We will write i, j for
concatenation of sequences. For a point i € I\I, denote by [i], = (i1, .. ,1n), the
sequence of length n such that i = [i],, k for a sequence k. We write j < 1i,ifi=j,k
for some k, which provides a natural ordering on sequences. Also denote by |i| the
length of the sequence i.

We will define the space of all possible trees constructible from our families
of similitudes, which is equivalent to the sample space for the random recursive
fractal. We define an infinite random tree, I" as follows. Let the root be I§ = I,
the empty sequence. Let U;,i € I" be A-valued random variables, indicating the
family 1® of m,-similitudes to be used. Then i € I" if li], € I C I, for each
n < |i|, where [i], € I, if

L il € 15y,
2. thereisa j: 1< j < m(Up,,) such that [il,_1,5 = [ila.

Let Q" denote the set of all random trees I". Now define o-algebras
B,=o(Usiel,), B =B,
n=1

and a probability measure, P", by choosing the random variables U independently
according to P(U; = a) = p, > 0, Va € A. This makes (", B, P") into a proba-
bility space for the Galton-Watson process in which an individual has m, offspring
with probability p, for each a € A. For these random recursive fractals the branch-
ing process is clearly supercritical with no possibility of extinction. In the case of
the random recursive example discussed in the introduction and shown in Figure 2,

we have generating function for the offspring distribution f(u) = pud + (1 — p)ub.
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We now define a sequence of sets with addresses given by the branches of the
tree and we drop the reference to the underlying probability space. Let E = Ey be
the unit equilateral tetrahedron, and let Go denote the complete graph on Fp, the
vertices of Ey. Then set E;, i€ I, geometrically similar to E, to be

Ui

Ei = %i(B) = 9™ (-~ (" (E)))-

_Thus for all possible trees I” we can define a random recursive Sierpinski gasket,

written F7(I") or FT', as
oo
FFay=UE&
n=1liel}
Under the probability measure P" we can determine the almost sure properties of
random recursive fractals. The Hausdorff dimension of the set F' can be found by
applying the results of [5], [22], [8] and is given by,

di(FT) = inf{a : E (m(Uo)l(Uo) ™) =1}, P —as. (2.3)

For the homogeneous random fractal we have a random tree with the property
that at each generation every node has the same number of branches. Thus Q"
“is a subspace of Q" and the elements of the space are sequences. We fix one, an
environment sequence {a}, and will drop a from our notation. The homogeneous
random shift space I" can be associated with the particular fractal F' by

(o o]
" =Q){1,...,ma} = {(in iz, ) 1 1 < i S gy} (2.4)
i=1
We write I* = {(i1,...,%) : 1 <45 S mg;, 1 <7 < n} for the set of sequences of
length n and write
Vil = ¥iy 0.0 YT (25)
As above we define F' = Ujcmihi(Fp), and for any a € Q" we define the
homogeneous random fractal, written F*(I*) or F"(a), as

Fi(a) = () F?

defines the homogeneous random fractal. This fractal is defined for any environment
sequence {a}. If we restrict to the case where the sequence is generated by indepen-
dent and identically distributed random variables we can think of the fractal as an
element in a probability space (", B*, P*) of homogeneous random fractals. Define
the mass scale M, = [Ji, Ma, and the length scale L, = [[i, la;- The Hausdorff
dimension of the fractal is easily seen to be given by lim,_, log M/ log L,. Using
the convergence of the proportions of each type we have

Y acaPalogm,

P" — a.s.
ZaeApa log l, ’ @

dg(F") =



2.1 General branching processes

A useful tool for proving results about the random recursive Sierpinski gasket is to
describe the fractal with a general branching process. The Galton-Watson process
introduced in the construction of the random fractal contains information about
the number of sets in the fractal. However there is no information about the size
of the sets after a certain number of generations. We enlarge the probability space
to include more information about the set by using a general or C-M-J branching
processes. 4

In the general branching process a typical individual in the population has a
reproduction point process, £(t) which describes the birth events, as well as a life-
length L, and a function ¢, on [0, 00), called a random characteristic of the process.
We make no assumptions about the joint distributions of these quantities. The
basic probability space for these processes will be the one underlying our random
fractals and is given by

(@, B, P") = [[(% B, Py),

iel

where the spaces (€, B;, P;) are identical and contain independent copies of (& L, 9).
We now denote a random tree by I € Q and we will write 6;(I) for the subtree of
I rooted at individual i.

The individuals in the population are ordered according to their birth times o,.
As we can have multiple births this will not be a strictly increasing sequence. We
denote the attributes of the n-th individual by (&,, Ln, ¢»). At time 0 we have an
initial ancestor so that o; = 0. We will also denote the attributes of the individual
with ancestry i by (&, Li, i) and birth time o;. The general branching process with
random characteristic is then written as

Z0(t) = Y ¢nlt —0n)-

n:on <t

That is the individuals in the population are counted according to the random
characteristic ¢. We easily see that Z? must satisfy

&(t)
Z0(t) = ¢(t) + > _ Z2(t - 0v), (2.6)

where Zf’ are iid copies of Z%. We denote by 2, the branching process with random
characteristic given by

¢(t) = I{L>t})

so that z is the total number of individuals alive at time . The process Z%(t),
with characteristic ¢(t) = 1 for all ¢, counts the total number of individuals born
up to time ¢. Later we will allow characteristics to be defined for negative time in
order to count eigenvalues.
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Let &,(t) = fot e~2%¢(ds), and define the mean reproduction measure v(t) =
~E¢(t). We will assume that ©(0) = 0 and that the process is strictly supercritical
with Malthusian parameter a > 0 such that

E(£a(o0)) = /000 e ty(dt) = 1.

. We will write
ve(t) = E(e"*Z°(1)),

for the discounted mean of the process with random characteristic ¢. We now
introduce a martingale, analogous to the standard branching process martingale,
which will enable us to discuss the asymptotic growth of this process. This plays
an important role in the discussion of random recursive fractals.
Let
An = 0((k, T, ¢x) : 1 <k < n).

As the birth time of an individual is determined by their parent’s reproduction
process, the birth times o are Aj_; measurable. Now define

[e o]
Ro= ) e Iyisachildof1...ny
l=n+1

Then we have the following theorem, an amalgamation and simplification of the
results of [23], which is all that we require here. We assume that the random char-
acteristic can depend upon the whole line of descent, as discussed in [23] Section 7.

Theorem 2.2 The quantity {R,}2, is a non-negative martingale with respect to

A, and
W = lim R, exists.

n—o00

Also W > 0 almost surely if and only if
E (&4(00) log* £a(00)) < 0,
otherwise W = 0, a.s. If the characteristic ¢ is bounded, and v is non-lattice, then

lim e~ Z? = v¢(c0)W, a.s.
t—o0

There is also a lattice case for this Theorem which we will state later. We note
that in the general branching processes considered here £(oc0) is bounded and hence
W > 0 almost surely.

The random recursive fractals can be described in more detail by these branching
processes. Let the general branching process have reproduction and lifelength given
by

(&, L) = (Mmqaliog1,,logl,) with probability pq,
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where ¢ denotes the Dirac delta function, then the process z, counts the number
of sets in the fractal of radius roughly e™™. To be precise, if we let ¢ denote the
characteristic

¢i(t) = &(o0), (2.7)
which counts the offspring of individuals alive at time ¢, this will encode a e™"-cover
for the fractal. With a little effort the Hausdorff dimension of the fractal given
in (2.3) can be recovered as the Malthusian parameter in the general branching
process.

3 Laplacians on random Sierpinski gaskets

We now define a Laplace operator on the two types of random fractal. As the
space of homogeneous random fractals is a subset of the space of random recursive
fractals we consider = " and define a Laplacian for each I € Q. Our construction
works for all sequences and all possible random trees and enables us to construct a
Laplacian with respect to any Borel measure with full support. The usual Laplace
operator is characterised as being invariant under the natural symmetries in the
space, however in the random recursive case there are no symmetries. We therefore
need to choose a natural measure for our Laplacian and this is done using the idea
that the movement of Brownian motion through a medium is determined by the
resistance of the medium. It is also the case that, for a p.c.f. fractal, the measure
determined by the resistance is the one which maximises the spectral exponent,
[18].

We will begin by outlining the general scheme of [16] for constructing Laplace
operators on fractals via Dirichlet forms, for the case of nested fractals based on
the Sierpinski gasket. We consider the graph Gy as a resistor network with unit
resistance on each edge. Define a Dirichlet form on G, by

E0(f9) =1 3 (&) ~ FW)(s() - 9w),

z,yEFo

for f,g € C(Fp). If we let
EQ(f, ) =D (o, f o),
i=1

for f € C(F®), then, as there is a unique solution [24] to the fixed point problem
of [21], with each edge in G of equal resistance, there is a constant p, such that

EXNf, ) = painf{E(g,9): 9= flm}-

We will call the constant p, the resistance scale factor; it is the effective conductance
between two vertices of Fy in the resistor network G, when each edge in the network
has conductance 1. This allows us to define the Dirichlet form for each fractal in
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our family A, for details see [1], [16]. We note here that in [2] it was shown that
pa> 3.

Our aim is to construct a Dirichlet form £ on an appropriate L*(F, u) for each
of the random fractals I € Q. As in [16] we build this up from a sequence of

approximating forms on the graph approximations to the fractal. Let

Ealf0) =5 3 (f(@) - Tw)le(=) - 9(v))

z,y€Fo

for f,g € C(Fy). Let p(U;) denote the resistance scale factor for the set of type U;
at address i. Now define the resistance of the triangle with address i to be

i
R(i) = Hp(U[a]j)"~

~We let G, = Userr%i(Go) denote the n-th graph approximation to the fractal. For
f, g € C(G,) we can write

En(f9) =D RE)Eo(f o i g0 %),

iely,

By the definition of the resistance scaling we see that the sequence of Dirichlet
forms is monotone increasing as for f : F' — R as it has the property that

gi(fIG,n fIGn) = inf{grlH-l(g, g) 1g € C(Gn-i-l)’g = f|G'n}‘

Once we have such a sequence we can clearly define the limiting object as the
limit of the sequence. However, in order to define the associated Laplace operator,
we need to show this is a Dirichlet form and set it on an appropriate L? space and
this requires us to define a measure on the random fractal F. Any Borel measure
with full support can be used for the L? space but we will be concerned with
choosing a natural measure so that the operator is the ‘natural’ Laplacian on the
fractal F'.

The measure p that we choose is determined by the resistance as it is the
limit of the sequence of invariant measures for the Markov chains on the graph
approximations. For an m-cell E; C F/, define

Zje[;_m R(iij)—l
Dier; R(j)™!
As the fractal F' is compact, the sequence of measures ! is tight and there is a

subsequence which converges weakly to a limit measure u/ on the fractal F'. We
can then define the Dirichlet form (£7, F') on L*(F’, ') for each I € Q.

(3.1)

ph(E) =
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3.1 The Dirichlet form and its properties

For the rest of the section we omit reference to the sample point I € £ when it is
not required. For all the random fractals we can define a symmetric bilinear form
(€, F) on the space L*(F, ) as

F ={f:sup&a(f, f) < oo},
and
E(f,f) = lim En(f, f), VfEF.

In order to show that this is a Dirichlet form, we define the effective resistance
between two points in the random fractal F', by

r(z,y) = (inf{(f, f) : f(2) =0,f(y) =1}
As in [11] we have the following estimate on the effective resistance
Lemma 3.1 There exist constants cs 1, cs.2 such that for each edge (z,y) € ¥i(Go),
cs1R() < r(z,y) < c32R(i).

Using the definition of effective resistance and Lemma 3.1, we can prove the fol-
lowing estimate on the continuity of functions in the domain F.

Lemma 3.2 There ecists a constant c3 3 such that

sup |f(z) — fF()° < casRWE(S, f), Vf€F, Vi€ In.

IyyeEi

By construction we have R(i) < (3/2)™™ for i € I, and this shows that the
domain F C C(F). The following theorem can be proved in our setting, as in [11].

Theorem 3.3 The bilinear form (€, F) is a local regular Dirichlet form on L*(F, p)
and has the property that there ezists a constant cz4 such that

sup |f(z) — FW)? < cs4&(f, f), forall fE€F (3.2)

z,yeF

We can also observe a scaling property of this Dirichlet form and a Poincaré
inequality.

Lemma 3.4 We can write for all f,g € F',

m(Uo)

E(f,9)= 3 pUED(f o i, g0%%). (3.3)

i=1

There ezists a constant c35 such that

If - /F faul < cssE(f, ), VS € F. (3.4)

14



Proof: For (3.3) we use the definition of the approximating form &£ I to write

m(Up)

En(fr9)= Z p(Uo)ERL) (f 0 i, g 0 ).

i=1
'Now let n — 0o. The Poincaré inequality (3.4) follows from (3.2), as in [2]. o

Note that we can define the Laplacian A with respect to the measure p, for the
fractal F, by setting
g(fag) = —(Afvg)’ Vf)g € f:

where we have taken the inner product on L?(F,u). As we are dealing with a
compact fractal we will also need to consider the boundary conditions. To do this
we need to define a normal derivative at the boundary for our fractal. We follow
[15] and set

(du), = —"llgrgo Anu(z),

“where A,, is the discrete Lapl‘acia.n associated with the Dirichlet form &£,,. The
existence of this limit follows as in [15]

For the homogeneous case we have a description of the fractal via the environ-
ment sequence {a}. The scale factors are also generated by {a}. Firstly, recall the
mass scale factor M,, = []L_, M, is the number of maps after n generations. The
resistance scale factor defined above becomes R, = []., pa; and we can also define
a time scale as T,, = R,M,. As in [2] we can also construct a shortest path scale
factor B,, however we will not refer to this quantity here.

3.2 Natural measures on random fractals

The previous section dealt with the general case and defined the natural measure
for each possible fractal F?,I € Q. In the case of the homogeneous random fractal
we can again use the measure defined for any sequence {a} as the weak limit of
the sequence of measures with the property that p,(E;) = M, fori € I*. For the
random recursive case we introduce the natural measure on our random fractals
specified by the probability measure P.

As in [11], [12] we consider the graph G, as a resistor network approximating
the fractal and find the invariant measure for the Markov chain on G, and take a
limit. To do this we define a new set of approximations to the fractal where each
is determined by keeping the resistance of each edge in the graph of approximately
the same resistance. The resulting measure is equivalent to the Hausdorff measure
in the effective resistance metric.

We can modify the general branching process description of the fractal, intro-
duced at the end of Section 3, to describe this new approximation to the fractal. It
is now the resistance of a set rather than its length that is crucial. Let

(€(ds), L) = (maélog pas 108 pa) With probability pa,

15



so that individuals now live for a time given by log p,. As in (2.7) we let ¢ denote
the number of offspring of the individuals in the population at time ¢ and consider
the process 2%.

Let

A, ={i€2?},
where we label each individual in the population z¢ by their branch in the random
tree, and then define
Gn= | %:(Go).
i€An

The graph G, has the resistance of each edge satisfying c;e™ < R(i) < e™™. We
~ refer to the sets E; for i € A,, as n-cells.

We will now work with a subset ' C  with P(2') = 1 where the normalized
limit of the general branching process exists. On this set we can describe the limit
measure for our fractal using the general branching process. By Theorem 2.2 we

have that, as t — oo,

e~ %z? — v (c0)W,

where «a satisfies the equation
Z:map;"‘p,1 =1 (3.5)

a€A

Thus, if we multiply (2.6) by e~ to get
e—atziﬁ — e—atd)i(t) + Z £2%i (e-—a(t—a;)z;ﬁ_ai) ,
io; <t
and use the boundedness of ¢ and the definition of A,, we see that
W = > R(i)*W
i€Am
Hence, for an m-cell E;, the measure p defined in (3.1) can be written

_ ROW(O(D)

p(E;) = W) (3.6)

The random variable W has been studied closely for the Galton-Watson pro-
cess. For the general branching process which appears here the tails of W can be
estimated as in Section 3 of [11] where the proof of the following can be found.

Lemma 3.5 There ezxist constants csg, 3.7, C3.8, C3.9, b1, B2 such that
P(W < 68) < cagexp(—cz6™™),

and
P(W > §) < c3gexp(—c396™).

16



From the calculations it is clear that 0 < 8; < co and 1 < I, < oo.
Using these tail estimates we can obtain a result on the oscillation in the measure
akin to [11] Theorem 5.5.

Lemma 3.6 There exist random constants c3.10,3.11 Such that

cson VP < inf — < sup — < ¢z un/?, P —as.
i€An W icAn

and hence there ezist constants c3.12,c3.13 such that

c319m VBreTom < lel}xf u(E;) < sup u(E;) < c313n'/P2e o™ PT —a.s. (3.7)
1€An i€eAn

This shows that « is the Hausdorff dimension of the set in the effective resistance

metric.

4 Estimates for the heat kernel

Let P, denote the semigroup of positive operators associated with the Dirichlet form
(€, F) on L(F, p). The form constructed in Theorem 3.3 is local and regular and
hence there exists a Feller diffusion {X;;t > 0} with semigroup P, on F. By (3.2)
we see that the resolvent G\ = [ exp(—At)P.dt will have a bounded symmetric
density. As this density will be continuous as in [1] we find that P, will have a
bounded symmetric density p;(z,y) with respect to p and that p(z,y) will satisfy
the Chapman-Kolmogorov equations.
We obtain an upper bound on the transition density using ideas in [2].

Lemma 4.1 (1) There ezist constants c41 such that if T;'<t< Tn”_ll, then for
all I" € QR
”Pth||1—+oo < caa M.

(2) There exist constants cs.2, O3 such that for almost every I € V7,

1P l1s00 < caat™/ @] logt]?.

Proof: We show a general technique for heat kernel upper bounds. For i € A, write
fi=fot;and
fi= [, K@),
Foi()
Note that for v € C(Fy,), 7 = [vdp = Y ;. w(Ei)T;

Let ug € D(A) with ug > 0 and |Jue|ly = 1. Set u(z) = (Piuo)(x) and g(t) =
||ut||2, so that sup,, 9(t) = ||P.llise- We remark that g is continuous and decreasing

17



and, as the semigroup is Markov, |lu,||; = 1. Iterating the decomposition (3.3) and
applying the Poincaré inequality (3.4), we have

% (t) = —28(’(14, ’Ll.g)
= -2 R@)EX D (u; 0 i, up 0 i)
i€eAn

< 2005 YO RO [ (s = 0"

= —cvmin RG) " u(E) / W+

e max R(i) ™ u(E;) ™ (Z ﬁz,iu(Ea)> . (41)

For the homogeneous case we have R(i) = R, which we can replace in (4.1) to
get
29() < —aTa(g(t) — 2 My).
integrating this and following [2] we obtain the first result.
For the random recursive case we substitute the bounds on the measure from
(3.7) into (4.1) to get

%g(t) < _csn—l/ﬂze(a+1)n”ut“§ + ¢yn?/Pre2atn,

Thus we have ¢'(t) < —cgn~V/P2eletVn(g(t) — csn*/Free), for all n > 0. Then we
have

_gi log(g(t) — csn/P1e®™) > ¢gn~V/P2elotn,

integrating this and following the ideas of [2] gives
g(cgn/Pzeletm) < csn?Pre®™ VYn €N
and hence by setting cgn!/2e(®+" ~ ¢ we have the result. O

In order to obtain lower bounds on the heat kernel we need a probabilistic
result. This is an estimate on the crossing and exit times for the associated diffusion
process. Firstly we define the crossing times

SHX) = inf{t >0:X, €Gn},
T (X)) = inf{t > S} : X, € Go\{Xsp}},
SHX) = SHX) - SEai(X).

and also the exit time of a set A as

S4(X) =inf{t: X, € A°}.

18



Lemma 4.2 In the homogeneous case there exist positive constants C43,C4.4,Ca5
such that for all I" € QF,

PE(SM(X™) < 0T, ") < cazexp(—caqd™ ), 6> 0. (4.2)

In the random recursive case, there ezist positive constants cqe, C4.7,Ca.8, Ca.9, P4 Such
that ’

PE(SPM(XT) < 667") < capexp(—ca70672|logd| ), 6 >0, P"—a.s. (4.3)

where
0, = nfielotin,

Proof: The bound in (4.2) follows from [2] Lemma 4.3 and (4.3) is proved in
[11] Lemma 7.7. o

However once we have such results we can obtain lower bounds on the heat
kernel via the following lemma. We let Dy, (z) denote the union of the set Ej,,
containing the point z € F, and its neighbouring n-cells.

Lemma 4.3 If there is an increasing continuous function h on [0,1], such that
h(t) = 0 ast — 0 and there is a sequence {b,} such that

P*(Spy, () < bp't) < h(t), 0<t<1, foralln >0,
then there ezists a constant c40 such that for by}, <t < b;!
pe(z,7) > ciep(Dp, (z) ™ 0<t < 1.

Proof: We follow [1]. Let 0 < a < tp be such that h(a) < 1/2. Then, if n = sup{k :
bxt < a}, then
PI(Xt € D[i]n(l‘)) > PI(SD“]"(,,) > t) > 1/2.

For this value of n we have b,,; > a/t. By Cauchy-Schwartz

1/4 < P*(X, € Dy,(z))?

= (/ pt(r,y)u(dy)) ,
Dy, (2)

< (D, (2))pa(z, 7). (4.4)
Thus, with a suitable adjustment of constants, we have the result. 0O

Comparing the hitting and exit times we can use the hitting time estimates
(4.2), (4.3), with a suitable choice of b, in Lemma 4.3 and the estimate on the
measure from (3.7), to obtain the on-diagonal heat kernel lower bounds.

19



Lemma 4.4 There ezist positive constants cs.11,C4.12, Bs such that

inf p(2,2) 2 cant @ |logt| ™, 0<t <1,
x T

and for T <t < T2,
pi‘(:c,:c) > cs12M,, Vz e F', 0<t< 1.

The speciral dimension for the homogeneous case can be determined explicitly '
when the sequence {a} is iid, as d" = 2lim,_,o log M,/ log T,, giving

ZGEA pa ].Og ma
Y acaPaloOgmapa’

To find the exact oscillation in the heat kernel for this case we need the following
law of the iterated logarithm, arising from our iid sequence {a,}. If we let I 4 denote
the indicator of the set A, then there exist positive constants c413,Cs.14 Such that
P"-almost surely,

s Z;;l Nai=a) =P _ . Z?:l Tfa;=a} = TPa _

llgg)xf JnToglogn = —C4.13, Ilﬁi:}p JnToglogn = c4'_14. (4.5)
By using this we can estimate the oscillation in the sequences T,, and M, and
using, Lemmas 4.1 and 4.3, derive the first part of Theorem 1.1. The second part
of Theorem 1.1 also follows from Lemmas 4.1 and 4.3.

An application of (3.2) and the upper bound of Lemma 4.1 allow us to conclude
that, as in [11] Lemma 8.4, there exists a constant c45 such that

dh=2 P" - a.s.

sup |p}(z,y) —pi (', y)| < ca1se™™ \/t—lt—a/(a+l)| logt|?,
I’yeEi
fori € A,,. A similar estimate in the homogeneous case shows that for both random
fractals the transition density is uniformly continuous and hence that the semigroup
is compact.

5 The spectral counting function

As the semigroup is compact, the Laplacian will also be compact and hence it
will have a discrete spectrum consisting of eigenvalues. We begin by defining the
Dirichlet and Neumann eigenvalue problems for our random fractals. Recall that
for each T € € there is a random fractal F! and we have a measure yu! satisfying
(3.6). We will prove results about the counting function for all I € €', giving almost
sure statements on Q.

Firstly the Dirichlet eigenvalues are defined to be the numbers A, each with
eigenfunction u, such that

2
e
I

—\u,

0, =z € OF. (5.1)

u(z)
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This eigenvalue problem can be reformulated for the Dirichlet form. Firstly
we change the domain and define 7§ = {f € F' : f(z) = 0, = € OF}, setting
ENF ) = EL(f, f) for f € Fy. I Then ) is a Dirichlet eigenvalue with eigenfunction

u if
El(u,v) = A(u,v),

for all v € Fy.

) As the operator is compact we can write the spectrum as an increasing sequence
of eigenvalues given by 0 < Mg < Ay < .... We define the associated eigenvalue

counting function to be

Nl(z) = max{i: \; <z, A solves (5.1)}.

Analogously we can define the Neumann eigenvalues to be the numbers A, each
associated with an eigenfunction u, such that

Ay = —)du

(du), = 0, z€0F (5.2)

This eigenvalue problem can also be reformulated for the Dirichlet form. We
say A is a Neumann eigenvalue with eigenfunction u if

E(u,v) = Au,v),

for all v € F'.
Again, we write the spectrum as an increasing sequence of eigenvalues with
0= )y <) <..., and define the associated eigenvalue counting function to be

N'(z) = max{i: \; < z, \; solves (5.2)}.

We can use the heat kernel estimates to get a preliminary result on the asymp-
totics of the spectral counting function. We can use the Mercer expansion theorem
to write

[ o]

pt(x’ y) = Z e”\"tu,-(z;)u,»(y),

1=0

where we assume the eigenfunctions u; are orthonormal in L?(F, u). Thus we can

observe that
/pt(x z)u(dz) = Ze"’\' =/ e N (d)).

By using the heat kernel estimates to bound the term on the left we have bounds
on the Laplace-Stieltjes transform of N()) and then bounds on N(A) follow from
Tauberian theorems.

For the homogeneous random fractal case the heat kernel technique gives the
following result which is sharp result up to constants,

aTn < NY(M,) < c,T,. (5.3)
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In order to obtain the result given in Theorem 1.2, we use the law of the iterated
logarithm (4.5) again to estimate the oscillations in T, and M,.

For the random recursive case we have uniform bounds on the heat kernel which
lead to

t=%/%| logt|" < / pi(z, z)u(dz) < t7%/%|logt|®.
F
Using the Tauberian theorem gives
A%/2(log APt < NT(X) < A%/2(log A)P=. (5.4)

We will follow [12] to show that, by using a detailed description of the eigen-
values, we can improve upon (5.4) to show that there are typically no oscillations
for the random recursive case. The techniques are an extension of the Dirichlet-
Neumann bracketing idea developed by [18] for p.c.f. self-similar sets. We will
establish a decimation property of the eigenfunctions which differs from the usual
decimation property for fractals which expresses the eigenfunctions for the Lapla-
cian in terms of other eigenfunctions for the Laplacian. Instead we can build an
eigenfunction for a particular random Laplacian in terms of eigenfunctions for other
random Laplacians. The key relationship is provided by the following Lemma.

Lemma 5.1 For all z > 0 and each I € ', we have

m(Uo) m(Uo)
> N (apUo) i E)) < Ny(2) S N'(@) € 3 N*Dap(Uo)™ w(E)
d i=1 1=1 (55)
N;(z) < N'(z) < Ng(z) + M. (5.6)

In order to establish this key result we begin by defining some closely related
Dirichlet forms. Let (€7, ) be defined by setting

Fl={f:F\Fi > R|fot; = f; on F\F, forsome f; € F*"},
and

m(Uo)

ENf,9)= S pUD)E™N(f o, g0 v).

=1

As in [18] we can prove that

Proposition 5.2 (1) Ff c Fl and &' = <S~'I|_7:x]:.

(2) (§1, F') is a local regular Dirichlet form on L*(F', ).

(8) FI — L*(F',p') is a compact operator.

(4) If NI(z) denotes the eigenvalue counting function for the ezgenvalues of £,

then
m(Uo)

N(z)= > N*D(zp(Uo) " u(Es)).

=1
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Proof: (1),(2),(3) follow in the same way as [18] Proposition 6.2. We demonstrate
(4). Assume that we have an eigenfunction f of E! with eigenvalue A\. By using
the decomposition of the Dirichlet form we have

m(UO) 'm.(Uo)

S pU)EMD(f 0xpi, g o) = E'(£,0) = Mfr9) = A D (f 0¥ g0 vl ().

i=1
Thus for all h € F%D we have
ED(f o 1hi, h) = Ap(Uo) ™  w(E:) (f 0 %, ),

and we have that Apyu(E;) is an eigenvalue of A%(!) with eigenfunction f; = foti.

Now setting
z | filz), ze€int(E),
fle) = { 0, z ¢ int(E;),

we have an eigenfunction with eigenvalue A of (€7, F1). Hence we have that

m(Uo)

N(z) = Z NgO (zp(Uo) ™  w(E)),

as required. O

There is a similar proof to the following proposition. Let (£, F4) be defined by
setting

j:é:{f:fe‘r(l)vflﬂzo}’
and )
Eo(f,9)=E" g1 5.

Proposition 5.3 (1) 7 C Fj.
(2) (€4, F3) is a local regular Dirichlet form on L(F', u"). )
(8) If Nl(z) denotes the eigenvalue counting function for the eigenvalues of EF,

then
m(Uo)

Ni(z) = Y NoP(zp(Uo) ' u(Ey)).
1i=1
To conclude the proof of the key inequalities we require the Dirichlet-Neumann

bracketing results given in [18]. We give here a version of [18] Corollary 4.7.

Lemma 5.4 If (E,F) and (E', F') are two Dirichlet forms on L2(F,u) and F' is
a closed subspace of F and E' = E|p/xp, then

Ng/(z) < Ng(z) < Np/(z) + Dim(F/F").
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Proof of Lemma 5.1: Using the left inequality of Lemma 5.4 twice with the two
propositions gives (5.5). As the space of harmonic functions for finitely ramified
fractals is finite dimensional Lemma 5.4 gives Dim(F/F) = |Fy| = d+1 and hence
we have (5.6). ]

In order to analyse the eigenvalue counting function we extend the general
branching process, by using characteristics defined for all ¢ € R. We begin by
writing the left inequality in (5.5) in the same way as the equation for a general
branching process. By definition p(E;) = p(Us) " *W;/W and we can write (5.5) as

m(Up)
3= Ne D (p(Uo) ™= W;/W) < Ny ().

1=1
We will make the substitution X{'(t) = NI (etW (I ")) for all I' € 2, and consider

m(Uo)

Z Xo(t —logn) < Xo(t),

T =1

where we write 7, = p(Up)'*® and suppress the I dependence.
This suggests that we extend the class of general branching processes to {X#(t) :
—00 < t < oo}, defined by

X¢(t) = Z ¢(t - Ui)v

ielr

where the class of characteristics {¢’(t) : —oo < t < oo}, is defined for all time.
For our purposes it is enough that the ¢(t), which can be random, are bounded
and ¢ (t) = 0 for t < to([), some to(I) € R. As the process is defined by summing
over the entire tree I” we see that the existence of the process requires that the
sum is finite for all ¢ € R. This is clear for the case of X, by its construction. It is
also easy to see that the process satisfies the usual evolution equation for a general
branching process

&
Xty =o(t)+ > _XP(t-0), VLER,
=1

where the X? are iid copies of X¢. The process {X?%(t) : t € R} considered here
is obtained by adding together a number of time shifted copies of itself. The time
shifts are the birth times of individuals in the general branching process z; which
starts from a single individual at time 0 and has a lifelength and reproduction point
process given by

(é2(ds), Lz) = (Mabd(1+a)10gpa> (1 + @) log p,) with probability p,.
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Now define the function n by

&1
ﬂ(t) = X()(t) - EXO(t - lOng),
=1
Clearly we have for all t € R,
&1
Xo(t) = n(t) + Y Xo(t —logn), (5.7)
i=1

As for the general branching process we will write v$(t) = Ee""X?(t). The growth
of the process Xy is described by the following.

Lemma 5.5 The process {Xo(t) : t € R} has Malthusian parameter v = a/(a+1)
where a satisfies the equation

E(m(Uo)p(Uo)™®) = 1.
If the mean lifelength distribution v is non-lattice, then

i =t — 7
tli’rglo Xo(t)e " = vI(c0)W, a.s.,

where o
[25, e " En(t)dt

[ tetw(dt)

If the support of the measure v lies in a discrete subgroup of R, then, if T is the
generator of the support, then

Xo(t) = (G(2) + o(1)) €W,

v1(o0) =

where G 1is a positive periodic function with period T' given by

©  =HDEn(t + jT
Gt) = Eg_goofemt - n(t+j )'
o tetv(dt)

Proof: We sketch the main ideas and refer to [12] for more details. The Malthusian
parameter is 7 the rate of growth for this process. We derive a renewal equation
for the mean by multiplying (5.7) by e, taking expectations and letting v(t) =
E(e~"X,(t)). Also let w(t) = E(e~"n(t)), and note that w(t) — 0 as t — oo,
then

v(t) = w(t) + /Ooo e u(t — s)v(ds) = w(t) + /Ooov(t — $)vy(ds). (5.8)

In order for this to be a renewal equation the Malthusian parameter y must be the
solution to the equation

o o] _’Yt _
]E/0 e ¢(dt) = 1.
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Thus

1= Z map T,
a€A

By the definition of a in (3.5) we see that @ = (1 + a), giving v = a/(a +1).
Equation (5.8) is the renewal equation of [18] and hence we can apply the
renewal theorem given in [18]. If v is not lattice, then

_ [2, w(z)dx
[ zv(dz)

Otherwise, if the support of v lies in some discrete subgroup of R, then if T is the
greatest common divisor of the support of v, then G(t) = lim; o m(t +nT) exists

for every t and -

Jy” zv(dz)

To complete the proof we will indicate how to establish the almost sure conver-
gence in the non-lattice case. By Corollary 5.8 of [12], we just need convergence
down a particular subsequence of times t; = to+ck, where k € Z,c € Ry, % € [0, c].
It is also enough to consider the truncated characteristic n° defined by

c(t) — { Tl(t), t < ngc,

0, t>ngc.

v(00)

G(t) =

U]

We will write Z, = {i = (j,43) : 0j < t,0; > t} and I, = {i = (j,?) : 05 < t,0: >
t + c}. Now for n > ng, we have, writing X¢ for X" and a;(t) = e "t X§(t —
O'i) - ’U,c’,(t - O'i), that

|77 X (thn) — v (00)W] < €% ai(tkn)
Y
iEng\Iek,nc
4 Z 6_7”‘v$(tk+n —a) | - vfy(oo)W
iGItk\Itk,ﬂc

= Si(te) + S2(tk)-

For the first term we note that a; are mean 0 random variables and we can apply
the version of the strong law of large numbers proved as Lemma 4.1 in [23]. For
this we use boundedness of 7, finiteness of the total population at fixed times and
exponential growth of |Z;, \Zy, nc|. Using [23] Proposition 4.3 we have S (tx) —
0, a.s. as k — oo.

The second term S;(t;) depends purely on the general branching process and by
[23] (5.53) we can prove that there is an n > ng such that Sa(tx) — 0 almost surely
as k — oo. Removing the truncation using a dominated convergence argument
gives the required result. O
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We can now state and prove our main theorem. Let

m(Uo)
mo(t) = Ni(e') = Y N*D(e'p(Uo) ™ u(Er))-

i=1

By replacing X by N in the convergence result of Lemma 5.5 and rearranging, we
obtain our final Theorem.

Theorem 5.6 For the random recursive Sierpinski gasket if the mean lifelength
distribution v is non-lattice, then

lim N§(z)z™%/? = v p(co)WHEN(I), ae. T€Q,

T—>00

where d7 = 2a/(a+ 1) and

f_oo C_td:/zET]o(t)dt

o — 0
Ud§/2(oo) f0°° te—t43/2p(dt)

If the support of the measure v lies in a discrete subgroup of R, then if T is the
generator of the support, then for a.e. I €},

Nl (z) = (G(log (z/W)) + o(1)) z%/2W/ (4D,
where G is a positive periodic function with period T given by

o1ty < D DBl +51)
[ te~t4:/2p(dt)

By (5.6) we know that the spectral asymptotics for both the Dirichlet and
Neumann Laplacians will be the same and hence we have

Corollary 5.7 For the random recursive Sierpinski gasket, if the mean lifelength
distribution is non-lattice, then
lim N'(z)z~%/% = v ,(c0) W' %/3(I), ae. I€.
T d3/2
As p = 5/3 for SG(2) and p = 15/7 for SG(3) the limit of the spectral counting

function for the random recusive fractal of the introduction exists and we have the
second part of Theorem 1.2.

Corollary 5.8 For the random recursive Sierpinski gasket constructed from SG(2)
and SG(3) we have for almost every I € ", that

. © et /2 En(t)dt
lim NI(JL‘)x—dS/2 f_°°e o (?)

00 - p3log (5/3)(5/3)—d;/2 +(1- p)610g(15/7)(15/7)_d;/2 Wl—d;/z(I)‘
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Remark 5.9 (1) We remark that as yet there are no non-trivial examples in which
there is a periodic function G.

(2) Using the relationship between the partition function Jppe(z, z)p(dz) and the
spectral counting function we have the existence of a constant C such that

lim [ pi(z,z)t% ?u(ds) = CWI%/2 P a.s.
=0 Jp

For the homogeneous case a similar analysis to the above leads to the funda-
mental inequality

MNP (oT7Y) < NI (z) < N (2) < M N (2T,

This is the same as that derived from the heat kernel in (5.3), and gives the first
result in Theorem 1.2.
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