
Event Probability Analysis of Capacity
and Throughput in Wireless Local Area
Networks Using Distributed Medium
Access Control Based on Listen Before Talk

T.P. Spiller, T.A. Wilkinson, G. Vanzini
Extended Enterprise Laboratory
HP Laboratories Bristol
HPL-1999-95
23rd August, 1999*

E-mail: ts@hplb.hpl.hp.com
taw@hplb.hpl.hp.com
gvanzini@hotmail.com

capacity,
throughput,
wireless local
area networks,
wireless
communication

An analysis of event probabilities in wireless local area
networks using distributed medium access control based on
listen before talk is presented. More significantly it is shown
how this can be used to calculate capacity or throughput for a
given offered load for these networks. This in turn can be used
to optimize system parameters for whatever performance
aspect is of importance. The results are particularly applicable
to systems designed for operation at 5 GHz. It is shown that for
such systems with a usable system bandwidth of 70 Mbps in
typical deployments the capacity or throughput are the order of
100 kbps/m2 for reasonable packet failure rates.

∗ Internal Accession Date Only
  Copyright Hewlett-Packard Company 1997



1 Introduction: The origins of the problems

Recently signi�cant amounts of spectrum have been allocated at frequencies such as

5 GHz for unlicensed operation of wireless local area networks [1, 2]. Such networks

invariably use some form of listen before talk in their medium access control protocols

[3, 4]. The calculation of the performance of these networks is critical to understanding

what types of applications they will support. This is the aim of the analysis presented

in this paper.

The evaluation of the capacity is one of the most important aspects in the design

of a wireless communication system. This concept gives a measure of how e�ciently

the spectral resource is being utilised and it is usually derived from some notion of

spectral re-use. The re-use distance is simply the distance beyond which a part of the

spectrum can be re-used or the distance separating two simultaneous users of the same

part of the spectrum such that they are subject to negligible mutual interference. This

re-use distance or radius can be used to de�ne a re-use area in which this part of the

spectrum can be used only once and this yields a spectral re-use in Hz/m2. If this is

combined with a spectral e�ciency of the transmission scheme in bps/Hz this yields a

capacity in bps/m2 or more usefully in kbps/km2 in wide area networks and Mbps/m2

in local area networks.

The calculation of capacity is relatively straightforward for cellular telephony

networks with star topologies and centralised medium access control. In this case

the frequency re-use is structured in that cell size and re-use pattern can be �xed

and the medium access control will limit the number of calls in a cell. The result is

that the re-use interference is the aggregate of the signi�cant co-channel interferers

surrounding a cell. This simply manifests itself as background noise causing bit errors

or packet failures. This is true of any FDMA or TDMA system but the situation is

more complicated with a CDMA system. In a CDMA system the re-use is not as

structured and the medium access involves statistical multiplexing but the calculation

of the aggregate interference is similar and its e�ect the same.

The calculation of capacity is much more complicated for wireless local area net-

works that have mesh topologies and distributed medium access control invariably

involving listen before talk. In this case the frequency re-use is totally unstructured

and indeed is dependent upon the detailed mechanism of the medium access control.

This is because interference measurement or clear channel assessment is central to the

medium access control in listen before talk. Moreover, its function is not perfect be-

cause clear channel assessment is carried out at the transmitter wishing to initiate a

communication, whereas collisions clearly occur at the receiver where the interference

environment may be quite di�erent. This can result in collisions from what is com-

monly known as the hidden node e�ect. An obvious way to avoid such collisions is to

increase the sensitivity of the clear channel assessment so that all potential interferers
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that could cause collisions at the receiver can be heard by the transmitter. However,

this has the e�ect of inhibiting communication over a larger area, perhaps unneces-

sarily. So there are two distinct e�ects of re-use interference: unwanted collisions and

unnecessary deferrals. Hence, the concept of capacity based on re-use is not as useful

as this must be tied to one single e�ect such as co-channel interference causing bit

errors or packet failures. As collisions can cause packet failures it would seem sensible

to calculate re-use based on collision probability if the capacity concept is applied to

these networks.

In local area network systems it is much more usual to consider system perfor-

mance in terms of throughput against o�ered load. However, these concepts were in-

vented for wired communication systems where the capacity of the medium is bounded

and there is no re-use aspect.

This paper presents an analysis of the event probabilities in these communication

systems in an attempt to link these with the more familiar concepts of capacity and

throughput against o�ered load. In section 2 the basic event probabilities are described.

In section 3 the analysis is resolved into two basic problems. In sections 4 and 5 these

two problems are analysed and the resulting probabilities are presented in section 5. In

section 6 the results are interpreted and links are identi�ed between these probabilities

and the familiar concepts of capacity and throughput against o�ered load. This is done

with the speci�c example of HIPERLAN. In section 7 conclusions are presented.

2 Event Probabilities

Suppose that a transmitter (labelled number 2) wishes to transmit a packet to an

unspeci�ed receiver in the presence of an on-going communication between transmitter

1 and receiver 0. There are four possible outcomes with probabilities p1, p2, p3 and p4.

These are respectively de�ned as the probabilities of:

1. Transmitter 2 sensing transmitter 1 and deferring, correctly, because if it had

transmitted it would have caused a collision at receiver 0.

2. Transmitter 2 sensing transmitter 1 and deferring, incorrectly, because if it had

transmitted it would not have caused a collision at receiver 0.

3. Transmitter 2 not sensing transmitter 1 and thus not deferring, incorrectly, as

when it transmits it causes a collision at receiver 0. (The collision is due to the

fact that receiver 0 cannot distinguish between the signals from 1 and 2.)

4. Transmitter 2 not sensing transmitter 1 and thus not deferring, but correctly, as

when it transmits it does not cause a collision at receiver 0.
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Of the four events listed above 1 is desirable, 4 is acceptable (because of the correct

outcome) and two are undesirable, 2 and 3. Of the two undesirable events it could

be argued that 2 has a less destructive impact on performance than 3. A greater

probability of event 2 means a lower system capacity in Mbps/m2 because there are

less simultaneous communications in a given area. A greater probability of 3 means

more collisions and associated re-transmissions. Both of these things ultimately mean

reduced capacity and increased latency. However, event 2 causes the deferral of only

one communication. This is simply handled in the medium access control, resulting in

minimal additional latency, whereas event 3 causes the possible destruction of two com-

munications along with the far greater additional latency associated with the necessary

re-transmissions.

It can be seen from the descriptions of the event probabilities above that these

are formed from all four combinations of the outcomes of two events namely the prob-

ability of transmitter 2 sensing transmitter 1 and probability of transmitter 2 causing

a collision with transmitter 1 at receiver 0. The following analysis details the solution

of these distinct problems and the resulting event probabilities.

3 Two problems and some notation

Before attacking the real problem, the calculation of the probabilities p1 to p4 (which we

will call \case B"), we address a very much simpler problem, (\case A"). This generates

some de�nitions and other useful input (such as choices of system parameters) for the

main calculations.

� Case A arises when there are just two communicators. Number 1 is de�ned to

lie somewhere inside a circle 1, which has radius R1, distributed randomly with

a constant probability per unit area. Number 2 is similarly somewhere inside a

circle 2 (of radius R2), which is concentric with circle 1. In the model we employ

in this work, the communicators are assumed to operate isotropically and over a

�nite range a. Thus, if they are simply further apart than the distance a, they

are unable to make contact. There are two possible interpretations which can be

placed on this contact|we outline these brie
y before discussing the important

issue of parameter values.

1. Communication: If both parties operate transceivers (or one operates a

transmitter and the other a receiver), their separation compared to a deter-

mines whether or not they can achieve two-way (one-way) communications.

In this case a is clearly equal to the maximum communication distance,

de�ned as D.

2. Sensing: As will be relevant for our full problem, case B, it could be that
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both parties are transmitters|both intent on contacting some other receiv-

ing party|which have the ability to sense other active transmitters. (This

ability is a desirable feature as it enables the prevention of communication

collisions, by a transmitter deferring if it is able to sense a nearby trans-

mitter already at work.) In such a case, a will be the maximum sensing

distance. This may well be larger than D, the communication distance,

because the signal to noise ratio for reliable sensing (which depends on the

sensing hardware) can be smaller than that for the actual demodulation of

a signal.

In both of these interpretations of case A, what is desired is the probability of

successful contact, as a function of R1, R2 and a. It is clear that this is invariant

under a scaling of all the lengths. It is therefore convenient to use dimensionless

lengths; the appropriate choice here will be to divide everything by R1.

The choices for all the parameters in this study are clearly important if our

example results are to be realistic and useful. We therefore choose parameter

values for the two case A scenarios with reference to real communications systems.

1. Communication: The maximum communication distance D (which equals

the contact range a for this case) is set by the transmit power at 1m (which

depends on antenna gains/losses) Pt(1), the noise power in the system band-

width (which depends on the transmission rate and the modulation scheme)

Pn and the signal to noise ratio for reliable demodulation (which also de-

pends on the modulation scheme) of n dB. Assuming inverse square path

loss of the signal, all these quantities are related by 10 log10

�
Pt(1)

PnD
2

�
= n.

The signal to noise ratio for reliable demodulation obviously depends on

many details of the link design and implementation. However, given that

our analysis is aimed at high rate systems, it is appropriate to select an

example system design such as HIPERLAN (High Performance Radio Local

Area Network) [3]. This system has a transmission rate of 23.5 Mbps with

GMSK modulation and BCH error-correction coding. HIPERLAN imple-

mentations typically use decision feedback equalization to enable the high

transmission rate in dispersive multipath propagation channels. For such

implementations the system typically requires a signal to noise ratio of 17

dB for reliable demodulation. Other systems using alternative methods of

dealing with the propagation channel, such as multicarrier modulation, re-

quire similar signal to noise ratios for reliable demodulation. An appropriate

choice for our work is therefore n = 17 dB [4].

2. Sensing: The relationship between the contact range for this case, a, and

the signal to noise ratio for reliable sensing, m, is analogous to the commu-

nication case, so 10 log10

�
Pt(1)

Pna
2

�
= m. Thus the relationship here between a

and D is set simply by the di�erence between n and m, with a = D 10
(n�m)

20 .

The choice of m is somewhat more arbitrary than that of n. For e�cient
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operation of listen before talk protocols, it is desirable if the signal to noise

ratio for reliable sensing is lower than that for reliable demodulation. This

is achieved in a number of ways. Simply averaging over a period of time or

number of bit periods will give a more reliable measure of signal strength for

sensing. For example, detecting or correlating to a synchronization sequence

at the beginning of a transmission will give an increase in signal strength

equivalent to the the length of the sequence. Consequently, sensing reliabil-

ity can be traded against sensing time. In HIPERLAN the sensing threshold

is adaptive to allow the system to adjust to interference environments [3].

However, a reasonable choice of the signal to noise ratio for reliable sens-

ing is 6 dB lower than that for reliable demodulation. We therefore take

n�m = 6 dB, which gives a = 2:00 D.

� The full collision problem, case B, arises if the �rst two communicators are

both considered to be transmitters (with the ability to sense other transmitters).

Transmitter 1 would like to signal to a third person 0, who is also somewhere

inside circle 1. However, this receiver 0 is unable to distinguish the signal from

transmitter 1 above that of transmitter 2 if the ratio of the distances 0! 2 and

0! 1 is less than a certain dimensionless quantity b > 1. A very simple estimate

for b, given the discussions above, follows by assuming that transmitter 2 simply

acts as noise to the communication between receiver 0 and transmitter 1. In

this case, given a signal to noise ratio for demodulation of n dB, it follows that

b = 10
n

20 . From our choice of n = 17 dB, this gives b = 7:08. Clearly this sim-

ple estimate neglects the actual noise present. Nevertheless, for the parameters

which interest us, the constant b approximation is not at all bad, and we shall

employ it in our analysis. (The justi�cation for this will be given at the end of

the next section, after we have addressed the two communicator problem of case

A.) In the three communicator problem (case B), two separate questions can be

asked: (i) Whether or not transmitter 2 is aware of transmitter 1 (and might

thus be able to avoid simultaneous use of the broadcast channel); (ii) Whether

or not the receiver 0 can distinguish signals from 1 and 2 if they both transmit.

Four possible joint answers exist; the probabilities of these four possibilities are

the desired p1 to p4 listed in sec. 2.

4 Case A: Two communicators

The mathematical problem to which this reduces is the following:

Take two concentric circles with radii R1 and R2. Pick a point ~x1 in circle 1 and

a point ~x2 in circle 2 (at random and with uniform weight). For a given a, what is the

probability that j~x1 � ~x2j > a?
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Figure 1: The geometric arrangement relevant for case 1. The variable r1 (which ranges

from 0 to 1 in units of R1) is the length OU. The maximum contact distance a is UV. R2,

the radius of the circle constraining transmitter 2, is OV.

This is illustrated in �g. 1. For a chosen ~x1 of magnitude r1, the points ~x2 which

�t the bill lie in the moon shaped area YVWXY. This area, A, may be evaluated from

A(r1; R2; a) = OVWXO� UV YXU +OV UXO = R2
2
��2 � a2�a + 2OV UO. Using the

standard results [7]

a2 = R2
2 + r21 � 2r1R2 cos ��2 (1)

R2
2 = a2 + r21 � 2r1a cos(� � �a) (2)

OV UO = (s(s� a)(s� r1)(s� R2))
1=2 ; (3)

with s = 1

2
(a+ r1 +R2), the required area is

A(r1; R2; a) = R2
2 arccos

 
a2 � r21 �R2

2

2r1R2

!
� a2 arccos

 
a2 + r21 �R2

2

2r1a

!

+
1

2

�
2R2

2a
2 + 2R2

2r
2
1 + 2r21a

2
� a4 � r41 �R4

2

�1=2
: (4)

As all lengths are dimensionless and are de�ned in units of R1, the variable r1 ranges

from 0 to 1. The required probability is a function of R2 and a and follows from aver-

aging A(r1; R2; a), normalized by �R2
2, over all positions of ~x1 inside circle 1. Angular

symmetry leaves only an integral over r1 for the communication failure probability:

P (R2; a)j~x1�~x2j>a =

Z 1

0

dr1 2r1
A(r1; R2; a)

�R2
2

: (5)
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Figure 2: Plot of �(r1; R2; a) = A(r1; R2; a)=�R
2
2, given by eq. (4), as a function of a and

R2, for r1 = 1.

The complementary probability, the probability of successful communication between

the two, follows from

P (R2; a)j~x1�~x2j�a = 1� P (R2; a)j~x1�~x2j>a : (6)

Fig. 2 shows a plot of A(r1; R2; a)=(�R
2
2) as a function of R2 and a, for a �xed

value of r1 = 1:0. Clearly, although �g. 1 shows the two circles intersecting, this is not

always the case.

� If a � r1 > R2 , the circle of radius R2 lies entirely within the circle of radius a

and so A = 0 .

� If a + r1 < R2 , the opposite is true and so A=(�R2
2) = (1� (a=R2)

2) .

Both of these cases are covered1 in parts of �g. 2.

1A very convenient trick can be employed for the evaluation of the probabilities. If arccos(x) is

de�ned to lie in the range 0 to � for jxj � 1 , the real part to satisfy < arccos(1+x) = 0 for x > 0 and

< arccos(�1� x) = � for x > 0 , then, by taking the real part of eq. (4), A(r1; R2; a) can be de�ned

for all eventualities from the one formula. Consequently, the integrals in the probabilities (5) and (6)

do not have to be broken up into pieces by hand. This does not matter too much here. However, it

proves invaluable if such integrals are nested inside others, as happens in the next case B.
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Figure 3: Plots of P (R2; a)j~x1�~x2j�a (solid) and P (R2; a)j~x1�~x2j>a (dashes) as functions of

R2 for a = 8:0. See eqs. (5) and (6).

Fig. 3 shows a plot of the two probabilities as functions of R2 for a �xed value of

a = 8:0. Clearly, as expected, P (R2; a)j~x1�~x2j�a = 1 for R2 < a and P (R2; a)j~x1�~x2j�a =

(a=R2)
2 for R2 > a + 1 .

Our results for this two communicator situation can be used to justify the con-

stant discrimination ratio b approximation employed in our next (three communicator)

example. For receiver 0 and transmitter 1 both randomly distributed inside circle 1, it

is clear that the maximum possible value of their separation x01 is 2 (in units of R1).

To consider the validity of the constant b approximation, we require the probability

distribution, G(x01), over the separation x01, from zero up to its maximum value. This

follows simply from our analysis thus far. The total accumulated probability from zero

up to a separation x01 is given by eq. (6) with some label changes and setting R2 = 1

(as the receiver and transmitter are both distributed over a unit radius circle). The

probability distribution is just the derivative of this; thus

G(x01) =
@

@x01

�
1�

1

�

Z 1

0

dr1 2r1A(r1; 1; x01)

�
: (7)

This is shown (as the dashed plot) in �g. 4.

Next we need the actual variation of b over this range. In the introduction we

estimated this assuming that transmitter 2 played the role of noise for communication

between transmitter 1 and receiver 0. However, this neglected the actual noise power
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Figure 4: The variation of B � b=10
n

20 with x01, for|uppermost trace �rst|the cases D =

3, 4 and 5, as given by eq. (9). Also shown (dashed) is the probability distribution for the

distance x01, G(x01) given by eq. (7).

also present. Adding this to the signal power from transmitter 2, then in fact successful

demodulation can only occur if

10 log10

0
@ Pt(1)

x2
01

Pt

x2
02

+ Pn

1
A � n ; (8)

where x02 is the distance from 0 to 2. Identifying b = x01

x02
for the equality case,

rearrangement gives

b =
10

n

20�
1�

x2
01

D2

�1=2 ; (9)

so there is now a dependence on the separation of 0 and 1, relative to the maximum

communication distance D. This is also illustrated in �g. 4, for the physically sensible

choices2 ofD = 3, 4 and 5. It is clear that b rises away from the constant approximation

as x01 approaches its maximum|this is where the actual noise added to the transmitter

2 power begins to bite. However, even for the worst case D = 3, given the region where

G(x01) carries the most weight then it is not a bad approximation to simply take b to

equal its limiting (D!1) value of 10
n

20 . We shall employ this approximation in what

follows.

2Receiver 0 and transmitter 1 want to be able to communicate wherever they are in circle 1. This

immediately constrains D � 2, and it makes sense to operate somewhat above the absolute minimum.
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A remark is in order about our choice of normalization. In our analysis we render

lengths dimensionless by using units of the radius of the circle in which receiver 0 and

transmitter 1 are con�ned, R1, rather than, for example, the maximum communication

distance, D. As the \cell size" R1 is a physical parameter, which will be determined

in any real situation,3 it is appropriate to measure other lengths in terms of this. For

some set R1, equipment must be chosen with a constraint on D|at bare minimum D

must be twice R1 so 0 and 1 can communicate wherever they are in circle 1. Fig. 4

shows that with this constraint, when D is appreciably greater than R1, it induces

little variation of the important quantity b (which represents the distance ratio for the

signal to noise or carrier to interference limit). We thus approximate b as a constant

parameter. The other important parameter which determines the probabilities is the

maximum sensing distance a, (which is a multiple of D). We therefore analyse our

probability results in terms of b, a and the circle radius R2, the two lengths expressed

in units of the \cell size" R1.

5 Case B: Two transmitters and a receiver

The mathematical problem to which this reduces is the following:

Take two concentric circles with radii R1 and R2. Pick points ~x0 and ~x1 in circle

1 and a point ~x2 in circle 2 (at random and with uniform weight). For a given a and

b, calculate the four probabilities:

P (R2; a; b)j~x1�~x2j�a ; j~x2�~x0j
j~x1�~x0j

�b
� p1(R2; a; b)

P (R2; a; b)j~x1�~x2j�a ; j~x2�~x0j
j~x1�~x0j

>b
� p2(R2; a; b)

P (R2; a; b)j~x1�~x2j>a ; j~x2�~x0j
j~x1�~x0j

�b
� p3(R2; a; b)

P (R2; a; b)j~x1�~x2j>a ; j~x2�~x0j
j~x1�~x0j

>b
� p4(R2; a; b) : (10)

These correspond to the four situations given in the introduction. The probabilities

are clearly exhaustive, so that

4X
i=1

pi(R2; a; b) = 1 (11)

independent of R2, a and b.

The strategy for the evaluation of, say, p1 proceeds as follows:

� (1) Choose ~x1 in circle 1 and ~x2 in circle 2, such as shown in �g. 5.

3In the case of an o�ce environment, which we discuss later, it is the size of an individual's

workspace.
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θ θ

Figure 5: The geometric arrangement relevant for case B. The distance between points ~x1
and ~x2 is de�ned to be r.

� (2) Calculate the probability of choosing ~x0 in circle 1 which satis�es j~x2�~x0j �

b j~x1 � ~x0j for the �xed ~x1 and ~x2.

� (3) Average this over all ~x2 in circle 2 which satisfy j~x1 � ~x2j � a, for �xed ~x1.

� (4) Average this over all ~x1 in circle 1.

The detailed calculations behind steps (2)-(4) are:

(2) First, consider the two �xed points ~x1 and ~x2, de�ned to be separated by a

distance r. The points ~x0 which satisfy the equality j~x2 � ~x0j = b j~x1 � ~x0j lie on a

circle of radius

r0 �
rb

b2 � 1
(12)

centred a distance r

b2�1
from point ~x1, as shown in �g. 6. This can be seen by de�ning

the cartesian co-ordinates u and w as in �g. 6; the boundary of interest then gives the

standard form for a circle,

�
u+

r

b2 � 1

�2

+ w2 =
r2b2

(b2 � 1)2
: (13)

Points which satisfy the inequality j~x2� ~x0j � b j~x1� ~x0j lie on or outside this circle.
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-1

2
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r

b2-1
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Figure 6: The locus of points de�ned by the equality j~x2 � ~x0j = b j~x1 � ~x0j. Cartesian

co-ordinates u and w de�ne the position relative to point ~x1.

Thus, those which satisfy the inequality and lie within circle 1 are given by the area

shown in �g. 7. Using units of R1, this area is given by A(y; 1; r0) where A is de�ned

by eq. (4), r0 by eq. (12) and y is shown in �g. 7. This area must be divided by �, the

area of circle 1, to turn it into a probability. Length y is given by the cosine rule [7] as

y2 =
r2

(b2 � 1)2
+ r21 �

2r1r cos �

(b2 � 1)
: (14)

(3) In order to average A(y; 1; r0)=� over the allowed positions of ~x2 for �xed ~x1,

the lengths y and r0 must be given in terms of r1, r2 and �2. From

r = (r21 + r22 � 2r1r2 cos �2)
1=2;

r cos � = r2 cos �2 � r1

and the above formulae for r0 and y, we obtain

y =
(r21b

4 + r22 � 2r1r2b
2 cos �2)

1=2

(b2 � 1)
(15)

and

r0 =
b(r21 + r22 � 2r1r2 cos �2)

1=2

(b2 � 1)
: (16)

For the case p1, the average over points ~x2 which satisfy j~x1 � ~x2j � a corresponds to

an average over the area de�ned in �g. 8. For 0 � �2 < ��2 the range of integration for

r2 is 0 ! R2 and for ��2 � �2 � � it is 0! �r2, where �r2 is shown in �g. 8. The cosine

rule gives

�r2 = r1 cos �2 + (a2 � r21 sin
2 �2)

1=2 : (17)
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Figure 7: The relevant area of points which satisfy j~x2 � ~x0j � b j~x1 � ~x0j and lie within

circle 1.
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Figure 8: The relevant integration region for points ~x2 which satisfy j~x1 � ~x2j � a. This is

the appropriate region for probability p1.

��2 is given by eq. (1). Division by �R2
2 normalizes this integration to give a probability.

(4) The �nal integration over all ~x1 in circle 1 is easy. There is angular symmetry

which simply leaves an integral 0! 1 for r1.

The calculations for the other probabilities, p2, p3 and p4 are very similar. For p2
the relevant area in �g. 7 is the other piece of circle 1; this is integrated over the same

ranges as for p1. p3 uses the same relevant area of �g. 7 as p1, but it is integrated over

the other piece of circle 2 in �g. 8. (The �nal integral over circle 1 is still the same.) p4
uses the same �g. 8 area as for p2, but this integrated over the same ranges as for p3.

The four probability results are therefore given by

p1(R2; a; b) =
4

�2R2
2

Z 1

0

dr1 r1

"Z ��2

0

d�2

Z
R2

0

dr2 r2 +

Z
�

��2

d�2

Z �r2

0

dr2 r2

#
A(y; 1; r0) ;

(18)

p2(R2; a; b) =
4

�2R2
2

Z 1

0

dr1r1

"Z ��2

0

d�2

Z
R2

0

dr2 r2 +

Z
�

��2

d�2

Z �r2

0

dr2 r2

#
(��A(y; 1; r0)) ;

(19)

p3(R2; a; b) =
4

�2R2
2

Z 1

0

dr1 r1

Z
�

��2

d�2

Z
R2

�r2

dr2 r2 A(y; 1; r0) (20)

and

p4(R2; a; b) =
4

�2R2
2

Z 1

0

dr1 r1

Z
�

��2

d�2

Z
R2

�r2

dr2 r2 (� � A(y; 1; r0)) : (21)

In these expressions, ��2 is given by eq. (1), �r2 by eq. (17) and A, as a function of
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Figure 9: Plots of the four probabilities p1 (solid), p2 (medium dashes), p3 (small dashes)

and p4 (large dashes), as functions of R2 for a = 6:0 and b = 7:08. See eqs. (18)-(21).

it arguments, by eq. (4). The relationships (15) and (16) must be used to convert

A(y; 1; r0) to a function of the integration variables.

Examples of these four probabilities are plotted in �gs. 9, 10 and 11. They are

shown as functions of R2, for �xed values of b = 7:08 and a = 6, 8 and 10. The value

of b was calculated in the introduction, as was the relationship a = 2D for sensing.

We have already argued that D = 3, 4 and 5 are sensible choices for D; hence the

values of a. Every point used to make up each of the four curves shown was computed

from a 3-dimensional numerical integration of the appropriate expression taken from

(18)-(21). The plots demonstrate some generic features; for R2 � (a� 1), p3 = p4 = 0

and for R2 !1, p4 ! 1 and p1; p2; p3 ! 0.

It is tempting to suppose that for R2 ! 0, p1 ! 1 and p2; p3; p4 ! 0. However,

this is not generally true; it only holds for b� 1. For b 6� 1 (such as in the numerical

example of b = 7:08 considered here) there is a small calculable correction. The limit

r2 ! 0 can be taken in eqs. (15) and (16) to give y = r1b
2

(b2�1)
and r0 = r1b

(b2�1)
. For

r2 = 0, the centre of the circle with radius r0 lies along the radial direction de�ned by

r1. (See �g. 7.) The relevant area for integration to evaluate p1 is still A(y; 1; r0) with

the simpli�ed y and r0 and there is now only an integral over r1 to be done. Thus

p1(0; a; b) =
2

�

Z 1

0

dr1 r1 A(y; 1; r0) (22)

and p2(0; a; b) = 1 � p1(0; a; b). For b = 7:08 these give p1(0; a; 7:08) = 0:991 and

p2(0; a; 7:08) = 0:009, in good agreement with the data computed for �gs. 9-11. This
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Figure 10: Plots of the four probabilities p1 (solid), p2 (medium dashes), p3 (small dashes)

and p4 (large dashes), as functions of R2 for a = 8:0 and b = 7:08. See eqs. (18)-(21).
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Figure 11: Plots of the four probabilities p1 (solid), p2 (medium dashes), p3 (small dashes)

and p4 (large dashes), as functions of R2 for a = 10:0 and b = 7:08. See eqs. (18)-(21).
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provides a useful consistency check on the more involved numerical calculations.

From �gs. 9-11 it is apparent that the probabilities of the two undesirable events,

p2 and p3, exhibit maxima as functions of R2, for the given a and b. This is to be

expected since their de�nitions (see eqs. (10)) e�ectively contain competing inequalities.

The R2 values at which these occur can be found by setting the derivatives

@p2(R2; a; b)

@R2

=

�8

�2R3
2

Z 1

0

dr1 r1

"Z ��2

0

d�2

Z
R2

0

dr2 r2 +

Z
�

��2

d�2

Z �r2

0

dr2 r2

#
(� � A(y; 1; r0))

+
4

�2R2
2

Z 1

0

dr1 r1

Z ��2

0

d�2 R2 (� � A(�y; 1; �r0))

+
4

�2R2
2

Z 1

0

dr1 r1
@ ��2

@R2

"Z
R2

0

dr2 r2 �

Z
r̂2

0

dr2 r2

#
(� � A(ŷ; 1; r̂0)) (23)

and

@p3(R2; a; b)

@R2

=
�8

�2R3
2

Z 1

0

dr1 r1

Z
�

��2

d�2

Z
R2

�r2

dr2 r2 A(y; 1; r0)

+
4

�2R2
2

Z 1

0

dr1 r1

Z
�

��2

d�2 R2 A(�y; 1; �r0)

�
4

�2R2
2

Z 1

0

dr1 r1
@ ��2

@R2

Z
R2

r̂2

dr2 r2 A(ŷ; 1; r̂0) (24)

equal to zero. Here ��2 is given by eq. (1), �r2 is given by eq. (17) and the de�nitions

�y �
(r21b

4 +R2
2 � 2r1R2b

2 cos �2)
1=2

(b2 � 1)
; (25)

�r0 �
b(r21 +R2

2 � 2r1R2 cos �2)
1=2

(b2 � 1)
; (26)

ŷ �
(r21b

4 + r22 � 2r1r2b
2 cos ��2)

1=2

(b2 � 1)
; (27)

r̂0 �
b(r21 + r22 � 2r1r2 cos ��2)

1=2

(b2 � 1)
(28)

and

r̂2 � r1 cos ��2 + (a2 � r21 sin
2 ��2)

1=2 (29)

apply. The other quantity which arises is

@ ��2

@R2

=
r21 �R2

2 � a2

R2(2R
2
2a

2 + 2R2
2r

2
1 + 2r21a

2 � a4 � r41 � R4
2)

1=2
: (30)
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Figure 12: Plots of the R2 positions of the maxima in p2 (dashes) and p3 (solid), as a function

of a for b = 7:08.

Setting the probability derivatives, (23) and (24), equal to zero results in rather

formidable equations. Nevertheless, they can be solved numerically to yield the lo-

cations of the maxima. Fig. 12 illustrates this, giving the R2 locations of the peaks in

p2 and p3, as a function of a for a �xed value of b. The actual values of p2 and p3 at

their maxima can be found by feeding the (R2; a; b) data back into eqs. (19) and (20).

These results are shown in �g. 13. Although these calculations are again lengthy, they

are in fact considerably shorter than a run of calculations to �nd one of the pi(R2; a; b)

as a function of R2 for �xed a and b (as in �gs. 9-11). Thus, if the positions and heights

of the peaks are of primary interest, there exists a handy short cut for obtaining these,

compared to the calculations required for the complete pictures of �gs. 9-11.

6 Interpretation of results

The behaviour of the four probabilities as shown in �gs. 9, 10 and 11 is as would be

expected. They also agree well with Monte-Carlo simulations that were carried out for

validation purposes.

Probability p1 increases and probability p2 decreases as R2 increases. This is

because as the circle containing the interfering transmitter 2 increases, the likelihood

of it being able to carry out a simultaneous communication gets greater. However,

this is not possible unless R2 exceeds (a � 1) and hence p3 and p4 are zero until this
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Figure 13: Plots of the values at their maxima of p2 (dashes) and p3 (solid), as a function

of a for b = 7:08.

point is reached. Beyond here, p3 and p4 increase, as there is an increased probability of

transmitter 2 not sensing transmitter 1, with positive and negative interference results.

Ultimately, as R2 tends to in�nity, the likelihood is that transmitter 2 will not sense

transmitter 1 and it will not interfere; hence p3 tends to zero but p4 tends to unity.

As stated earlier, both p2 and p3 are of interest to us, p3 more so because its

e�ect is more destructive. Both of these probabilities reach maxima and then tend to

zero. The positions and values of these maxima, which are plotted in �gs. 12 and 13

respectively, are of considerable interest to us. Practical probability estimates for multi-

user environments, which we address shortly, require the large R2 behaviour. A very

useful approximation may be employed here. This makes use of the fact that, beyond

their maxima, p3 and p2 decay like 1=R2
2 and so for this regime may be approximated

as

pi � pmi

R2
2mi

R2
2

(31)

for i = 2; 3. Here pmi is the maximum value of the probability and R2mi is the value

of R2 at which it is attained|these are given in �gs. 12 and 13. Although deferrals of

transmission which avoid a collision are correct as far as protocol is concerned, they

also limit the actual throughput in a system. (These are described by scenario 1 of the

four given in section 2.) Since for large R2 the probability p1 also decays like 1=R2
2,

eq. (31) also applies for i = 1, with pm1 the value of p1 at R2m1, any value in the

inverse-square law regime.

20



Thus far we have only considered the probability of a single transmitter in circle

2 interfering with an on-going communication between a transmitter and a receiver

in circle 1. In reality, of course, there may be many transmitters within circle 2,

sensing the channel prior to initiating a communication. Hence the full probability

of a particular transmitter avoiding a collision or deferring when it is active is the

product of the probabilities for it avoiding each of the others which is active4 in circle

2. As an example (which can easily be scaled to other densities), let us assume that the

density of interfering transmitters is uniform and equal to that of transmitter 1, i.e. the

density is 1=� (in units of R
1
)|there is one transmitter per \cell" area everywhere.

In this case there are �R2

2
active transmitters inside a circle of radius R

2
, where �

is the probability of an individual being active. The full probability for successful

transmission is therefore pf4 � p
�R

2

2

4
. Since p

4
= 1 � p

1
� p

2
� p

3
and assuming that

the cut-o� R
2
is large enough to apply eq. (31), this approximates to

pf4 = exp

"
��

3X
i=1

pmiR
2

2mi

#
� exp [��K] : (32)

Provided that the argument is small this can be written as

pf4 = 1� �
3X
i=1

pmiR
2

2mi
: (33)

In this limit the subtracted terms can be interpreted as the full probabilities for each of

the three non-transmission scenarios (1-3 in section 2). These results are independent

of the cut-o�, so it is important to note that they hold even if the cut-o� is in�nite. As

long as the transmitter density is uniform (and we have a decent estimate of its value),

the results hold even if there is no limit to the actual number of potentially interfering

transmitters. This is a very useful result. It is also interesting to note that pf4 decays

exponentially with increasing �.

As a practical example, let us consider a wireless LAN deployment in an o�ce

environment with one device per individual workspace and each work space having

an area of �R2

1
, � in our units. If we assume that there are seven di�erent channels

in the system bandwidth and that, over a given time period|say the duration of a

packet|about 5% of the transmitters are trying to send a packet, then this gives us

� = 0:007 for a given channel. (This is the activity fraction x = 0:05 of a transmitter

divided by the number of channels k = 7, so � = x=k.) Relevant data from �gs. 9-13

is summarized in table 1. It can be seen from these data that a modest variation in

the sensing distance a (6 to 10) causes a drastic variation in the collision probability

pm3
(0.20 to 0.027). The collision probability that a system can tolerate is very much

dependent on the tra�c that it is carrying. However, systems are designed to cope

well with a packet failure rate as high as 10assuming that these are recovered by re-

transmissions to protect the higher layers in the protocol. So the choice of parameters

4We assume that they each satisfy our random distribution assumption.
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Table 1: Data from �gs. 9-13 and calculated values of K (see eq. 32). R
2m1

, which can

be any point in the inverse-square law regime for p
1
, is set at 10 for all three cases.

a 6 8 10

pm1
0.26 0.38 0.45

pm2
0.23 0.37 0.50

pm3
0.20 0.085 0.027

R
2m1

10 10 10

R
2m2

6.0 7.9 9.9

R
2m3

9.2 10.8 12.2

K 51 71 98

(a = 8) is appropriate from an integrity perspective, but we must look at what this

means in terms of capacity or throughput. For a sensing distance of a = 8 and taking

data from table 1), an estimate for the successful transmission probability is pf4 � 0:61.

Results for other values of a and also for � = 0:014 (twice the activity, x = 0:1) are

given in tables 2 and 3. We stress that these probabilities follow solely as a result of

the imperfections in the listen-before-talk over the wireless channel. For example, the

calculations of pf4 do not take into account the additional collisions, which may occur

through the contention resolution mechanism in the medium access control, because

it is not the intention of this general study to consider such speci�c aspects of system

design.

If in the example scenario introduced above the usable channel bandwidth is

C = 10 Mbps per channel and there are seven channels in the band, then this system

has a usable bandwidth of 70 Mbps. These round �gures are representative of what a

system like HIPERLAN [3] might achieve in user data rate after the overheads have

been taken into account.

To calculate the system capacity we must estimate the re-use for this resource

based on the distance beyond which a simultaneous transmission on the same channel

has no additional e�ect on the collision probability pm3
. For the area of radius R

2m3
=

11 and in more absolute terms, if R
1
is � 1 m then the system capacity is around

c = 0:19 Mbps/m2. To calculate the system throughput for an given o�ered load we

must consider the probability of successful transmission pm4
given a number of active

transmitters using the system bandwidth. With an activity of x = 0:05, the load

applied by the users is l = 0:16 Mbps/m2. Given the success probability pf4 = 0:61,

the actual throughput is t = 0:098 Mbps/m2, a fraction 0.51 of the capacity. The

analogous results for other values of a and x are given in tables 2 and 3. Although the

load l exceeds the capacity c in some cases, the throughput t never does because of the

transmission failures.

22



Table 2: Model system response for transmitter activity fraction x = 0:05 spread over

k = 7 channels (giving � = 0:007) each of usable bandwidth C = 10 Mbps. R
1
= 1 m.

a 6 8 10

pf4 0.70 0.61 0.50

c (Mbps/m2) 0.26 0.19 0.15

l (Mbps/m2) 0.16 0.16 0.16

t (Mbps/m2) 0.11 0.098 0.080

t=c 0.43 0.51 0.53

Table 3: Model system response for transmitter activity fraction x = 0:1 spread over

k = 7 channels (giving � = 0:014) each of usable bandwidth C = 10 Mbps. R
1
= 1 m.

a 6 8 10

pf4 0.49 0.37 0.25

c (Mbps/m2) 0.26 0.19 0.15

l (Mbps/m2) 0.32 0.32 0.32

t (Mbps/m2) 0.16 0.12 0.080

t=c 0.60 0.62 0.53

Clearly this analysis contains no dynamics, in that no allowance has been made

for the response of individual terminals to a deferral or a collision. In a dynamical sys-

tem the activity fraction x would change in response to transmission failures according

to the system protocol. Nevertheless the simple estimates presented here are represen-

tative of the equilibrium behaviour of dynamical systems whose parameters fall in the

appropriate regime and protocols will accept throughputs and success probabilities of

this order.

The above example is only an illustration of how this analysis can be used to

investigate the system capacity/throughput and integrity trade-o�, for selection of

optimum system parameters. Nevertheless, this scenario is representative of systems

that are currently being designed to operate at 5 GHz [3, 4]. Although the calculations

are approximate, they clearly illustrate that a signi�cant packet failure rate will exist

through the imperfections of the listen before talk alone. This can only be reduced by

increasing the sensing distance and signi�cantly reducing the system capacity.
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7 Conclusions

We have presented an analysis of event probabilities for wireless local area networks

using distributed medium access control based on listen before talk. More signi�cantly,

we have shown how these can be used to calculate capacity or throughput for a given

o�ered load for these networks. This in turn can be used to optimize system param-

eters for whatever performance aspect is of importance. The results agreed well with

Monte-Carlo simulations carried out. The results are particularly applicable to systems

designed for operation at 5 GHz [3, 4]. It is shown that for such systems with a usable

system bandwidth of 70 Mbps in typical deployments, the capacity or throughput are

of the order of 100 kbps/m2 for reasonable packet failure rates.

Future work will consider the enhancement of the analysis to consider RTS/CTS

(Request-To-Send Clear-To-Send) medium access control and the introduction of power

control and/or adaptive sensing thresholds to improve system performance.
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