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With the recent (draft) standardization of the HTTP/1.1
protocol on the Web, it is natural to ask what percentage of
popular Web sites speak HTTP/1.1 and how compliant are these
so-called HTTP/1.1 servers. We attempt to answer these
questions through a series of experiments based on the protocol
standard. The tests are run on a comprehensive list of popular
Web sites to which a good fraction of the Web traffic is directed.
Our experiments were conducted on a global extensible testing
infrastructure that we built to answer the above questions.  The
same infrastructure will be used to answer questions like the
percentage of the traffic flow that is end-to-end HTTP/1.1.
Our results show reasons for concern on the state of HTTP/1.1
protocol compliancy and the subset of features actually
available to end users.
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1 Introduction

With the recent IETF draft standardization of HTTP/1.1 protocol in RFC 2616, it is natural to expect
that there would be a significant number of clients (browsers), proxies, and servers that are upgraded
to adhere to the HTTP/1.1 protocol requirements. In earlier work, we examined the key differences
between HTTP/1.0 and HTTP/1.1 [1]. In this work, we examine the level of current penetration in
the Internet of the HTTP/1.1 protocol and the level of compliance to the protocol. Many servers (and
clients) are configurable and some have already reverted to turning off certain features (such as per-
sistent connections) for a variety of reasons.

A wrong way to measure compliance, although unfortunately already widespread, is to contact a set
of Web servers and see if the version number field in the response header is HTTP/1.1. This is wrong
for several reasons: it ignores the inherent complexity of the way the Web works (presence of proxies
and gateways), mis-interprets the protocol version number in the response header, and finally assumes
that the server is actually fully compliant based on the protocol version it reports. The difficulties with
the interpretation of version numbers has been debated recently [2].

The question, however, is of value and finding a proper answer based on a clear understanding of the
world wide Web infrastructure and the HTTP/1.1 protocol would be useful for several reasons:

� Knowledge of the number of servers actually running fully compliant HTTP/1.1 servers would
give us a measure of the protocol adoption rate. If the number is low, it could point to problems
in the adoption and permit us to examine the reasons for this.

� An estimate of the traffic that is end-to-end HTTP/1.1 helps us quantify benefits (or disadvan-
tages) of the changes to the protocol that cannot be gleaned simply by comparing the protocol
versions.

� Repeating the study periodically gives us the rate of adoption of the protocol; this can be handy
to know if future changes are warranted and the speed with which they should be introduced.
If compliancy is low, especially in certain features, it could have an impact on introduction of
similar new features.

� At a meta-level, if there is difficulty in obtaining the answer, then changes in the protocol or in-
frastructure may be warranted to enable easier measurement of the penetration and compliance.

We view the audience of this paper to be four-fold:

1. Web site administrators who are trying to decide if they should move to the new version of the
protocol: if a reasonable number of popular sites are running HTTP/1.1, then they may want
to follow the trend. However, if many of the servers running HTTP/1.1 are not compliant or if
several of the new features are not enabled, they may want to take a wait-and-see attitude. Since
Web sites differ in the need for features, examining if features of interest to them are widely
available, would give a clear indication of the need for adoption of the new version. As we will
see later, there are several well known and popular sites still running HTTP/1.0.

2. Those interested in learning about compliance issues of protocols in general and especially of
a protocol that is responsible for 70% of the packets [3] on the Internet: it would be useful to
see what features are hard to get right and why. Subtle interaction between features show up
in practice leading to either non-adoption or selective turning-off of features. Our experimental
tests reveal such selective turning-off of features.
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3. Server implementors: they may be interested in seeing how popular their version of software is
on the Web and the actual level of compliance in practice. Some servers in practice have front
ends enabled that distort and alter the semantics of the response leading to potentially wrong
conclusion about the compliancy level of that implementation. We were able to identify at least
one popular server that had this problem.

4. Protocol designers: they can see what ideas actually get reflected in usage and speculate on
reasons for it. Much debated additions to the protocol may not be implemented properly or turned
off via configuration options in practice. Knowing the ground realities and reasons would help
them deal with evolving the protocol.

Given the enormity of the Web and the complexities of the new version of the protocol (the specification
tripled in size between HTTP/1.0 and HTTP/1.1), it is not easy to test the compliancy on the ground.
Fortunately however, our task is somewhat simplified due to the following:

� Prior work [1] (in which one of the authors of this paper was involved) examined the key dif-
ferences between HTTP/1.0 and HTTP/1.1, categorizing and identifying the important changes
in the protocol. Partitioning of the changes helped isolate the features and enabled the rapid
construction of the set of compliancy tests.

� Even though there are tens of millions of sites, only a small fraction of sites attract a significant
percentage of traffic. A plausible list of these sites are available from a set of survey sites.

� Access to packet traces from a large ISP helps us verify the accuracy of the survey sites and
calibrate the set of popular servers and use of headers (indicating use of new features).

Instead of designing a simple experiment that only addresses the issue of compliance when tested from
a client to a origin server we have designed a larger experimental infrastructure. The global infras-
tructure spanning multiple countries and a mix of sites (educational, commercial, and soon residential
sites connected via ISPs) will be used continuously to see how compliance of the protocol evolves. Ad-
ditionally, we are already extending the tests to include proxies in the path.

The rest of this paper is divided as follows: Section 2 presents motivation for the move to HTTP/1.1 and
Section 3 discusses related work in this area. Section 4 presents our compliance testing methodology
while Section 5 describes the actual experiment performed to measure the compliance. Section 6
discusses the software used to test and the environment in which the experiment was conducted.
Section 7 discusses the results of the experiment. We conclude with a summary of the paper and a
discussion of future work. An appendix gathers information about a large subset of the HTTP headers.

2 HTTP/1.1 Protocol

Along with the astounding success of HTTP/1.0 protocol (a recent study[3] estimated that nearly 70%
of packets in the Internet backbone traffic is HTTP), several problems were discovered in it. There was
no official standard for the HTTP/1.0 protocol though there were various implementations. The latest
version of the Hypertext Transfer Protocol HTTP/1.1 was standardized in June 1999 (in RFC 2616 [4])
after over four years of discussion in the IETF HTTP Working Group. A primary motivation in coming
up with a new version of the protocol was to fix several known weaknesses in HTTP/1.0. However,
during the process of developing the standard, several intermediate “HTTP/1.1” implementations of
servers and clients began showing up on the Web.

As part of the standardization effort of HTTP/1.1, reports on several interoperable implementations
of the components (clients/browsers and servers) had to be submitted to the W3C–World Wide Web
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consortium. W3C forum reports on the features supported by various implementations are available
in [5]. The information in the forum reports are submitted by the various individuals/organizations
who developed the components. The forum report lets developers indicate the subset of features of the
protocol they have implemented and if they have tested the features.

The testing that is reported in the forum is done by the developers themselves but occasionally com-
ponents are made available for others to test. Some of the servers on the forum are very popular on
the Web (e.g., Apache, Netscape-Enterprise, and Microsoft-IIS) while others are experimental servers
often used in the research community. There is a reasonable amount of variance in the set of fea-
tures implemented in this collection and compliancy testing cannot be done by just testing the subset
presented in this forum. Given that there are millions of sites running servers with different configu-
rations, it becomes important to broaden our compliancy testing base and methodology from that used
in the forum.

3 Related work

Measurement of protocol compliance is not entirely novel but we know of no such work in the HTTP
arena. Partially, this is due to the relative recency of the protocol and HTTP/1.1 is the first upgrade
since HTTP/1.0. Earlier versions, such as as HTTP/0.9 and HTTP/1.0 were never formally standard-
ized. Formal testing of non-standardized versions would not have been very helpful. However, the
deficiencies found in the implementations of HTTP/1.0 and the prematurely (mis-)labeled HTTP/1.1
helped in the clarification of the actual HTTP/1.1 specification. Forum reports [5] from implementors
and interoperability testing conducted via the Web consortium aided in finding some problems.

In the commercial arena there are more claims than actual evidence of compliance: many products
claim compatibility or compliancy with HTTP/1.1 to improve their salability. A closer examination
reveals that HTTP/1.1 compatibility claim does not always hold up.

4 Methodology

In this section, we present the design decisions of our experiment. We had to decide if the compliancy
tests could be run locally and if not, how to come up with a canonical set of test sites. We then had to
assemble a testing infrastructure, identify testing software, and isolate the features to be tested based
on the protocol draft standard. We discuss the various tradeoffs and the reasons behind the choice of
the approach we took.

One approach to test compliancy would have been to choose just a handful of popular servers (e.g.,
Apache, Netscape, Microsoft-IIS) and run our tests directly on the software in a lab environment. We
chose not to do this for the following reasons:

1. It is not possible to test the software under various configurations (we counted nearly sixty dif-
ferent configurations of the Netscape server and close to seven hundred different configurations
of the Apache server in a recent packet trace from a large ISP).

2. Different answers might result based on where the tests originate.

3. It is more interesting to see what installed servers in the field do than a particular binary release
version.

4. It is not possible to obtain the source and binaries of all the servers. Several sites run proprietary
servers designed just for their organization.

3



5. We wanted to test under real world conditions–our requests would be folded in with other “nor-
mal” requests. As will be seen later, this decision was well warranted, since some server imple-
mentors were surprised to see the circumstances under which their server was being used.

Additionally, even the information about the server returned in the HTTP response (in the Server:
header) didn’t always include any configuration information1. This leads to anomalies such as the
same feature implemented correctly in some sites and not so in others, although both sites apparently
ran the “same” server instance. Relying on the server identifier would thus be a mistake leading to
wrong conclusions. Given the level of vagaries on the Web, nothing short of a direct test of sites would
suffice.

It has been well known for a while that few Web sites attract a significant portion of the Web traffic.
This has led to compilation of popular Web sites which has significant economic value to those sites
(revenue from advertisement). Several rating sites have sprung up that offer statistics on popular Web
sites. These include MediaMetrix [6], Netcraft [7], and Hot100 [8]. In addition, some compilation of
well known corporations such as Fortune 500 [9] and Global 500 [10] provide lists of globally known
corporations some of which presumably attract a significant amount of Web traffic.

Each of the survey sites has a different way of gathering their data and none of them have made
it transparent enough for independent testing. Some even say that they deliberately withhold this
information to ensure surveyed sites do not misuse it to alter their rankings. Hot100 claims to survey
100,000 users (40% of whom are outside the USA) to get 20 Mb of “data” which is ftp’d daily. They
claim to gather data at “strategic” points on the Internet (not at the browser or server) which they
then sift through. Mediametrix (which recently merged with Relevant Knowledge, another reporting
company) claims to survey 40,000 users (this datum is from August 1998).

If we are interested in testing compliancy of the HTTP/1.1 protocol, it would make sense to examine
the servers running on popular Web sites. We compiled a fairly exhaustive list from a variety of sources
(including the ones listed above) of (over 500) servers to which a significant portion of Web traffic is
directed. We contacted each one of them from a variety of locations in the world (from three continents
including a university in North America, a university each in France and Australia, two commercial
sites in North America representing both coasts, and a commercial site in South America) to ensure
that the client didn’t introduce any bias. Our clients were either the httperf [11] tool from HP Labs
or handwritten C code imitating basic aspects of a browser and saving the response headers returned.
Part of the reason for testing from a variety of places is to extend the tests in the next round to go
through proxies (rather than directly from client to server in this work).

We also considered some of the W3C forum reports [5] submitted to the W3C consortium by various
server and client implementors to see the features that were actually implemented in the interoper-
ability tests. We tended to go with a subset of tests that most of the implementors had reported.

Next, it is important to measure the origin server’s compliancy without having to worry about the
influence of proxies, gateways, and tunnels in the path. Proxies, depending on if they are explicit or
transparent may modify the requests and alter some of the headers in either direction. The response
from the server would not be seen directly by the testing client; only the response sent by the proxy.
Even when we send requests directly from clients to origin servers, it is possible for a proxy in front of
the server to intercept the request (we noticed several such cases in our test).

In terms of verifying compliancy, we primarily relied on the protocol standard [4]. The protocol speci-
fication has three classes of compliance by clients, proxies, and servers for features: MUST, SHOULD,
and MAY (for a clear interpretation of these terms used in standards see [12]). The HTTP/1.1 specifi-
cation states that a server implementation that fails to satisfy one or more MUST requirements is not

1In a popular server we noticed this and the anonymous contact there believed it to be a wrong design decision to omit this
information.
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compliant. If it satisfies all MUST and SHOULD requirements it is unconditionally compliant and if
it meets all MUST but not all SHOULD requirements it is conditionally compliant.

It should be noted that our tests are not simply a test of the MUST, SHOULD, and MAY requirements
of the HTTP/1.1 draft standard. Instead, we have divided the tests into categories based on importance
to the overall Web infrastructure. While some servers may have consciously not complied with some
requirements or turned off some features (since they are not a MUST requirement), we may still
highlight that fact. The goal of our experiment was to both classify the servers in terms of compliancy
and also speculate on the reasons for any non-compliancy.

While we have not tested every feature of the protocol for compliancy (yet), we have prioritized and
tested some of the key features. Our testing model is extensible—other features simply require ex-
tensions to the script which can be plugged into our testing and analysis infrastructure. This enables
continued testing over the long haul as more server sites move to HTTP/1.1. Continued testing also
helps us monitor changes to the servers over time. We also kept our tests free of biases such as time of
day and location of clients.

5 Compliance experiment

The actual compliance experiment involved extracting important features from the HTTP/1.1 protocol
specification as presented in RFC 2616, the HTTP/1.1 draft standard. Several of the features of 1.1 are
carried over from HTTP/1.0 since all HTTP/1.1 servers have to accept HTTP/1.0 style requests.

We divided our experiment into three categories:

1. Important features in the protocol specification (all of which are MUST conditions; i.e., the im-
plementation is not compliant otherwise).

2. Features that we believe are significant additions in HTTP/1.1.

3. Several features that are not mandatory to be present in servers, yet were considered useful in
evolving the protocol.

We expect every compliant server to meet the tests of Category One tests and most to meet the Cate-
gory Two tests. We expect significant variance in compliancy for the Category Three tests.

5.1 Category One tests

In the first category of the experiment we tested the following features:

1. GETand HEADmethods, with modifiers as warranted

2. Absence of Host header

The reasons for choosing the above are simple: we expect these tests to succeed in any compliant
HTTP/1.1 server. Servers that do not implement the above features correctly are presumably invalidly
labeling themselves as HTTP/1.1. It should be noted that the version number in an HTTP message is
a hop-by-hop header (as opposed to an end-to-end header) and since our tests are directly from client
to origin server, we get exactly the version number the origin server claims it implements.
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5.1.1 Methods

Over 95% of all requests made to Web servers are GET2 and it is vital that servers implement this
properly. The HEADmethod is often used to debug servers and can be handy to get the metadata of re-
sources. Neither of these methods are new in HTTP/1.1, nor has their behaviour changed significantly.
Use of modifiers with GET(such as If-None-Match and If-Unmodified-Since) , however, are new
and thus included in our tests. These tests are to verify that servers respond with (the new response
code) 412 Precondition Failed, when the precondition fails.

5.1.2 Host

The Host header was added to slow down the depletion of IP addresses, thanks to a rush to vanity
URLs (such as www.foo.com ) and HTTP/1.0 requests not passing the hostname of the request URL.
Rather than change the request line format (which would cause massive configuration difficulties), a
new (Host :) header was mandated to be present in every HTTP/1.1 request message. If a HTTP/1.1
request message did not have the Host: header it must be rejected. Unfortunately, some servers
didn’t adhere to this, as we will see in the section on results (Section 7).

5.2 Category Two tests

The second category of tests is important features that have been added to HTTP/1.1. A signifi-
cant amount of discussion ensued on some of these features during the over four-year development
of HTTP/1.1. We expect to add more features to this category as our testbed evolves. In the case of
a server mis-implementing or partially implementing features tested in this category, we would be
curious to know why. Unlike Category One tests, where errors simply imply non-compliance, this cat-
egory includes tests of features that servers are permitted to selectively implement. There is a general
expectation that a HTTP/1.1 server would implement these features.

The tests that we included in this category are:

1. Persistent Connections and Pipelining

2. Range requests

5.2.1 Persistent connections and Pipelining

One of the major innovations in HTTP/1.1 was the introduction of persistent connections. In HTTP/1.0,
connections lasted just for for a single request/response exchange. This had both a deleterious effect
on user perceived latency and the server (each request required TCP setup and teardown) as well as
the network (in terms of the additional packets). Most HTTP transactions are short and the TCP
handshakes consumed a good chunk of the overall time. For pages with a dozen embedded images (a
figure that is relatively common), multiple TCP setups and teardowns were needed. Mogul and Pad-
manabhan suggested the introduction of persistent connections based on an experimental study [13].
Persistent connections are the default in HTTP/1.1, though servers or clients could close the connection
after the first exchange.

Pipelining permits clients to send a stream of requests in a pipeline without waiting for any response
from the server. The round trip time of waiting for the acknowledgments of the previous request is

2This figure is from a recent packet trace data from a large ISP.
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eliminated. The server however sends the responses in the order of the requests received. Further
studies [14] revealed that persistent connections without pipelining could in some cases worsen the
performance. In some cases multiple parallel non-persistent connections were found to be better but
this came at a cost (minimal to the browser, higher to the server in order to deal with multiple si-
multaneous connections from each client). Persistent connections with pipelining provided the best
combination to reduce latency and the overall number of packets.

Recently, there has been anecdotal evidence (in discussions and mailing lists) that some sites are
turning off persistent connections. If it were true, one of the key perceived advantages of HTTP/1.1 (to
the network in terms of reduced packets and to users in terms of latency) would turn out not to have
been realized.

We thus tested both persistent connections and pipelining. We tested if servers permitted the basic
ability to hold the connection open beyond a single connection and then the separate test of its ability
to handle pipelined requests.

5.2.2 Range requests

Another innovation in HTTP/1.1 was the ability to request byte ranges of resources rather than the
full contents. There are several reasons for this, including efficiency, such as requiring just the tail of
a growing resource, prefetching the headers of resources of certain content-type (such as gif, jpeg) to
begin outlining images before actually fetching the image etc.. Recovering from aborted connections
and transfers is eased by range requests. When parts of the resources are cached, only the missing
parts need to be obtained.

5.3 Category Three tests

In the final category are several minor issues. We expect most servers to be compliant and if they are
not it is not a disaster.

� OPTIONS and TRACE (additional methods) and POST

� Expect/100-Continue mechanism

� If-None-Match , If-Unmodified-Since cache conditionals

� Miscellaneous tests for size/header violations

5.3.1 Additional method tests

The HTTP/1.1 specification clearly indicates that all general purpose servers MUST implement GET
and HEADmethods, with support for all other methods being optional. However, if a server does im-
plement other methods, the implementation must be conformant with the specification (Section 5.1.1
of [4]). Thus, our tests of conformance is not based on support of other methods but simply one of
proper compliance if implemented.

The OPTIONS method is a useful method that indicates the capabilities of the origin server. With a
resource specified, any optional features applicable to that resource alone is returned. The TRACE
method purely runs a loopback test of the message included in the request and is simply a way to see if
the server received exactly what was sent from the client. The server is supposed to return the request
it received in the response body. To limit the number of proxies or gateways that can forward the
request, HTTP provides a Max-forwards header. Since our tests were directly from client to origin
server we did not test the Max-forwards feature.
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5.3.2 Expect/Continue mechanism

To prevent clients from needlessly sending large bodies in PUT/POST requests that might not be
accepted by a server, HTTP/1.1 introduced a mechanism by which clients could check with the server
beforehand. A client would send just the header (without a body but with a content length indicator)
including a request header Expect: 100-Continue . If the server is willing to accept the request it
would reply with a 100 Continue status response and then the client can send the body; otherwise
the server can send a 401 (Unauthorized) or a 417 (Expectation Failed) response.

5.3.3 Conditional requests

HTTP/1.1 introduced several new conditionals to improve the caching model. Instead of the simple
Last-Modified timestamp check that HTTP/1.0 provided in the GET If-Modified-Since request,
the presence of opaque strings in the form of Entity tags, permits a more general model. If sev-
eral instances of a resources are maintained at the server and cached at a proxy, the proxy could
check if any of its cached instances are current by including conditional headers such as If-Match ,
If-None-Match , etc. Additionally, an If-Unmodified-Since conditional permits a resource to be
sent only if it has not changed since the indicated date.

When performing timestamp checks the format of the date string is an issue. HTTP applications have
permitted three date formats RFC 822 (updated by RFC 1123), RFC 1036, and ANSI C’s asctime().
While, HTTP/1.1 clients and servers have to accept all three formats for compatibility with HTTP/1.0,
they can only generate the RFC 1123 format for representing date values in header fields.

5.3.4 Miscellaneous tests

Several new requests and responses have to be tested for size and other common violations. In this
set of tests we examine a variety of method and header combinations for violations of size or incorrect
headers. We check for the ability to handle long URIs and incorrect URIs in the request.

6 Testing software and environment

For testing we primarily relied on httperf [11]–a performance measurement tool for HTTP. Httperf
is useful for understanding Web server performance and for analyzing server features and enhance-
ments. The tool has three logical components: the core HTTP engine, the workload generator, and the
statistics collector. Both the load generator and statistics collector can be configured at runtime via
command line options.

We chose to use httperf as an analysis tool for several reasons. Since httperf already supports the
HTTP/1.1 protocol, it saved us from having to provide our own implementation. Although httperf does
not currently support all of the features that we needed for this study, the tool is available in source
code form. This enabled us to modify the tool to issue the desired request headers and collect the
appropriate statistics. Our extensions can be rolled back into httperf for others to use.

We tested compliancy from a variety of places around the world from diverse organizations. While
strictly speaking this should not be necessary, (a server should give the same answer no matter where
the requests came from) we did this for two reasons:
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Table 1: Global probing sites used for our experiment

Organization/Location Hardware/OS
AT&T Research, NJ, USA SGI/Irix 5.3
HP-Labs, California, USA HP Pentium Pro 200/Linux 2.2.6
Univ. of Kentucky, USA Sparc/Sun OS 5.6
University of Paris-Sud Sparc/Sun OS 4.1.3

Univ. of Western Australia Alpha/Digital OSF/1 V3.2
Santiago, Chile UltraSPARC/SunOS 5.5.1

� Studying an origin server’s compliancy is just the first stage of our experiment. Additional ex-
periments that test other artifacts of the Web require diversity of location to expose biases in the
path between client and server.

� If we noticed any dependency on the origin of requests (though the web sites were contacted using
hardwired IP addresses) that would be of interest to explore.

A C program parsed the response headers in the output from each client site converting them into
integer and/or bitmap descriptors verify presence/absence, glean values, and checked for appropriate
headers.

Primary tests were run from the authors’ respective organizations (AT&T Research located in New
Jersey, USA, and Hewlett Packard Labs in California, USA). Additional tests were run from University
of Kentucky in Lexington, Kentucky (USA), University of Paris-Sud, Orsay, (France), University of
Western Australia (Nedlands, Western Australia), and a commercial site in Santiago (Chile). Even
though we chose different organizations and locations, the same software was installed and used for
all the tests. Each test was run once from each testing site. The same set of servers were contacted
from each of the sites. The machines all ran different versions of UNIX—Table 1 shows the details.

7 Results

7.1 Experiment details

Table 2 shows the top fifteen sites that we constructed based on the composite from Netcraft, Medi-
aMetrix and Hot100.

Though the Apache server has a large lead in the server market (over 60% of the market in a variety
of surveys), a majority of the request traffic in our collection of popular sites goes to Netscape and
Microsoft-IIS servers. Table 3 shows distribution of request traffic on the basis of vendors. The most
popular version of the top 3 servers are Netscape-Enterprise/3.x, Microsoft-IIS/4.0, and Apache/1.3.x.
Since servers from just three organizations account for over 95% of request traffic of the most popular
sites running HTTP/1.1, compliancy can be improved significantly by ensuring that all configurations
of these servers are fully compliant.

Three important caveats should be kept in mind while interpreting our results:

� There are several well known and popular sites that do not (as of July 1999) run HTTP/1.1.
Among these are AOL, Excite, Yahoo, Amazon, and Altavista.
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Table 2: Top 15 sites in no particular order

Organization URL
Yahoo www.yahoo.com

America Online www.aol.com
Microsoft www.microsoft.com
Netscape www.netscape.com

Lycos www.lycos.com
Hotmail www.hotmail.com
Excite www.excite.com

Microsoft Network www.msn.com
Apple www.apple.com

Altavista www.altvista.com
Amazon www.amazon.com

IBM www.ibm.com
Sun java.sun.com

Slashdot www.slashdot.org
Xoom www.xoom.com

Table 3: Top server vendors seen in our test

Server vendor Percentage
Netscape 34.8
Microsoft 32.8
Apache 28.2
Lotus 2.7
Zeus 0.4

Oracle 0.2
Others 0.8

10



Table 4: Unconditional Compliance Results for Category One Tests

Client Site GET(%) HEAD(%) Host(%) Pass All(%) Fail All(%)
AT&T 82.1 72.4 64.6 59.8 7.4

Australia 82.3 72.7 64.4 60.0 7.3
Chile 82.3 70.3 64.4 60.3 7.9

France 82.4 72.4 64.1 59.7 7.4
HPL 83.5 72.9 64.5 60.6 7.1

Kentucky 82.4 72.7 64.2 60.1 7.5

� The popularity is purely based on number of requests sent to these sites and not on the bytes of
response. One could just as easily make a case that a top n listing based on bytes shipped from
servers is a more important metric. If we are seeking bandwidth reduction through the use of
new features in HTTP/1.1, byte-wise high volume servers are likely be to better targets. However,
the lack of server logs from these top n sites does not give us a way of measuring this.

� There is evidence that pornographic sites are eliminated from or downplayed in surveys of sites.
Thus it is quite possible that such sites didn’t end up in our top n sites list. Additionally, such
sites, given their propensity to include more images, often have a higher volume (bytewise) of
response traffic than other sites. To examine this bias, we looked at two separate sets of data:

1. A packet trace from a large ISP; we looked for some of the frequently requested sites. Half
a dozen sites that are of this ilk (running HTTP/1.1) had many more bytes transferred in
response as compared to the rest of the frequently visited sites.

2. A proxy log from a large content hosting ISP: this also showed that pornographic sites were
responsible for a significant fraction of the bytes transferred.

We did not add such sites to our tests.

7.2 Experimental results

In Section 5, we divided our tests into three categories. In this section, we examine the results for each
of the categories, as well as for most of the set of tests that we perform. Our compliance tests focus
on the extreme cases: determining which servers satisfy all MUST and SHOULD requirements (the
unconditionally compliant servers); and determining which servers cannot satisfy one or more MUST
requirements (the non-compliant servers).

7.2.1 Category One test results

In this first round of tests we examine three required features for HTTP/1.1: the GETand HEADmeth-
ods, and the Host header. We consider a server to be unconditionally compliant for these tests if it re-
turns an appropriate status code (200 for GETand HEADtests, and 400 for the Host test), and if the re-
sponse includes the appropriate headers (e.g., Date and Content-Length or
Transfer-Encoding: chunked ).

The results of this analysis are shown in Table 4. The results reveal that approximately 82% of the
sites under study were unconditionally compliant with respect to the GETmethod; about 72% of the
sites were unconditionally compliant for the HEADmethod, while 64% passed the Host test. Roughly
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Table 5: Breakdown of Category One Test Results (HPL Data)

GET (%) HEAD (%) Host(%)
Unconditional 83.5 72.9 64.5

Missing Expected Headers 16.1 9.4 28.6
Not Compliant 0.4 17.7 6.9

60% of the sites under study were unconditionally compliant across all three tests, while just over
7% of the sites failed all three tests for conditional compliance. In order to understand why so many
servers failed to pass one or more of these three basic tests we examine each test separately. Since the
results varied only slightly depending on which client site is utilized, we use only one (the HPL site)
for discussion purposes throughout the remainder of this section. We identified a few potential causes
for the variation in the results by client site:

� Clusters of heterogeneous servers at a single site: although we attempted to contact the same
server from each client (by utilizing the IP address rather than the host name of the server),
some sites appear to use load balancers or other devices to distribute incoming requests among a
cluster of (heterogeneous) servers.

� Site availability: a number of sites appear to have been unavailable during several of our tests;
since our results are calculated based on the number of sites that responded to a test, this creates
a small amount of variability in the computed percentages.

Table 5 provides a more detailed breakdown of the Category One results. As we have already shown,
most servers are unconditionally compliant with respect to GETrequests. 16.1% of the servers did not
include either a Content-Length header or a Transfer-Encoding: chunked header to indicate
to the client the length of the message body. Due to this omission these servers are characterized
as conditionally compliant. Two servers failed the GETcompliance test: one returned a status 500
response code rather than the expected 200 response code, while the second included an incorrectly
formatted Date header.

Just under three-quarters of the tested servers were unconditionally compliant with respect to HEAD
requests. Approximately 9% of the tested servers did not include the same entity headers that were
seen in response to the GETrequest. Thus, these servers are deemed to be conditionally compliant.
The more intriguing result is that almost 18% of the tested servers failed the compliance test because
they returned a status 500 response rather than the expected 200 response.

Table 5 indicates that close to two-thirds of the servers fulfilled all requirements when responding to
a request that did not include a Host header. 28.6% of the tested servers did not include either a Date
header or one of Content-Length or Transfer-Encoding: chunked . These servers are considered
to be conditionally compliant. 6.9% of the servers were not compliant, as they did not require the Host
header to be present.

To determine whether a specific type of Web server was responsible for the unusual behaviour we
observed, we analyzed the data by the type of server. The results for the five most common servers
seen in our tests are shown in Table 6. These five servers accounted for 86.5% of all the servers seen
in our tests.

Table 6 indicates that two of the top five servers (Apache/1.3 and Apache/1.2) were unconditionally
compliant on almost every site under study; in the few cases where these servers were not uncondition-
ally compliant, the cause was usually a missing header, perhaps the result of the (mis)configuration of
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Table 6: Breakdown of Category One Results by Server Type (HPL Data)

Server %of Svrs GET(%) HEAD(%) Host(%) Pass All(%) Fail All(%)
IIS/4.0 32.5 89.7 98.0 98.2 87.3 0.0

Apache/1.3 18.1 100.0 96.7 100.0 96.7 0.0
Netscape/3.5 14.0 70.8 22.2 0.0 0.0 16.9
Netscape/3.6 12.8 50.8 29.2 0.0 0.0 27.7
Apache/1.2 9.1 100.0 100.0 97.8 97.8 0.0

that particular server. Microsoft-IIS/4.0 ranked third in the percentage of servers that passed all three
tests for unconditional compliance, trailing the Apache servers by about 10%. Most of the remain-
ing Microsoft-IIS/4.0 servers did not issue the expected response headers. None of the Apache/1.3,
Apache/1.2 or Microsoft-IIS/4.0 servers failed all three tests for unconditional compliance.

The results are less positive for the Netscape-Enterprise 3.5 and 3.6 servers. None of these servers
passed all three of our tests for unconditional compliance. In fact, 16.9% of the Netscape/3.5 servers
and 27.7% of the Netscape/3.6 servers failed all three unconditional compliance tests. This observation
suggests that perhaps there is an implementation problem with these types of servers. These results
also suggest that certain types of Web servers are responsible for much of the behaviour we noted ear-
lier in this section. A somewhat discomforting observation is that the Netscape/3.6 server appears to
be less compliant than its ancestor, the Netscape/3.5 server; i.e., things do not necessarily improve over
time. Reviewing the results in Table 6 suggests that the biggest change between these versions occurs
with the GETrequests. While 70.8% of the Netscape/3.5 servers were unconditionally compliant on
this test (the remaining 29.2% were missing a Content-Length or Transfer-Encoding: chunked
header), only 50.8% of the Netscape/3.6 servers passed unconditionally (the remainder were missing a
length header). At this time we have no evidence to suggest why this change has occurred. Both the
Netscape/3.5 and 3.6 servers did quite poorly on the HEADtest, with only 22.2% and 29.2% passing the
unconditional compliance tests respectively. The remaining Netscape 3.5 and 3.6 servers were either
missing the expected headers (19.4% and 23.1% respectively), or returned an incorrect status code
(58.3% and 47.7% respectively). All of the Netscape 3.5 and 3.6 servers failed the Host test for uncon-
ditional compliance. 77.8% of the 3.5 servers and 86.2% of the 3.6 servers were missing both a Date
and a length header, while 22.2% of the 3.5 servers and 13.8% of the 3.6 servers were not compliant,
as they did not require a Host header to be present.

Even though we found that certain types of Web servers are responsible for a lot of the non-compliant
behaviour we observed, the results in Table 6 also indicate that there is a lot of variability in the
degree of compliance even among more homogeneous groupings. This suggests that the configuration
(including the use of plugins) may have a significant role in determining how compliant a server is and
validates the methodology of our testing actual server sites rather than the server software.

The results in Table 4 revealed that 40% of the servers failed one or more of the Category One tests for
unconditional compliance to the HTTP/1.1 specification. The most common reason for failure was the
lack of appropriate response headers.

Perhaps a more significant observation is that 21.5% of the servers tested were not compliant (i.e.,
they failed a MUST condition) on at least one of the three basic functionality tests. 3% of the servers
were not compliant on two of the tests. These servers should definitely not claim to be HTTP/1.1
applications.

13



Table 7: Breakdown of Category Two Results

Client Site Persistence(%) Pipelining(%) Range(%) Pass All(%) Fail All(%)
ATT 70.9 65.9 52.4 40.5 20.8

Australia 71.2 64.3 52.4 40.1 21.3
Chile 71.2 67.2 52.7 41.9 21.6

France 71.5 66.9 52.3 41.4 21.6
HPL 71.9 70.6 52.3 43.9 20.6

Kentucky 71.8 66.3 51.9 41.3 21.5

Table 8: Breakdown of Category Two Results by Server Type (HPL Data)

Server Persistence(%) Pipelining(%) Range(%) Pass All(%) Fail All(%)
IIS/4.0 87.9 87.3 52.4 52.4 12.7

Apache/1.3 87.0 87.0 51.1 47.8 9.8
Netscape/3.5 41.1 38.4 67.2 37.5 30.6
Netscape/3.6 41.5 35.4 47.7 35.4 52.3
Apache/1.2 89.1 89.1 52.7 43.5 10.9

7.2.2 Category Two test results

Our next set of tests examined server support of persistent connections, pipelining, and range requests.
These features are among the more widely discussed enhancements offered by HTTP/1.1. Note that
none of these features are required. Although maintaining a persistent connection is supposed to be
the default behaviour of an HTTP/1.1 application, it is a SHOULD requirement and thus a server can
be (conditionally) compliant without maintaining persistent connections. However, servers have to
explicitly send a Connection: close header to indicate non-persistence. The Range feature is only
a MAY level requirement; servers uninterested in obeying the request would just send the complete
response.

Table 7 reveals that many of the servers supported at least one of the Category Two features. Approx-
imately 70% of the servers supported persistent connections. We expect that many of the remaining
sites had persistent connections disabled by the site administrators. Slightly fewer sites allowed the
client to pipeline requests. Only about half of the servers supported Range requests (properly). Over-
all, only 40% of the sites supported all three Category Two features, while 20% of the sites supported
none of these features.

The results in Table 8 reveal that the server type has less effect on the results than was the case for the
Category One tests. Almost all of the Apache/1.2, Apache/1.3 and Microsoft-IIS/4.0 servers supported
persistent connections and pipelining. Only about half of these servers supported the Range requests
which is the primary reason why so few of these server passed all three Category Two tests. Fewer
Netscape-Enterprise/3.5 and 3.6 servers supported persistent connections and pipelining than ranges.
We have evidence that suggests there is a problem with the persistent connection implementation in
these servers (e.g., the server sends a Connection: keep-alive header with the response, then
closes the connection without allowing the client to issue any subsequent requests).

We believe that the combination of our Category One and Two tests includes most of the important and
useful features of HTTP/1.1. In the remainder of this subsection we examine the number of servers
that (unconditionally) supported all six features.
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Table 9: Breakdown of Category One and Two Results

Client Site Pass All Tests(%) Fail All Tests(%)
ATT 30.3 6.8

Australia 31.1 7.2
Chile 31.4 7.8

France 30.7 7.5
HPL 31.1 7.1

Kentucky 30.6 7.5

Table 9 indicates that around 30% of the servers under study passed all six tests, while 7% of the
servers were either conditionally compliant or not compliant on all six tests.

Figure 1 provides the cumulative frequency histogram of the Category One and Two results by server
type for the HPL data. For example, 28% of the Netscape-Enterprise/3.6 servers (N-E/3.6) failed all six
tests (i.e., they supported 0 features). None of the Netscape/3.6 servers supported all six features. All
of the Apache/1.3 servers unconditionally supported three or more features (10% supported exactly 3,
the remaining 90% 4 or more). 52% of the Microsoft-IIS/4.0 servers (IIS/4.0) supported all six features,
as did 48% of the Apache/1.3 servers and 42% of the Apache/1.2 servers.

Figures 2—6 indicate the number of Category One and Two features supported by each of the common
servers. These figures differ from Figure 1 in that they indicate the amount of variability in our
results as seen from the six client sites. For each data point we have plotted the minimum, median
and maximum observed values. In most cases there is little variance in the measured results. For
example, Figure 2 shows that 14.1% of Microsoft-IIS/4.0 servers supported three or fewer features
(median), with a minimum result of 12.7% and a maximum of 14.6%. The cause of this variability
is primarily due to some of the servers not responding to the requests from all clients. The greatest
variation in the results occurs for the Netscape-Enterprise/3.5 and 3.6 servers (Figures 4 and 5). We
speculate that much of this variation is due to features that do not work consistently for these servers
(e.g., persistent connections and pipelining).

7.2.3 Category Three test results

In this section we tested the servers to determine whether they supported ten other suggested/recom-
mended features of HTTP/1.1. The tests that we performed and the results are presented in Table 10.

The results in Table 10 indicate that many of these somewhat lesser known features are available on
many Web servers. Unfortunately many of these features are not straightforward to test. For example,
POST requests may not be allowed for certain objects. In such a situation we can test that the server
properly rejects the request, but we cannot test whether the server would properly handle a POST
request.

We also observed that a significant number of servers returned non-compliant responses in some of
our Category Three tests. For example, some servers return a status 200 response (along with a Web
page that indicates an error has occurred) to a request for an incorrect/non-existent URL. This is due
to the server configuration rather than the server implementation. The most significant occurrences
of non-compliant responses happened with our “POST with Expect : 100-Continue ” test and our
If-Unmodified-Since tests. In the Expect : 100-Continue test we observed that many sites did
not issue a response to the request. Since the number of sites that did not respond was much higher
than normal (149 sites versus an average of 7.8 for the other tests), we speculate that most of these
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Figure 1: Cumulative frequency histogram of Category One and Two results
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Figure 2: Number of Category One and Two features supported by IIS-4.0
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Figure 3: Number of Category One and Two features supported by Apache/1.3
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Figure 4: Number of Category One and Two features supported by Netscape-3.5
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Figure 5: Number of Category One and Two features supported by Netscape-3.6
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Figure 6: Number of Category One and Two features supported by Apache/1.2
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Table 10: Results for Category Three Tests–HPL data

Feature % Servers % Servers
Unconditionally Compliant Not Compliant

OPTIONS 59.8 0.8
TRACE 97.3 0.2

FOO 54.7 7.1
POST, Expect 63.2 32.0
Incorrect URL 80.5 7.1

Long URL 62.7 2.0
If-None-Match 14.8 0.8
I-U-S (1123) 41.7 57.1
I-U-S (1036) 41.7 57.1

I-U-S (ANSI C) 41.7 57.1

I-U-S == If-Unmodified-Since with Date in RFC 1123/1026/ANSI-C formats.

sites are simply waiting for further information from the client. Most of the servers we tested do not
appear to understand the If-Unmodified-Since header, and as a result of ignoring it return a non-
compliant response. All of the servers that do implement this feature correctly understood all of the
three required date formats.

7.3 Variation within features

Even when servers implement a particular feature (for example, persistent connection and pipelining)
they differed in the range of parameters. We looked at one particular feature that the specification
does not go into too much detail—how many persistent requests should a compliant server handle.
The specification does indicate that a server may close the transport connection at any time. In our
experiments, we noticed that different sites accepted different number of requests over a persistent
connection, and handled a varying number of pipelined requests before closing the connection. We
found no discernible pattern here.

7.4 Impact of location of probing site

The fact that a request originates from a particular location does not in general seem to have an impact
on the compliancy. However, there were a few minor variations. We suspect that this could be due to
not all sites responding to all requests during the test. The multiple sites served as the redundancy
mechanism of the experiment. It should be noted that one of the primary reasons to run the tests from
a variety of sites in various countries is for the (ongoing) second phase of our experiment dealing with
indirect requests from client to origin servers.

7.5 Speculations on reasons for non-compliance

There appear to be several reasons for non-compliance on the part of servers. Some of the reasons
are subtle and may not be known even to the server implementors. While every other instance of a
Microsoft-IIS/4.0 site tested yielded the proper 400 Bad Request to a HTTP/1.1 request without the
Host: header, one site (also claiming to run IIS/4.0) returned a 200 OK response. Closer examination
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and consultation showed that this site probably uses an ISAPI filter [15]–a dynamically linked library
that intercepts requests—with the intention of modifying it before the core server can parse it. We
believe this may be the reason for the error.

A possible reason for turning off features (such as persistent connections/pipelining or range requests)
could be performance concerns. There does not appear to be any pattern in the choice of features that
are enabled/disabled.

7.6 Stability of results

In the rapidly changing Web, how long will our results remain valid? Obviously, we hope that the non-
compliant servers are upgraded to the more compliant ones and more features are enabled. However,
one possible way our results might change is when several of the popular servers that are still running
HTTP/1.0 begin to upgrade to HTTP/1.1.

8 Conclusions and future work

We have examined the compliance to the HTTP/1.1 protocol in a variety of Web sites that receive a
significant portion of the traffic.

We described the first phase of our experiment where we examined a list of popular servers with a suite
of static tests. Ongoing extensions include dynamic tests with the extended tool examining response
headers as they arrive and generating subsequent requests based on the response (an example of this
is the Entity tag mechanism). It may also be useful to examine entire user sessions rather than just
single requests for the home page (or text portion thereof) of a site. Currently, we use offline analysis to
check for protocol compliance. Incorporating this process into the probing mechanism would simplify
the conformance checks. We intend to continue this analysis process over time, to allow us to monitor
changes in the Web architecture, and to study the adoption rate of protocol modifications.

When performing tests of such a large scale nature on several large sites, one has to be careful not to
let the testing interfere with the normal workings of the site. We did this by identifying ourselves via
the From: and User-agent: headers in every request we sent. We also sent our few test requests
serially and just once.

We are carrying out additional tests dealing with variation within features. We plan to replay ac-
tual trace sequences (if available) or synthetically generated requests varying inter-arrival time. Our
analysis process is being automated currently. We would like to do a head to head comparison of two
versions of the same server to see what changed between the implementations.

Our experiment shows that even though many of the popular sites claim to run HTTP/1.1, some fail
the basic compliancy requirement, while others run with many of the significant improvements turned
off. The results of our experiment show that the situation on the Web must first be improved at the
origin server level before we can worry about end to end improvement.
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A Appendix

We list the HTTP request, response, and general headers, indicating which are new in HTTP/1.1, if
they are hop-by-hop or end-to-end, and where it is legal for them to occur. Additionally, we point to the
sections in RFC 2616 where they are discussed.

Table 11: Key for the headers table

N New in HTTP/1.1
H Hop-by-hop header
H* Pseudo-hop-by-hop header
Req Appears in Request
Rsp Appears in Response

Both* Appears in any message
MUST MUST appear in all messages

SHOULD SHOULD appear in all messages
opt Can appear in messages (implicit or explicit MAY)
– MUST NOT appear

(cache) Clause applies to caching entities
(proxy) Clause applies to proxies/gateways
(see X) This clause is tempered by rules in RFC2616 section X

Note: pseudo-hop-by-hop header means it is not protected by Connection header.

Table 12: HTTP/1.1 Headers

New/Hop Header Name Who Request Response
N Accept (14.1) Req opt –
N Accept-Charset (14.2) Req opt –
N Accept-Encoding (14.3) Req opt –
N Accept-Language (14.4) Req opt –
N Accept-Ranges (14.5) Rsp – opt
N Age (14.6) Rsp – MUST(cache)

Allow (5.1.1,9.2,14.7) Both PUT:MAY 405:MUST
OPTIONS 200:SHOULD

Authorization (10.4.2,14.8) Req opt –
N Cache-Control (13,14.9,14.32) Both opt opt
NH Connection(8,13.5.1,14.10) Both opt opt

Content-Encoding(14.11) Both opt opt
N Content-Language(14.12) Both opt opt

Content-Length(4.4,9.2,10.2.7) Both SHOULD SHOULD
(see 4.4) (see 4.4)

continued on next page
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Table 12: (continued)

New/Hop Header Name Who Request Response
N Content-Location(14.14,14.30) Both opt SHOULD (see 14.14)

for content-negotiated
responses

N Content-MD5(14.15) Both opt opt
N Content-Range(10.2.7,10.4.17) Both opt 417:SHOULD opt

Content-Type(7.2.1,9.2,14.17) Both SHOULD OPTIONS: if body, MUST
(message with entity-body)

Date(14.18) Both opt MUST
PUT,POST(14.18)
others: SHOULD not

N ETag(14.19) Rsp – opt
N Expect(8.2.3,10.4.18,14.20) Req MUST if waiting –

Expires(13.2.4,14.18.1,14.21) Both opt opt
From(14.22) Req robots:SHOULD –

user agents:
SHOULD NOT
without approval

N Host(5.1.2,5.2,9,14.23) Req MUST –
N If-Match(14.24) Req opt –

If-Modified-Since(14.25) Req opt –
N If-None-Match(14.26) Req opt –
N If-Range(14.27) Req opt –
N If-Unmodified-Since(14.28) Req opt –
NH Keep-Alive(8.1.3,13.5.1,...) Both (this header only defined for compatibility)

Last-Modified(14.29) Both opt SHOULD
(whenever feasible)

Location(14.30,...) Rsp – 201:SHOULD
300:conditional
SHOULD (9.5)
301,302,303,307:SHOULD
305:implicit MUST
rest:undefined

N Max-Forwards(14.31) Req TRACE,OPTIONS:MAY –
Pragma(14.9,14.32) Both opt deprecated,

no tokens defined
(historic)

NH* Proxy-Authenticate Rsp – 407:MUST
(10.4.8,14.33, RFC2617:3.6)

NH* Proxy-Authorization Req opt –
(10.4.8,14.34, RFC2617:3.6)

N Range(10.2.7,10.4.17,14.35) Req opt –
Referer(14.36) Req opt –

N Retry-After(14.37,10.5.4) Rsp – 503,3xx:opt
Server(14.38) Rsp – opt

NH TE(14.39) Req opt –
NH Trailer(14.40) Both chunked w/trailers:SHOULD

MUST NOT include: Transfer-Encoding,
Content-Length, Trailer

NH Transfer-Encoding(14.41) Both opt opt
NH Upgrade(10.1.2,14.42) Both opt 101:MUST

User-Agent(14.43) Req SHOULD –
N Vary(12.1,13.6,14.44) Rsp – negotiated:

SHOULD(13.6,14.44)
others: opt(14.44)

N Via(14.38,14.45) Both MUST(proxy) MUST(proxy)
N Warning Both opt when appropriate:MUST

(13.1.2,13.5.3,14.46) (e.g., 13.2.4,14.9.3)
WWW-Authenticate Rsp – 401:MUST
(10.4.2,14.47,RFC2617)
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