

Automatic Architecture Synthesis and
Compiler Retargeting for VLIW and
EPIC Processors

Shail Aditya, B. Ramakrishna Rau
HP Laboratories Palo Alto
HPL-1999-93
January, 2000

E-mail:{aditya,rau}@hpl.hp.com

architecture
synthesis,
micro-architecture
synthesis,
VLIW processors,
EPIC processors,
automatic
processor design,
abstract
architecture
specification,
datapath design,
resource allocation,
mdes extraction,
compiler
retargeting,
controlpath design,
instruction
pipeline design,
RTL generation

This paper describes a mechanism for automatic design and
synthesis of very long instruction word (VLIW), and its
generalization, explicitly parallel instruction computing (EPIC)
processor architectures starting from an abstract specification of
their desired functionality. The process of architecture design
makes concrete decisions regarding the number and types of
functional units, number of read/write ports on register files, the
datapath interconnect, the instruction format, its decoding
hardware, and the instruction unit datapath. The processor
design is then automatically synthesized into a detailed RTL-
level structural model in VHDL along with an estimate of its
area. The system also generates the corresponding detailed
machine description and instruction format description that can
be used to retarget a compiler and an assembler respectively.
This process is part of an overall design system, called
Program-In-Chip-Out (PICO), which has the ability to perform
automatic exploration of the architectural design space while
customizing the architecture to a given application and making
intelligent, quantitative, cost-performance tradeoffs.

An overview of the system described in this document was presented at the International
Symposium for System Synthesis, 1999, San Jose, November. 1999
 Copyright Hewlett-Packard Company 2000

1 Introduction

VLIW (Very Long Instruction Word) processors have begun to establish themselves as the proces-

sor of choice in high performance embedded computer systems, especially in situations where it is

important to have a compiler that can generate efficient code from a high level language. The cost

of the embedded VLIW processor, which is one of the primary concerns in embedded systems, can

be greatly reduced if the processor is customized to the anticipated workload by making a number

of application-specific design choices. However, the non-recurring expense (NRE) of designing a

custom VLIW processor, along with a compiler for it, can be prohibitive. The key enabling tech-

nology, therefore, for realizing the full potential of application-specific VLIW architectures lies in

architectural design automation.

Although there has been a fair amount of work done on providing the capability to automatically

design the architecture of a sequential, application-specific instruction-set processor (ASIP) – pri-

marily a matter of designing the opcode repertoire – there has been relatively little work in the

area of architecture synthesis of VLIW processors or, for that matter, processors of any kind that

provide significant levels of instruction-level parallelism (ILP). The work which has been done

tends to focus largely upon the synthesis of a VLIW processor's datapath [5, 7, 11]. The automatic

design of a non-trivial instruction format, and the synthesis of the corresponding instruction fetch

and decode micro-architecture have not been addressed for VLIW processors. And yet, it is these

issues that consume the major portion of a human designer's efforts during the architecture and

micro-architecture phases of a VLIW design project.

One reason for this might be the lack of retargetable VLIW compiler technology. A retargetable

compiler is an essential component of the design space exploration process, enabling the evaluation

of each candidate design. Another reason is that designing a VLIW processor, even manually, is a

complex task. The designer of an application-specific VLIW processor must make a large number

of architectural and micro-architectural decisions in the context of the given application, including

the following:

1. select the minimal opcode repertoire for the specified workload,

1

2. choose to include or exclude architectural features such as predication, control or data spec-

ulation, rotating registers, etc. which, consequently, impact the design of the instruction

format and the micro-architecture of the processor,

3. decide upon the least expensive mix of functional units that can provide the desired level of

instruction-level parallelism,

4. decide upon the number of register files, how many registers each should contain, and what

data types each should accommodate and, hence, the width of the registers in each register

file,

5. minimize the number of read and write ports for each register file by maximizing the extent

to which the functional units share the ports, while ensuring that this does not compromise

the desired level of ILP,

6. design an instruction format that supports the requisite level of ILP and which reduces the

wasting of code space due to the presence of no-ops in the VLIW instruction without exces-

sively complicating the instruction pipeline, and

7. design the instruction pipeline and the instruction decoders, as well as the instruction prefetch

unit which keeps the instruction pipeline full.

The design space is enormous and the cost of exploring various points in detail is so great that most

architects approach the problem with the mind-set of only making incremental modifications to an

initial design. The initial design is generally based on the architect's experience and intuition as

to what constitutes a good design. The modifications, although often based on measurements and

simulation, are limited to relatively small perturbations of the initial design. Such an approach has

the serious disadvantage of being susceptible to getting stuck with a locally optimal design while

ignoring superior designs that may be radically different, but which would require an impractically

large amount of manual exploration and evaluation.

2

1.1 Our approach

In this paper, we present a fully automated system for designing the architecture and micro-

architecture of VLIW processors and their generalization, EPIC (Explicitly Parallel Instruction

Computing) processors1. We refer to this process as architecture synthesis to distinguish it from

behavioral or logic synthesis which are at a lower level. In addition to the well understood features

of the VLIW style of architecture, the space of processors that we are interested in exploring is

characterized by the HPL-PD architecture family [13] which includes features such as predication,

control and data speculation, rotating registers, and explicit source and destination specifiers for

load and store operations at various levels of the memory hierarchy. Processors with these features

have the ability to exploit high degrees of compiler-specified ILP both in numerically-intensive

applications as well as in applications that are intensive in branches and pointer-based memory

references.

The architecture synthesis system that we describe in this paper is part of PICO (Program-In-Chip-

Out), a broader system synthesis and design exploration tool which performs hardware-software

co-synthesis. In addition to the custom VLIW processor, PICO may design one or more non-

programmable, systolic-array co-processors (ASICs) and a two-level cache hierarchy to support

these processors. It partitions the given application between hardware (the systolic arrays) and

software, compiles the software to the custom VLIW, and synthesizes the interface between the

processors. We refer to PICO's VLIW design capability as PICO-VLIW which is the subject of

this paper.

In PICO-VLIW, we decompose the process of automatically designing an application-specific

VLIW processor into three closely inter-related sub-systems as shown in Figure 1. The first sub-

system is our design space explorer, the Spacewalker, whose responsibility is to search for the

Pareto-optimal architectures, i.e., those architectures whose implementations are either cheaper or

faster (or both) than any other architecture. In order to do this efficiently, the Spacewalker uses

sophisticated search strategies and heuristics that are, however, beyond the scope of this paper.

1For the sake of brevity, we use the term VLIW to include EPIC as well in the rest of this paper.

3

SpacewalkerSpacewalker

VLIW SynthesisVLIW Synthesis

Synth.
stats.

cost

Processor
VHDL

Abstract ISA

Elcor CompilerElcor Compiler

AssemblerAssembler

mdes

Inst.
format

object code

Perf.

Application
program

Pareto-optimal
application-specific

designs areacy
cl

es

opcode
stats.

• Architecture synthesis
• Microarchitecture synthesis
• Abstract mdes extraction compiler

stats.

Figure 1: The PICO-VLIW design system.

The second sub-system is the VLIW architecture synthesis sub-system whose responsibility is

to take the abstract architecture specification generated by the Spacewalker and to create the best

possible concrete architecture and micro-architecture, as well as a machine-description database

used to retarget the compiler. The system outputs a RTL-level, structural VHDL description of the

processor and estimates the chip area consumed by it.

The third sub-system consists of Elcor, our retargetable compiler for VLIW processors, and a

retargetable assembler. Both are automatically retargeted by supplying the machine-description

database. Elcor's responsibility is to generate the best possible code for the application on the pro-

cessor designed by the VLIW architecture synthesis sub-system, and to evaluate its performance

by counting the number of cycles taken to execute the program. The area and execution time

estimates are then used by the Spacewalker to guide the next step of its search.

The PICO-VLIW system explores a number of design variables within this framework including

the number and kind of functional units in the processor, the number and size of register files,

4

the number of read/write ports on each file, various interconnect topologies between functional

units and register files, cache and memory hierarchy, high performance architectural mechanisms

such as predication and speculation, the number and structure of the various instruction templates,

and the corresponding instruction fetch and decode hardware. The system makes intelligent cost

and performance tradeoffs involving the above variables, some internally within a single design

process, and some externally by walking the architectural design space defined by these variables.

Additional feedback statistics related to the design, such as register port usage, instruction tem-

plate usage, and functional unit utilization, are also generated that can be used to make automatic

adjustments and improvements in the high-level specification.

The VLIW synthesis module and Elcor are both designed with an understanding that they will

be invoked hundreds, possibly thousands, of times by the Spacewalker in the course of finding a

Pareto-optimal set of designs. Consequently, quick, heuristic algorithms are used in both modules

as a rule. Optimal, expensive algorithms could be employed once the Pareto-optimal abstract

architectures have been selected, in order to obtain higher levels of quality for the hardware and

the code that is actually to be used.

Such a design system is not only useful as a push button tool for fully automated architecture

synthesis and exploration but also as a manual design assistant, whereby some aspects of the de-

sign are done manually and the rest are filled in by the system, or existing designs are customized

to an application or an application domain and their cost and performance is evaluated automati-

cally. In the latter case, a high-level specification may be automatically extracted from the existing

architecture.

The major contribution of the work reported here is in establishing a framework which formalizes

and makes algorithmic what has thus far been an ad hoc, manual process. We do not believe that

the specific heuristics, currently in place, are necessarily the best possible; the development of

robust, near-optimal heuristics is a topic of further research.

5

1.2 Focus of this paper

In this paper, we focus our attention on the VLIW architecture synthesis sub-system of PICO-

VLIW. Starting from an abstract specification of an architectural design point, the system automat-

ically generates the following:

1. the instruction set architecture (ISA) for the processor, including the choice of opcodes and

a multi-template instruction format for the machine, both possibly customized to a given

application or workload,

2. the detailed micro-architecture of the machine, i.e., its datapath and the instruction unit,

which can be output in the form of structural VHDL, along with a specification of its control

tables for subsequent synthesis into combinational logic,

3. an abstract (non-structural) machine description, mdes for short, that is used by our mdes-

driven, retargetable compiler and assembler to generate code for the newly designed VLIW

processor, and by our mdes-driven simulator to simulate it,

4. detailed synthesis feedback for the Spacewalker describing hardware resource costs and uti-

lization, and

5. an architecture manual for the VLIW processor documenting the above information along

with a cost report.

The remaining sections describe the VLIW synthesis process in more detail. Section 2 describes

the overall design flow. In Section 3, we describe the abstract architecture specification that is used

by the Spacewalker (or a manual designer) to specify each architecture design point. Section 4

describes the micro-architecture (datapath) design process and the related algorithms. The design

of the concrete instruction-set architecture (instruction format) is the topic of a separate techni-

cal report [1]. Section 5 described the process of automatically extracting a machine description

(mdes) from the datapath which is used to retarget the Elcor compiler to the architecture being syn-

thesized. In Section 6, we complete the processor micro-architecture by designing the instruction

6

Macrocell Database
• AIR stubs
• mini-mdes

Datapath Design
Ia. Allocate FUs
Ib. Allocate RF ports
 and interconnect

 Datapath
C1. FU macrocells
C2. RF macrocells
 and Inteconnect

Setup Bit Allocation
• Build IF Tree - inst fields
• Partition into superfields

Bit Allocation
• conc. constraints
• minimize inst width
•affinity alloc
• contiguous alloc

MDES
Extraction Controlpath Design

VIIa. Allocate inst prefetch buffers
VIIb. Build inst alignment network
VIIc. Build inst unit control tables
VIId. Build inst decode tables

 Controlpath
K1. Inst prefetch buffers
K2. Inst alignment network
K3. Inst unit control tables
K4. Inst decode tables

Icache
parms

MDES

Custom Templates
• OPG occurrences
• ILP constraints

Retargetable
Compiler

Custom Template Selection

Op issue
statistics

Abstract ISA
Spec extraction

Abstract ISA
Spec extraction

Abstract ISA Spec

• Op repertoire
• ILP Spec of OPG
 occurrences
• I/O formats

RF Spec

A
B

C

J

K

D

F

E

Concrete
ISA Spec

Inst Format
• Inst templates
• Inst fields
• Bit positions
and encodings

• RF Spec
• RF to inst
 field map

H1
H

H2
G

Inst field
bit reqmt

Superfield
partitioning
• must grps
• prefer grps

Inst field
conflicts

G1 G2 G3

V

VI

II

III

IV

I

VII

IX VIII

PApplication
Program

Figure 2: VLIW synthesis design flow in PICO-VLIW.

fetch pipeline and the fetch and decode control logic. Section 7 describes the various output from

synthesis process including the processor VHDL and the structural feedback to the Spacewalker.

Finally, Section 8 discusses related work and Section 9 concludes the paper.

2 VLIW Processor Synthesis Design Flow

The overall design flow for the VLIW/EPIC processor synthesis is shown in Figure 2 and is out-

lined below. The boxes in the figure represent internal and external data-structures, while the ovals

represent methods and design processes that generate and use those data-structures.

In manual VLIW design as well as related work on VLIW synthesis [7, 10], the starting point is

the concrete ISA which consists of a specification of the register file structure and an instruction

format. We take a different approach, since we view the concrete ISA as an overly-constrained

7

input specification. Instead, we start with an abstract architecture specification (A), which specifies

the desired levels of concurrency and the opportunities for resource sharing, but which leaves the

detailed decisions as to how best to share register ports and instruction bits to the datapath and

the concrete ISA design steps, respectively. This allows PICO-VLIW to go about the design in

an unconventional order: first, to design a datapath that is consistent with the requirements of the

abstract architecture specification (Step I) and to extract an abstract machine description from it

(Step II); next, to design a concrete ISA in the light of the control ports of the datapath (Steps IV,

V, VI), and to then design the controlpath (Step VII), i.e., the instruction prefetch, alignment and

decode hardware. By designing the concrete ISA after the datapath, we are able to achieve better

trade-offs between code size and the complexity of the controlpath. We briefly describe the details

of each of these steps below.

Abstract ISA specification (A). The input to the design process is an abstract architecture spec-

ification (archspec for short) of the machine to be designed. This specification consists of the

following components that are discussed in more detail in Section 3.

� A list of operations that can be executed on the machine.

� ILP constraints among operation specifying which operations can execute in parallel and

which ones are mutually exclusive.

� A specification of the input/output operand locations for each operation.

� A list of all the register files in the machine and their storage properties.

Datapath design (I). The datapath design process uses the archspec (A) to generate the datap-

ath (C), while drawing its components from a database of macrocells (B). The database contains

macrocell descriptions in our architecture intermediate representation (AIR) that summarize var-

ious hardware and programming properties of the cells. These AIR stubs point to actual HDL

descriptions of these macrocells.

8

The datapath design process consists of the following steps that are discussed in more detail in

Section 4.

Functional unit allocation – A set of functional unit macrocells are instantiated from the database

that can together implement the all operations specified in the archspec subject to the speci-

fied ILP constraints.

Register file port allocation – For each of the register files specified in the archspec, we first de-

termine the number of input and output ports needed by the various functional units based

on their input and output operand connectivity and the ILP constraints.

Register file and interconnect generation – Using the results of the port allocation, the register

files specified in the archspec are instantiated from the macrocell database. Then, the files

are connected to the various functional units via buses, multiplexors and tristate elements

according to their input and output requirements.

Mdes extraction (II). Given the datapath (C), this step extracts an abstract machine description

(D) which can be used to retarget a compiler (III) to the machine being designed. The machine

description hides unnecessary details of the datapath and presents a programming model of the

target machine to the compiler. This extraction process is discussed in Section 5.

Instruction format design (IV, V, VI). The archspec is also used to design an instruction format

(H1) to control the various hardware control ports in the datapath (C). This process is described in

detail in the companion technical report [1]. We outline the major steps below.

Custom template design (IV) – The ILP constraints within the archspec give rise to a set of in-

struction templates consisting of operations that may be issued concurrently. Another source

of such constraints (and the corresponding instruction templates) is the operation scheduling

statistics (E) obtained by compiling a given application program (P) to the target machine.

Frequently occurring combinations of co-scheduled operations are used to generate cus-

9

tomized instruction templates (F) that are smaller in size thereby reducing the overall size of

the program.

Bit allocation problem setup (V) – The instruction format design process uses an auxiliary data-

structure called the IF-tree which is built using the instruction templates and the operation

format information present in the archspec. The leaves of the tree are the instruction fields

that need to be assigned bit positions within an instruction. The IF-tree data-structure helps

to identify the following information that is subsequently used for instruction bit allocation:

� a list of all the instruction fields in various instruction templates and their bit-width

requirement (G1),

� a partitioning of the instruction fields into sets (super-fields) that control the same dat-

apath control port so that they may be assigned the same bit positions in the instruction

template (G2), and,

� a conflict graph of the instruction fields that are used concurrently (G3).

Bit allocation (VI) – The various instruction fields within each template are assigned bit positions

subject to their bit-requirement and concurrency conflicts using a graph coloring approach.

Heuristics are used to reduce the overall template width and the decode complexity by pack-

ing the instruction fields to the left (leftmost allocation), assigning contiguous bit positions

to multi-bit fields (contiguous allocation), and aligning instruction fields within the same

super-field to the same bit position (affinity allocation).

Controlpath design (VII). Once the instruction format (H1) and the datapath (C) have been

designed, we can proceed to complete the design of the processor by generating the controlpath

(K). This consists of the following components that are discussed in more detail in Section 6.

Instruction prefetch buffer – An instruction packet of a certain size is fetched from the instruction

cache and brought into a FIFO queue. The number of buffers in this queue and its width

depend on the instruction cache parameters (J), the cache access time and its packet width.

10

Instruction alignment network – Since, the instructions may be of variable length, they may not

be properly aligned as they are fetched from the memory into the instruction cache and from

the cache into the prefetch buffer. An instruction alignment network aligns the left boundary

of the instruction to the first bit position of the instruction register at each cycle.

Instruction unit control tables – The alignment network, the prefetch buffer, and the instruction

fetch from the cache is controlled by logic whose specification as a control table is generated

automatically. This logic is responsible for the following tasks at each cycle:

� keeping track of the width of the instruction and the unused bits in the instruction

register and at the head of the prefetch buffer,

� issuing instruction cache fetches, prefetch buffer fills and instruction register fills at the

appropriate times, and

� generating the appropriate shift signal for the alignment network to align the next in-

struction into the instruction register.

Instruction decode tables – At each cycle, the left aligned instruction in the instruction register is

decoded to yield the appropriate control signals for the various datapath control ports. A

control table specification for this decode logic is also generated automatically.

Instead of a general-purpose instruction unit that fetches and decodes instructions based on com-

pact instruction templates as described above, it is also possible to control the datapath with a a

finite-state machine (FSM) based or a ROM-based controller that is specialized to a given sched-

uled program. The FSM specification (or the ROM bits) can be automatically generated from the

scheduled operations. This strategy may prove useful when the programmability of a general-

purpose instruction unit is not needed (e.g. in an ASIC design), and the cost of the instruction unit

outweighs the code-size reduction achieved by encoding the specification of control signals needed

at each cycle into program instructions.

VHDL and synthesis report generation. The final step of the design process (not shown in

Figure 2) is to assemble the various AIR components and their interconnect wires and produce

11

a structural description of the hardware at the RTL-level in a standard hardware description lan-

guage such as VHDL. This description can be linked with the respective HDL component libraries

pointed to by the macrocell database and processed further for hardware synthesis and simulation.

The PICO system also produces a synthesis report consisting of a breakdown of the area estimate

for the processor by components and feedback information for the architectural Spacewalker with

regard to the utilization of various hardware resources and instruction format bits by the various

components of the input archspec. In addition, the system produces a reference manual for the con-

crete instruction set architecture (H) of the target machine complete with its operation repertoire,

instruction formats, and register file specifications.

3 Input architecture specification

Architecting a VLIW processor is considerably more complex than a sequential one. In addition

to picking an operation repertoire, one must specify the extent and nature of the processor's ILP

concurrency. A VLIW processor, when designed by a competent architect, exhibits certain features

as listed below which we wish PICO-VLIW to emulate.

� Functional units are heterogeneous; although one might include the ability to issue two adds

every cycle, which requires two integer units, only one unit may be capable of shifting and

the other unit able to do multiplication.

� Register file ports are shared; a multiply-add operation, which requires three register read

ports, may be accommodated by ”borrowing” one of the ports of another functional unit

which cannot, now, be used in parallel with the multiply-accumulate.

� Likewise, instruction bits are shared; a load or store operation, which requires a long dis-

placement field, might use the instruction bits that would otherwise have been used to specify

an operation on some functional unit.

12

In order for PICO-VLIW to yield competently designed processors, we need the Spacewalker to

be able to specify such architectures to the VLIW synthesis sub-system.

Our choice of the interface between the Spacewalker and the VLIW synthesis sub-system (refer

Figure 1) involves a delicate balance between giving the Spacewalker adequate control over the

architecture, without bogging it down by requiring it to specify a detailed instruction format. Our

compromise is that the Spacewalker specifies the operation repertoire, the requisite level of ILP

concurrency, and the opportunities for sharing register ports and instruction bits. Thereafter, it

relies upon the concrete ISA design module, the datapath design module and the controlpath design

module to avail of these opportunities while supplying the requisite level of concurrency.

The Spacewalker tasks the VLIW synthesis sub-system via the Abstract ISA Specification (arch-

spec for short). In this specification, the operation repertoire of the target processor is specified in

an abstract manner together with constraints upon its concurrency. These concurrency constraints

can then be exploited by the VLIW synthesis sub-system to yield less expensive architectures,

with heterogeneous functional units and resource sharing, at the requisite level of concurrency. We

discuss the various components of the archspec below.

3.1 Operation Groups and Exclusions

At an abstract level, an architecture specification need only specify the functionality of the hard-

ware implementation in terms of its opcode repertoire and the desired performance level. Then the

exact structure of the implemented machine in terms of its datapath and control structure may be

synthesized from this specification. In PICO, we specify an architecture by simply enumerating

the set of opcodes that it implements and the level of parallelism that exists amongst them.

For convenience, the various instances of HPL-PD opcodes for a given machine are grouped into

Operation Groups (opgroups for short) each of which is a set of opcode instances that are similar

in nature in terms of their latency and connectivity to physical register files and are expected to be

mutually exclusive with respect to operation issue, e.g. add and subtract operations on the same

ALU. By definition, all opcode instances within an operation group are mutually exclusive while,

13

by default,those across operation groups are allowed to execute in parallel. The parallelism of

the machine may be further constrained by placing two or more operation groups into Exclusion

Groups which makes all their opcode instances mutually exclusive and allows them to share re-

sources, e.g. a multiply operation that executes on a separate multiply unit but shares the result bus

with the add operation executing on an ALU.

As an example, a simple 2-issue machine is specified below2. The specification language we use is

the database language HMDES Version 2 [9] that organizes the information into a set of interrelated

tables called sections containing rows of records called entries each of which contain zero or more

columns of property values called fields.

SECTION Operation_Group {

OG_alu_0(ops(ADD SUB) format(OF_intarith2l));

OG_alu_1(ops(ADD SUB) format(OF_intarith2l OF_intarith2r));

OG_move_0(ops(MOVE) format(OF_intarith1));

OG_move_1(ops(MOVE) format(OF_intarith1));

OG_mult_0(ops(MPY) format(OF_intarith2l));

OG_cmp_0(ops(CMP) format(OF_intarith2lp));

OG_shift_0(ops(SHL SHR) format(OF_intarith2l OF_intarith2r));

}

SECTION Exclusion_Group {

EG_0(opgroups(OG_alu_0 OG_move_0 OG_mult_0 OG_cmp_0));

EG_1(opgroups(OG_alu_1 OG_move_1 OG_shift_0));

EG_2(opgroups(OG_mult_0 OG_shift_0));

}

This example specifies two alu operation groups, two move operation groups, and one each of

multiply, compare and shift groups. These operation groups are classified into several independent

2A complete specification for a 2-integer, 1-float, 1-memory, 1-branch unit VLIW processor customized to the
“jpeg” application is shown in Appendix A.

14

exclusion groups denoting sharing relationships among the operation groups. Each operation group

also specifies one or more operation formats (defined shortly) shared by all the opcodes within the

group. Additional operation properties such as latency and resource usage may also be specified

with the operation group but are not shown here since they are not relevant to this discussion.

3.2 Register Files and Operation Formats

The archspec specifies additional information to describe the physical register files of the machine

and the desired connectivity of the operations to those files. A Register File entry defines a

physical register file of the machine and identifies its width in bits, the registers it contains, and a

virtual file specifier that specifies the types of data it can hold [13]. It may also specify additional

properties such as whether or not the file supports speculative execution, whether or not the file

supports rotating registers, and if so, how many rotating registers it contains. The immediate literal

field within the instruction format of an operation is also considered to be a (pseudo) register file

consisting of a number of “literal registers” that have a fixed value.

The Operation Format entries each specify the set of choices for source/sink locations for the

operations in an operation group. Each operation format consists of a list of Field Types that deter-

mine the set of physical register file choices for a particular operand. For predicated operations, a

separate predicate input field type is also specified.

SECTION Register_File {

gpr(width(32) regs(r0 r1 ... r31) virtual(I));

pr(width(1) regs(p0 p1 ... p15) virtual(P));

s(width(16) intrange(-32768 32767) virtual(L));

}

SECTION Field_Type {

FT_I(regfile(gpr));

FT_P(regfile(pr));

FT_L(regfile(s));

15

FT_IL(compatible_with(FT_I FT_L));

}

SECTION Operation_Format {

OF_intarith1(pred(FT_P) src(FT_IL) dest(FT_I));

OF_intarith2l(pred(FT_P) src(FT_IL FT_I) dest(FT_I));

OF_intarith2r(pred(FT_P) src(FT_I FT_IL) dest(FT_I));

OF_intarith2lp(pred(FT_P) src(FT_IL FT_I) dest(FT_P));

}

The example shows that the above machine has a 32-bit general purpose register file “gpr”, a 1-bit

predicate register file “pr” and a 16-bit literal (pseudo) register file “s”. Each register file can be

used alone or in conjunction with other files in a field type specification as a source or sink of an

operand. Field types for the predicate, source and destination operands are combined to form the

valid operation formats for each operation group. For example, the 2-input alu operation group

“OG alu 0” has an operation format “OF intarith2l” which specifies that its predicate comes from

the register file pr, its left input could be a literal or come from the register file gpr, and its right

input and output come from and go to the register file gpr, respectively. For notational convenience,

we may write this operation format as a string such as “pr ? gpr s, gpr : gpr”, where the colon

separates the inputs from the outputs and the comma separates the various field types [13].

4 Datapath Design

A VLIW/EPIC datapath consists of multiple functional units and register files connected together

via a bus interconnect. The register files are specified in the archspec directly while the design

of the functional units and their connectivity to the register files is the topic of discussion in this

section.

Until now, we have used the term “functional unit” informally. Now, we define it more clearly.

A functional unit is an abstraction of a group of hardware resources that behaves as a unit for

16

VLIW Arch

Find OPG Excl. Cliques

Cover Cliques
Select FUs

Identify Mem
Ports

AIR Entity

FU Macrocells

AIR
Macrocell
DataBase

Build FUs

RF Macrocells Interconnect

Build RD portreq Build WR portreq

For each RF, LRF

Allocate RD ports Allocate WR ports

Build RF
Record RF-FU

Port Alloc

RF-FU
Port AllocBuild Interconnect

Figure 3: The datapath design flow.

the purpose of executing a sequential stream of operations issued to that unit. For our purpose, it

consists of one or more hardware macrocells that are capable of executing the sequential stream of

operations together with the register file read/write ports needed to source/sink operands to/from

the macrocells. In this section, we describe how the various functional units of the machine can be

synthesized automatically starting from the archspec.

The overall design flow process is shown in Figure 3. We need to make the following major design

decisions:

1. Selecting macrocells – The archspec identifies operations that the machine should be capable

of executing and the amount of instruction-level parallelism desired. This information is used

to select a set of macrocells that cover the desired functionality at the minimum cost. Then,

each of the operation groups specified in the archspec is mapped to a specific macrocell.

2. Determining number of read/write ports of register files – In a VLIW/EPIC architecture,

17

many functional units may connect to the same register file requiring multiple read/write

ports to that file. Since highly ported files are very expensive, it is very important to minimize

the number of ports on each register file. The mutual exclusion among the operation groups

mapped to the various macrocells guides the sharing of register ports.

Subsequently, the selected macrocells and the register files are instantiated into our architecture in-

termediate representation (AIR) and are interconnected via buses, multiplexors, and tristate buffers.

4.1 Macrocell Selection

The various macrocells are drawn from a macrocell database. Each macrocell keeps track of the

operations its can execute as well as a pointer to its actual hardware description that implements

it. A standard component library such as Synopsys Designware may be used for implementing

the macrocells directly or these implementations may be custom built, for example, to provide

additional VLIW/EPIC functionality such as predication and/or speculation support.

The first step in selecting the appropriate macrocells from the macrocell database is to determine

which operation groups in the archspec are mutually exclusive so that they may be mapped to

the same macrocell. Furthermore, it is desirable to make such mutually exclusive sets of opera-

tion groups as large as possible so that a minimum number of independent macrocells (and other

hardware resources) may be used. This can be achieved by computing all cliques3 within a graph

formed by the operation groups and their mutual exclusion relationships.

4.1.1 Finding exclusion cliques

The pseudo-code for the algorithm to find maximal cliques appears in Figure 4. The algorithm

recursively finds all cliques of the graph starting from an initially empty current clique by adding

one node at a time to it. The nodes are drawn from a pool of candidate nodes which initially

3A clique of nodes within a graph is a subgraph in which every node is a neighbor of every other node and no other
node from the graph may be added without violating this property.

18

procedure FindCliques(NodeSet currentClique, NodeSet candidateNodes)
1: // Check if any candidate remains
2: if (candidateNodes is empty) then
3: // Check if the current clique is maximal
4: if (currentClique is maximal) then
5: Record(currentClique) ;
6: endif
7: else
8: NodeSet tryNodes = candidateNodes ;
9: while (tryNodes is not empty) do
10: H1: if ((currentClique [candidateNodes) � some previous clique) break ;
11: Node node = Pop(tryNodes) ;
12: candidateNodes = candidateNodes - fnodeg ;
13: if (currentClique [fnodeg is not complete) continue ;
14: H2: NodeSet prunedNodes = candidateNodes \ Nhbrs(node) ;
15: FindCliques(currentClique [fnodeg, prunedNodes) ;
16: H3: if (candidateNodes � Nhbrs(node)) break ;
17: H4: if (this is first iteration) tryNodes = tryNodes - Nhbrs(node) ;
18: endwhile
19: endif

Figure 4: Pseudo-Code for finding maximal cliques.

contains all nodes of the graph. The terminating condition of the recursion (Line 2) checks to see

if the candidate set is empty. If so, the current clique is recorded if it is maximal (Line 4), i.e. there

is no other node in the graph that can be added to the current clique while still remaining complete.

If the candidate set is not empty, then we need to grow the current clique. Each incoming candidate

node is a potential starting point for growing the current clique (Line 8). This is the place where

we are doing an exponential search. Various heuristics are found in the literature [12] to grow the

maximal cliques quickly and to avoid examining sub-maximal and previously examined cliques

repeatedly. The heuristics used by our algorithm are described below.

The first heuristic we use (H1) is to check whether the current clique and the candidate set is

a subset of some previously generated clique. If so, the current procedure call can not produce

any new cliques and is pruned. Otherwise, a candidate is selected for growing the current clique.

If the selected candidate forms a complete graph with the current clique (Line 13), we add it to

the current clique and call the procedure recursively with the remaining candidates. The second

19

heuristic we use (H2) is to restrict the set of remaining candidates in the recursive call to just the

neighbors of the current node since any other node will always fail the completeness test within

the recursive call.

After the recursive call returns, we apply two more heuristics that attempt to avoid re-examining

the cliques that were just found. If the remaining candidates are all found to be neighbors of

the current node (H3), then we can prune the remaining iterations within the current call since a

maximal extension of the current clique involving any of those neighbors must include the current

node and all such cliques were already considered in the recursive call. On the other hand, if

non-neighboring candidates are also present, we drop the neighbors of the current node from being

considered as start points for growing the current clique (H4). This is because a maximal extension

of the current clique involving one of the neighboring nodes and not involving the current node

must involve one of the non-neighboring nodes and therefore can be detected by starting from the

non-neighboring nodes directly. This pruning of the trial nodes may be performed only during the

first iteration of the while loop, otherwise we may miss the cliques formed among the neighbors

being dropped in each iteration.

The above algorithm performs reasonably well in practice for moderate sized graphs (less than 30

sec for 100-150 operation groups on an average workstation). Of course, the time varies greatly

with the kind of exclusions specified in the archspec as it governs the number of distinct maximal

cliques required to cover all node-to-node exclusion relations.

4.1.2 Finding minimal set-cover of the cliques

Once the exclusion cliques are determined, we draw macrocells from the database such that all

operation groups covered by a macrocell fall within a single clique. This guarantees that a macro-

cell is assigned operation groups that are mutually exclusive. Furthermore, we need to cover as

many operation groups with as few and as cheap (in terms of area) macrocells as possible. This is

achieved by finding a minimal set-cover of the cliques with the macrocells in the database. This is

a well known NP-complete problem [8] and various heuristics have been suggested in the literature

20

procedure McellCover(NodeSetList cliques, McellTable database)
1: // repeatedly find the best macrocell to cover remaining op groups
2: while (cliques is not empty) do
3: Mcell bestCell = nullCell ;
4: NodeSet bestCover = nullSet ;
5: for (mcell 2 database) do
6: NodeSet mcellCover = nullSet ;
7: for (clique 2 cliques) do
8: NodeSet tryCover = f opg j opg 2 clique, mcell implements opg g ;
9: H1: if (jtryCoverj > jmcellCoverj) then
10: mcellCover = tryCover ;
11: endif
12: endfor
13: H2: if (jmcellCoverj > jbestCoverj or
14: H3: (jmcellCoverj == jbestCoverj and Cost(mcell) < Cost(bestCell))) then
15: bestCover = mcellCover ;
16: bestCell = mcell ;
17: endif
18: endfor
19: Instantiate(bestCell, bestCover) ;
20: for (clique 2 cliques) do
21: clique = clique - bestCover ;
22: endfor
23: endwhile

Figure 5: Pseudo-Code for finding minimal set-cover of the cliques.

to solve this [12]. We describe our heuristics below.

The pseudo-code for the minimal set-cover algorithm appears in Figure 5. The outer loop at Line 2

repeatedly reduces the given list of cliques by covering a subset of operation groups occurring

within some clique by the best macrocell that implements the operations within that subset (Line 8).

This best macrocell is instantiated within the datapath (Line 19) and the operation groups in the

selected subset are recorded as having been covered by this macrocell by subtracting them from

every clique (Line 21).

The heuristics for selecting the best macrocell fall under two categories: those that maximize the

size of the set being covered and hence minimize the number of macrocells selected (H1, H2), and

those that minimize the cost of the macrocell selected (H3). For the same overall functionality,

21

minimizing the total number of macrocells reduces the external interconnect cost while picking

the least cost macrocells reduces overall chip area. There may be additional considerations such

as timing, power, routability, geometry (for hard macros) etc. that are not shown here.

4.2 Register File Port Allocation

For each operation group prescribed in the archspec, its operation format specifies the desired con-

nectivity to the appropriate register files. Once an operation group has been mapped to a macrocell

as above, this specification can be translated to a connectivity specification between the macrocells

and the various register files by mapping the input/output operands of each operation to the cor-

responding port of the macrocell using the information described in Section 5.2. The next major

design decision is to determine the number of read and write ports required on each register file so

that it can be instantiated in hardware and the appropriate interconnect may be setup.

As shown in Figure 3, we formulate the problem of determining the number of read and write

ports for each register file as a separate resource allocation problem. In each formulation, macro-

cell ports are thought of as the resource requesters each requesting one register file port, which

is the resource. The resource allocation problem is to assign resources to requesters using a min-

imum number of resources, while guaranteeing that concurrent requesters are assigned different

resources. It is also possible to generalize this situation by allowing the same macrocell port to

access different register file ports for different operation groups mapped to it, or for that matter, the

same operation group under different instruction templates. Currently, we do not allow this.

The resource allocation is done subject to a resource conflict graph among the requesting macrocell

ports. The graph has an edge between two macrocell ports if and only if the two ports are active

simultaneously, either because they are used for multiple operands of the same operation group

mapped to that macrocell, or because the operation groups mapped to the two ports are concur-

rent in the archspec. In this manner, mutually exclusive operation groups mapped to the same or

different macrocells would be able to share the register file ports for accessing their operands.

An important observation regarding concurrent use of register file ports is that the exact time

22

they are used (and hence cause the resource conflict) also depends on the individual input/output

operand latency specified for the operation. For example, there may not be a resource conflict

between the addend and either multiplicand of a three input multiple-add operation because the

addend may be fetched one cycle later and hence can use the same register file port as one of the

multiplicands. Similarly, the outputs of concurrently issued multiply operation with latency 3 and

an add operation with latency 1 are not produced at the same time and hence may share the same

write port. This effect is taken into account by including only those port request conflicts that

correspond to the respective operands being accessed at the same latency.

The pseudo-code for the resource allocation algorithm appears in Figure 6. Our allocation heuristic

is a variant of Chaitin's graph coloring register allocation heuristic [3]. Chaitin made the following

observation. Suppose G is a conflict graph to be colored using k colors. Let n be any node in G

having fewer than k neighbors, and let G0 be the graph formed from G by removing node n. Now

suppose there is a valid k-coloring of G0. We can extend this coloring to form a valid k-coloring

of G by simply assigning to n one of the k colors not used by any neighbor of n; an unused color

is guaranteed to exist since n has fewer than k neighbors. Stated another way, a node and its w

neighbors can be colored with w + 1 or fewer colors.

Our formulation differs from Chaitin's in two important ways: first, we are trying to minimize the

number of required colors, rather than trying to find a coloring within a hard limit; and second,

our graph nodes have varying integer resource requirements. We generalize the reduction rule to

non-unit resource requests by simply summing the resource requests of a node and its neighbors.

In Figure 6, the total resource request for a node and its neighbors is computed by the first loop.

Our heuristic repeatedly reduces the graph by eliminating the node with the current lowest total

resource request (node plus remaining neighbors). At each reduction step, we keep track of the

worst-case resource limit needed to extend the coloring. If the minimum total resources required

exceeds the current value of k, we increase k so that the reduction process can continue. The graph

reduction is performed by the second loop in Figure 6.

Nodes are pushed onto a stack as they are removed from the graph. Once the graph is reduced to

23

procedure ResourceAlloc(IntVector request, Graph conflicts)
1: // compute resource request for each node + neighbors
2: for (n 2 conflicts) do
3: mark[n] = false ;
4: allocRes[n] = emptySet ;
5: totalRequest[n] = request[n] + request[Nhbrs(n)] ;
6: endfor
7:
8: // sort nodes by increasing remaining total resource request,
9: // compute upper-bound on resources needed by allocation
10: int resNeeded = 0 ;
11: NodeStack stack = emptyStack ;
12: repeat NumNodes(conflicts) times
13: find unmarked node m such that totalRequest[m] is minimum ;
14: mark[m] = true ;
15: stack.push(m) ;
16: resNeeded = max(resNeeded, totalRequest[m]) ;
17: for (nhbr 2 Nhbrs(m)) do
18: totalRequest[nhbr] -= request[m] ;
19: endfor
20: endrepeat
21:
22: // process nodes in reverse order (ie. decreasing total request)
23: while (stack not empty) do
24: Node n = stack.pop() ;
25: IntSet totalRes = f 0 .. resNeeded-1 g ;
26: // available bits are those not already allocated to any neighbor
27: IntSet availRes[n] = totalRes - allocRes[Nhbrs(n)] ;
28:
29: // select requested number of bits from available positions
30: // according of one of several heuristics
31: AllocRes[n] = select request[n] bits from availRes[n] ;
32: H1: contiguous allocation
33: H2: affinity allocation
34: endwhile

Figure 6: Pseudo-Code for resource allocation.

24

Sext

o0 i1i0

p

op

clk

FU cell instance
d0 s1s0

sp FU cell template

FU mini-mdes

LAND
IADD

sp ? s0, s1 : d0

dr0

dr1

dw0aw0

ar1

ar0
gpr

RF
2:1

Figure 7: Datapath schema.

a single node, we begin allocating bit positions (resources) to nodes. Nodes are processed in stack

order, i.e. reverse reduction order. At each step, a node is popped from the stack and added to

the current conflict graph so that it conflicts with any neighbor from the original graph which is

present in the current conflict graph. The existing allocation is extended by assigning bit positions

to satisfy the current node's request, using bits disjoint from bits assigned to the current node's

neighbors. This process is shown in the third loop in Figure 6.

4.3 Building the register files and the interconnect

Once the number of read/write ports of the various register files are determined we can allocate

these files in hardware. The hardware component corresponding to the register files is also drawn

from the macrocell database. Usually, such components are created using hardware generators

25

rather than enumerating all register files with different read/write porting structure. Integer literal

files that consist of dense ranges of integers are not allocated in this manner since the instruction

field representing the literal would be directly routed to the macrocell port. Literal files containing

specially encoded literals (e.g., the value of �), however, may be allocated just like the regular

register file in order to share the literal decoding hardware.

The register port allocation process also generates a tentative port assignment which identifies the

exact register file port number to connect to each macrocell port. Since all register port of a given

file and of a give type (read/write) are equivalent, it is possible to optimize this assignment based on

layout or topological considerations for the interconnect. For example, if read-port 1 of a register

file connects to two mutually exclusive macrocells, it may connect to the left or the right port of

the macrocells independent of each other. However, constraining it to connect to the macrocells

in a similar way (either to the left port or to the right port for both macrocells) so that only one

instruction format field needs to drive the corresponding register address port.

The next step is to generate the interconnect by connecting up the macrocell ports to their assigned

register ports as shown in Figure 7. A given macrocell port may be connected to several register

ports (from different register files) which reflects a choice within the field type of a single operation

as well as multiple operations with different field types mapped to the same functional unit. Sim-

ilarly, a given register file port may be connected to several macrocell ports reflecting the mutual

exclusion among them.

A multiplexor is used at the input port of a macrocell to accept input data from various register file

read ports or literal instruction fields. On the other hand, a tristate buffer is used at the output port

of a macrocell to drive each register file write port that it may output its data to. This is macrocells

are allowed to write their data back to the register file only if their output is enabled, otherwise

there should be no transaction on the register file write port.

All the wires left unconnected in Figure 7 are the datapath control ports that will later be connected

to the instruction decode logic as shown in Section 6. These are the register file address ports, the

multiplexor select ports, the tristate enable ports, and the macrocell opcode ports.

26

5 Mdes Extraction

The structural description of the machine as shown in Figure 7 is usually too detailed for a retar-

getable compiler to target directly, although such an approach has been tried in the past [14, 15].

Most retargetable compiler work with an abstraction of the micro-architecture, namely, the pro-

gramming model of the machine. This model specifies the machine operations and their properties

related to code selection and scheduling, as well as program-visible register state and their proper-

ties related to register allocation. Given a datapath design, such a programming model is usually

directly specified as an auxiliary input specification [9, 10, 6]. In the PICO system, on the other

hand, we automatically extract this programmatic view from the datapath in the form of a machine-

description (mdes for short). In this section, we will describe how this is done.

5.1 Structure of the mdes

An in-depth description of mdes is presented in [16]. We outline its major components below. An

mdes abstracts the following information from the datapath:

Opcode, Register, and Operation binding hierarchy – The operations visible to the compiler

are organized within the mdes in a hierarchy starting from the generic operations (imple-

menting the semantic operations of the program), down to the compiler operations (imple-

mented by the architectural operation of the target machine). This hierarchy is also reflected

into the opcodes and registers visible to the compiler ranging from the generic opcode and

register sets to the compiler opcodes and registers respectively.

The various levels of the operation hierarchy include generic operations, access-equivalent

operations, opcode-qualified operations, register-qualified operations, and fully-qualified op-

erations that are organized in a partial lattice called the Operation Binding Lattice [16]. This

hierarchy abstracts the structural aspects of the machine and allows the compiler to succes-

sively refine the binding of operations within the program from the semantic level to the

27

architectural level making choices at each level that are legal with respect to the target ma-

chine.

Operation descriptors – Operations at each level of the hierarchy are characterized by several

properties that are also recorded within the mdes. These consist of the following.

Operation formats – Along with each operation, the mdes records the sets of registers and

literals4 that can source or sink its various input or output operands respectively. A

tuple of such sets, one for each operand, is called the operation format. The size of

these sets becomes larger as we climb the operation hierarchy, ranging from the exact

set of registers accessible from each macrocell port implementing an operation at the

architectural level to a set of virtual registers containing all architectural registers at the

semantic level.

Latency descriptors – Each input and output operand of an operation specifies a set of laten-

cies associated with its sample and production times respectively relative to the issue

time of the operation. In addition, a few other latencies may be recorded based on the

semantics of the operation (e.g. branch latency, or memory latency). These latencies

are used during operation scheduling to avoid various kinds of timing hazards.

Resources and reservation tables – The various macrocells present in the datapath, the reg-

ister file ports, and the interconnect between them are hardware resources that various

operations share during execution. Other shared resources may include operation issue

slots within the instruction register, pipeline stages or output ports within the macro-

cells. Each operation within the mdes carries a table of resource usages, called a reser-

vation table, that contains all the resources used by the operation and the corresponding

cycle times at which they are used relative to the start of the operation. This table is

used during operation scheduling to avoid hazards due to sharing of resources.

4As far as the mdes is concerned, literal operands are treated just like any other register operands albeit with a fixed
value. Therefore, from now on, we will use the term “registers” to include literal operands as well.

28

Opcode descriptors – The structural and semantic properties of opcodes at each level of the hier-

archy are also kept within the mdes. These properties include its semantic opcode name, the

number of input and output operands, whether or not the opcode can be speculated and/or

predicated, whether or not it is associative, commutative etc.

Register descriptors – Similarly, several properties of registers and register files are recorded

at each level of the operation hierarchy including the bit-width, whether or not speculative

execution is supported, whether the register (or register file) is static, rotating, has literals

etc.

5.2 Mini-mdes components

In order to facilitate mdes extraction directly from the datapath components, each macrocell in the

macrocell database carries a mini-mdes which records the mdes-related properties shown above for

the architectural opcodes that it implements. The mini-mdes is organized just as described above

except that it contains only one level of the operation hierarchy, the architectural level, and that

there are no registers and register descriptors. Instead, the operation format of an architectural op-

eration is described in terms of the input/output ports of the macrocell used by each of its operands.

This “OperandToMcellPort” mapping is also used during register file port allocation (Section 4.2)

in order to determine which ports of the macrocell need to connect to which register files.

For each operand of a given operation, the mini-mdes also records the various internal latencies

through the macrocell in its latency descriptor. If the macrocell is a hard macro, the latencies may

be accurately modeled as absolute time delay (nanoseconds), or in case of soft macros, approxi-

mately as the number of clock cycles relative to the start of the execution of the operation.

For each operation, the mini-mdes records any shared internal resources (e.g. output ports, internal

buses) and their time of use relative to the start of the execution in an internal reservation table.

This table records internal resource conflicts and timing hazards between operations. For exam-

ple, if a macrocell supports multiple operations with different output latencies that are channeled

through the same output port, there may be a output port conflict between such operations issued

29

successively to this macrocell. Recording the usage of the output port at the appropriate time for

each operation allows the compiler to separate such operations sufficiently in time so as to avoid

the port conflict.

Finally, the mini-mdes of a macrocell also reflects whether the macrocell implements speculative

and/or predicated execution capability by incorporating such opcodes within itself. The macrocell

selection process shown in Section 4.1 may choose macrocells based on the presence or absence

of such capabilities. Note that a macrocell supporting speculative execution and/or predicated

execution may be used in place of one that does not, but its cost may be somewhat higher.

5.3 Extracting global mdes from the datapath

The process of extracting a compiler-centric machine description from the datapath of the machine

is described by the ExtractMdes pseudo-code shown in Figure 8. The key idea here is to collect

the information contained in the mini-mdeses of the various functional unit macrocells and the

mdes-related properties of the register files present in the datapath into a single global mdes, and

augment it with the topological constraints of the datapath such as connectivity to shared buses and

register file ports.

The extraction process starts by initializing the global mdes of the machine to an empty mdes

(Line 1). Then, for each component of the datapath that is a functional unit macrocell, the extractor

installs its mini-mdes architectural opcodes as compiler opcodes within the global mdes to form

the lowest level of the opcode hierarchy (Line 9). Various semantic and structural properties of the

opcode including semantic opcode name, commutativity, associativity, number of input and output

operands, bit encoding etc. are also copied into the corresponding opcode descriptor.

Likewise, for register file components of the datapath, the extractor installs the various architectural

registers as compiler registers into the global mdes to form the lowest level of the register hierarchy

along with a register descriptor (Line 30) that records the structural properties of the register file.

Most of these properties are determined either from the type of the hardware component used

(e.g., whether or not speculative execution and/or rotating registers are supported), or from its

30

procedure ExtractMdes(Datapath dpath)
1: Mdes globalMdes = nullMdes;
2: for (component 2 dpath) do
3: if (component is a FU macrocell) then
4: PortAltMap altMap = nullMap ;
5: Mdes miniMdes = component.MiniMdes() ;
6: // accumulate the mini-mdes operations into the global mdes
7: for (operation 2 miniMdes) do
8: CompilerOpcode opcode = a copy of operation.opcode() ;
9: globalMdes.InstallOpcode(opcode) ;
10: for (each input/output operand of operation) do
11: OperandAlts opdAlts = nullList ;
12: ReservationTable opdResv = nullTable ;
13: OperandLatency lat = a copy of operation.OpdLatency(operand) ;
14: McellPort port = operation.OperandToMcellPort(operand) ;
15: // accumulate mdes properties by traversing the datapath from this port
16: if (this port has not been traversed before) then
17: TraversePort(port, lat, opdResv, opdAlts) ;
18: // save operand alternatives for this port
19: altMap.bind(port, opdAlts) ;
20: else
21: opdAlts = altMap.value(port) ;
22: endif
23: opcode.RecordOperandAlternatives(operand, opdAlts) ;
24: endfor
25: // build operation alternatives as a cross product of operand alternatives
26: opcode.BuildOperationAlternatives(operation) ;
27: endfor
28: else if (component is a register file) then
29: // accumulate register file properties into the global mdes
30: globalMdes.InstallRegisterFile(component) ;
31: endif
32: endfor
33: // build a hierarchy of operation alternatives for each semantic operation
34: BuildOperationHierarchy(globalMdes) ;
35: return globalMdes ;

Figure 8: Pseudo-Code for extracting mdes from the datapath.

31

structural instance parameters (e.g., the number and bit-width of static and rotating registers). A

few remaining properties are carried forward from the archspec (e.g., the virtual file type).

The mdes-related details of the operations implemented by a functional unit macrocell are collected

as follows. For each input or output operand of a machine operation, the extractor collects a set

of “operand alternatives”. This set is obtained by first mapping the operand to its corresponding

macrocell port at which it is received or produced (method call OperandToMcellPort at Line 14),

and then traversing the datapath components connected to that port (procedure call TraversePort

at Line 17). Operands mapped to the same port share the same alternatives and hence datapath

traversal needs to be performed only once per port. The details of this traversal and the generated

operand alternatives are provided later.

Next, the sets of operand alternatives obtained as above are combined into “operation alterna-

tives” (method call BuildOperationAlternatives at Line 26). This is done by taking each tuple

in the Cartesian product of the sets of operand alternatives for the given operation and combining

its operand properties to form operation properties. The operand field types are concatenated to

form an operation format, individual operand latencies are collected to form the complete opera-

tion latency descriptor, and the operand reservation tables are combined together with the internal

reservation table of the operation into an overall reservation table for that operation alternative. As

described below, the field types of the various operand alternatives partition the compiler registers

of the machine into access-equivalent register sets. Therefore, the operation alternatives formed

above correspond to an opcode-qualified compiler operation consisting of a compiler opcode and

a set of access-equivalent register-set tuples. All such distinct operation alternatives are installed

into the global mdes as alternatives for the given compiler opcode.

5.3.1 Datapath traversal

The heart of the above mdes extraction scheme is the datapath traversal routine TraversePort

shown in Figure 9 which extracts the operand alternatives associated with a given functional unit

macrocell port. We only show the input port traversal since it is symmetric for output ports. For

32

procedure TraversePort(McellPort thisport, OperandLatency lat, ReservationTable resv, Operan-
dAlts opdAlts)
1: // Assume one-to-one connections among ports
2: if (thisport is INPUT port) then
3: case (predecessor component connected to thisport) of
4: multiplexor: // accumulate all field type choices
5: for (each inputport of the multiplexor) do
6: TraversePort(inputport, lat, resv, opdAlts) ;
7: endfor
8: de-multiplexor: // add a resource column to reservation table
9: Resource res = Resource(inputport of the de-multiplexor) ;
10: ReservationTable resv' = resv.AddColumn(res, lat) ;
11: TraversePort(inputport, lat, resv', opdAlts) ;
12: pipeline latch: // add one to latency
13: Identify inputport of the latch ;
14: ReservationTable resv' = resv.AddRow(lat) ;
15: OperandLatency lat' = lat.AddLatency(1) ;
16: TraversePort(inputport, lat', resv', opdAlts) ;
17: register/literal file: // base case
18: FieldType ftype = FieldType(file.Registers()) ;
19: Resource res = Resource(outputport of the register file) ;
20: ReservationTable resv' = resv.AddColumn(res, lat) ;
21: opdAlts.addAlt(ftype, lat, resv') ;
22: endcase
23: else // thisport is OUTPUT port (symmetric cases)
24: ...
25: endif

Figure 9: Pseudo-Code for accumulating mdes properties while traversing the datapath.

simplicity, we also assume that only one-to-one connections exist between the input and output

ports of various datapath components, i.e., multiple sources to an input port are connected via

a multiplexor, and multiple sinks from an output port are connected via a de-multiplexor. It is

easy to extend this to many-to-many connections by treating such connections as multiple sources

multiplexed onto a bus that are de-multiplexed to the various sinks.

Each operand alternative is a triple consisting of the following information that characterize the

macrocell port and the hardware structures surrounding it:

1. The field type of the operand, which describes a set of compiler registers that are the potential

33

sources of the operand and that are equally accessible from the input port.

2. The operand latency descriptor, which contains the earliest and latest sampling latencies of

the operand with respect to the issue time of the operation. This may be different for different

sources reaching this port or even for the same sources reachable via different paths.

3. The operand reservation table, which identifies any shared resources used for accessing this

operand (e.g., buses and register file ports) and their time of use relative to the issue time of

the operation.

The strategy for collecting the operand alternatives for a given macrocell port is as follows. The

operand latency of the various alternatives is initialized using the macrocell mini-mdes and their

reservation table is set to empty. Starting from the macrocell port, the extractor then traverses the

various datapath components connected to it in a depth-first traversal until an operand source such

as a register file or literal instruction field is reached. As hardware components such as multiplex-

ors, de-multipelxors, pipeline latches and registers files are encountered during the traversal, their

effect is accumulated into the operand latency and the reservation table as described below.

A multiplexor (Line 4) at the input port serves to bring various sources of this operand to this

port and therefore represents alternate field types and latency paths leading to different operation

alternatives. We perform a recursive traversal for each of the inputs of the multiplexor.

The effect of a de-multiplexor (Line 8) at the input is to distribute data from a shared point (such

as a shared input bus) to various macrocell ports. This is modeled by introducing a new resource

column in the reservation table corresponding to this shared data source. A check is placed at

the current latency to show that this new resource is used at that latency. The input of the de-

multiplexor is followed recursively.

A pipeline latch (Line 12) encountered during the traversal adds to the sampling latency of the

operand as well as affects the operation reservation table by adding a new row at the beginning.

The input of the latch is recursively traversed to identify the source of the operand.

Finally, a register file port or a literal instruction field (Line 17) is the point where the recursion

34

terminates. All the registers (literals) accessible via the register file port (literal field) become

part of the field type of the operand. The register file port (literal field) itself is recorded as a

shared resource being accessed at the current latency by adding a resource column to the current

reservation table. The triple consisting of the field type, the operand latency, and the reservation

table is accumulated into the list of operand alternatives for this macrocell port.

5.3.2 Building operation hierarchy

The final step in the mdes extraction process is to complete the higher levels of the opcode, regis-

ter and operation hierarchy within the global mdes (procedure call BuildOperationHierarchy at

Line 34 of Figure 8). This process is discussed below.

The process of constructing operand alternatives shown above already identifies the compiler regis-

ters, and the access-equivalent register sets. In order to complete the register hierarchy, all distinct

access-equivalent register sets are collected to form a generic register set which implements the

semantic notion of a virtual register in the program.

Next, the corresponding levels in the opcode hierarchy are constructed using the register hierarchy.

First, all compiler opcodes implementing the same semantic opcode (as identified by its opcode

property) are collected into a generic opcode set which forms the top layer of the opcode hierar-

chy. Any operation alternative pointed to by a compiler opcode within this generic opcode set is a

valid implementation of the corresponding semantic operation. However, not all such alternatives

are equivalent in terms of their operand accessibility. Therefore, the set of operation alternatives

pointed to by a generic opcode set is then further partitioned into sets of access-equivalent alterna-

tives that use the same access-equivalent register-set tuples. The compiler opcodes present in each

such partition form a distinct access-equivalent opcode set which constitutes the middle layer of

the opcode hierarchy.

Finally, the missing layers of the operation hierarchy, i.e., generic operation sets, access-equivalent

operation sets, and register-qualified operation sets may be built using the corresponding layers of

the opcode and the register hierarchies. In the current implementation, these layers are not directly

35

represented, instead they are implicitly referenced via the opcode hierarchy.

5.4 Example

Figure 7 may be used as an example to show how the traversal routine works. The datapath

shows one instance of an ALU macrocell. The operation group mapped to this instance contains

two operations, LAND (logical and) and IADD (integer add). The operation format for these

operations stored within the mini-mdes shows the macrocell ports used for their various operands.

The mini-mdes also records the sampling and production times of the various input and output

operands that is intrinsic to the macrocell. Let us suppose that it is 0 for each data input s0 and s1,

1 for the predicate input sp, and 2 for the data output d0 (assuming that the macrocell is pipelined).

Finally, the mini-mdes records that these operations execute on the same macrocell and share its

computation resources.

The datapath traversal starts from the actual input and output ports of the macrocell instance. Fol-

lowing input port i0, we find that it is directly connected to the gpr register file port dr1, introducing

a shared resource column for that register port to be used at cycle 0, which is the sampling latency

of this input operand. The field type accessible via this port is denoted by “gpr” which stands for

all the registers contained in the register file gpr. This operand alternative is recorded temporarily.

The input port i1 of the macrocell instance is connected via a multiplexor to the gpr register file port

dr0 as well as a sign-extender for the short literal instruction field. This gives rise to two distinct

operand alternatives, one with field type “gpr” at latency 0 using the gpr file port dr0, and the other

with field type “s” at latency 0 using the literal instruction field connected to the sign-extender.

Similarly, the predicate input gives rise to the operand alternative with field type “pr” at latency 1

using the pr file port (not shown), and the destination port o0 gives rise to the operand alternative

with field type “gpr” at latency 2 using the gpr file port dw0. The various operand alternatives

are combined to form two distinct operation format and reservation table combinations as shown

below.

36

“pr ? gpr, gpr : gpr” “pr ? gpr, s : gpr”

Cycle Resource Usages

ALU pr0 dr0 dr1 dw0 lit

0 X X X

1 X

2 X

Cycle Resource Usages

ALU pr0 dr0 dr1 dw0 lit

0 X X X

1 X

2 X

Note that the overall latencies of the operands are the same as the intrinsic macrocell port usage

latencies since there are no external pipeline latches. Also, the ALU resource is marked as being

used only at cycle 0 since the macrocell is pipelined and the usage of subsequent stages of the

ALU pipeline at subsequent cycles is implicit. The above combinations of operation formats,

latencies, and reservation tables apply to both IADD and LAND opcodes, thereby forming two

distinct operation alternatives each. These alternatives would be combined with other alternatives

from other macrocells to give rise to the complete operation hierarchy for these opcodes.

Operation issue conflicts stemming from the instruction format may also be added to the above

reservation tables in the following way. We repeat the above exercise after the instruction format

for the target machine has been designed and the corresponding controlpath and instruction decode

logic has been inserted (described in the next section). Now, the datapath traversal would need to

be carried through the register files back up to the instruction register treating the register files like

pipeline latches. The latency of the register files may cause one or more rows to be added at the

beginning of the reservation table automatically corresponding to instruction decode and operand

fetch cycles. The traversal paths leading towards the same bit positions in the instruction register

would end up recording an operation issue conflict.

Alternatively, one may directly represent the operation group exclusions prescribed in the archspec

(Section 3.1) as shared abstract resources that are used at cycle 0 and, therefore, model operation

issue conflict for the mutually exclusive operation groups. The PICO system currently uses this

mechanism since it is much simpler and it de-couples the extraction of the mdes and its use in

scheduling application programs from instruction format design and controlpath insertion pro-

37

cesses.

6 Controlpath Design

The controlpath of a processor is responsible for controlling the various control ports in the data-

path at each cycle by providing a mechanism to interpret and sequence the various operations of

an object program in a meaningful and efficient manner. The controlpath design poses two major

challenges. One is that the multi-template instruction format, which is in response to our emphasis

on minimizing code size, complicates the design of the instruction unit. Since the templates are of

various lengths, the instruction fetch path must include an instruction alignment network so that,

on each cycle, the next instruction is left-aligned in the instruction register. Although a generic

architecture for the alignment network can be defined, the details of the design are, necessarily, in-

timately tied to the specific instruction format that has been generated. The second problem is that

an instruction cannot, in general, be fetched, decoded and distributed within a single cycle. The

instruction fetch must be pipelined. This is exacerbated by the presence of the alignment network.

If the processor is to be capable of issuing an instruction on each cycle, PICO-VLIW must provide

it with a sophisticated instruction prefetch unit. In this section, we describe the controlpath design

scheme used in PICO-VLIW that takes care of the above issues.

We divide the controlpath design task into two major subtasks:

Instruction pipeline design – This involves providing a mechanism to fetch program instruc-

tions from system memory (typically, from an instruction cache, or I-cache for short) at a

consistent rate, to decode the various operations within each instruction, and to distribute the

decoded control signals to the various control ports in the datapath. The branch functional

unit may interact with the controlpath to alter the sequence of operations periodically.

Instruction sequencer design – Additional sequencing mechanisms may be required to increase

the functionality of the processor or to improve its performance. These include interrupt and

exception handling, error recovery, branch prediction, data speculation etc.

38

I-cache

NL

NS

WL WA

Shift
and
align

I
R

WImax WImin

QI

FIFO

NFIFO

Decode
and

Operand
 Fetch

Result
Write-
back

FU
M
A
R

TA TS1

O
D
R

Figure 10: The instruction fetch/execute pipeline.

In the PICO design system, we concentrate on the instruction pipeline design rather than the se-

quencer design. This is because the design of the instruction pipeline is crucially dependent upon

the datapath and the instruction format design and, therefore, must be automated as part of the

overall design of the processor. The sequencer mechanisms, on the other hand, are well understood

controlpath enhancements that may be added to the design independently. Each of these mecha-

nisms either leave the instruction pipeline design unchanged or transform it in a pre-determined

way that can be shown to be equivalent in semantics to the original pipeline [2]. Therefore, we

assume that we have the desired sequencer macrocell (or a set of macrocells) and controlpath

extensions available in the macrocell database which can be chosen and applied to the control-

path design after the instruction pipeline has been designed in an archspec-driven manner. We

will, however, describe the interface between the instruction pipeline and the sequencer in order to

show how the sequencer fits into our overall controlpath schema.

6.1 Instruction pipeline scheme

The abstract structure of the instruction pipeline is shown in Figure 10. This schema is parameter-

ized across various aspects of the design that are chosen according to the archspec, the instruction

format, and the datapath. The details of the instruction format design are provided in the compan-

ion technical report [1]. However, we will define the parameters relevant to the controlpath design

39

as we go along.

During instruction format design, all instruction templates are adjusted to be of length which is

some integral multiple of a minimum size called a quantum, QI , measured in bytes. This is also

the address boundary to which an instruction is aligned in memory. Usually the quantum size is

a power of 2, otherwise there is no benefit in aligning instructions to that boundary. For example,

if the quantum size is 4 bytes, then all instructions consist of one or more 32-bit words and must

be word-aligned in program memory. The minimum width of an instruction template is denoted by

WImin in units of quanta. Likewise, the maximum width of an instruction template is denoted by

WImax in units of quanta. Branch targets may have an additional constraint of being aligned to a

different address boundary QT which must be an integral multiple of QI .

The instruction cache is parameterized by its cache line size WL (measured in quanta), the degree

of associativity (the number of lines per set) NL, and the number of sets it contains NS . The total

size of the cache in bytes is, therefore, NS�NL�WL�QI . The cache line size is further restricted

to be a power of 2 in order to simplify the path to/from main memory (or second-level cache). On

the processor side, instructions are fetched in units of instruction packets of size WA (measured

in quanta). Currently, we have the restriction that a cache line must contain an integral number of

instruction packets, avoiding packet wraparound into multiple cache lines. The instruction packet

is also required to be larger than the maximum width instruction (WA � WImax). This ensures that

no more than one packet may be consumed at any cycle. Both these restrictions may be relaxed

at the expense of more complicated instruction fetch mechanism that may cause stalling during

sequential instruction fetch. Another parameter of the instruction cache is its access time, TA,

which is the number of cycles it takes from the point an address is provided to the point when the

instruction packet is ready to be latched at the output of the instruction cache.

Aside from instruction pipeline stalls, at each cycle we want the next instruction in sequence to

be latched left-aligned into the instruction register (IR for short), whose length, WIR, must be

large enough to hold the maximum size instruction (WIR � WImax).5 Since instructions may

have various widths, a complete instruction packet may not be consumed every cycle. Therefore,

5In fact, in order to reduce the overall cost of our designs we assume thatWIR =WImax.

40

an instruction prefetch buffer (FIFO) is used to buffer the packets as they are fetched from the

instruction cache as shown in Figure 10. The length of this buffer, NFIFO, is computed during

the pipeline design process as described below. We also need a shift-and-align network in order to

correctly align each instruction to the leftmost position in the instruction register based on the width

of the previous instruction. Design of this network is also discussed below. Finally, an additional

latch, called the on-deck register (ODR for short), is inserted between the prefetch buffer and the

alignment network to provide additional slack to cover the latency of the alignment network.

6.2 Using the instruction pipeline

Before we describe the concrete design of the various components of the pipeline, it is useful to

understand its behavior which illustrates several design tradeoffs.

6.2.1 Determining the branch latency

Figure 10 shows how the branch latency, TB , is computed. The branch latency of the machine is

the number of cycles elapsed from the time at which the branch instruction is issued to the time at

which the branch target instruction is issued (assuming no speculation). This latency is used during

instruction scheduling and is added to the set of mdes parameters [16]. Looking at Figure 10, it

is clear that the branch latency is a combination of the execution latency of the branch operation,

TS , which is the time at which the branch address is resolved within the branch functional unit

relative to the issue time of the branch operation, and the instruction cache access time, TA. When

the target packet is ready, it is latched directly into the ODR, skipping over the prefetch buffer.

The packet is latched into the IR one cycle later. Therefore, the hardware branch latency in PICO

designs is computed as follows.

TB = TS + TA + 1

We choose to expose this latency in the mdes directly. It is also possible to mandate a smaller

program visible latency by inserting a execution pipeline stall mechanism together with a branch

prediction mechanism. These mechanisms help to hide the branch latency in the most frequent

41

Wconsumed

IR ODR FIFO 0

WIR WA WA

Wcurr

Wcurr < WA - Wconsumed

Wcurr ≥ WA - Wconsumed

Figure 11: Sequential instruction fetching.

cases by correctly predicting the branch target and prefetching it so that there is no bubble in the

pipeline.

6.2.2 Sequential instruction fetching

Figure 11 shows how the instruction register is filled with useful bits during sequential instruction

fetch. The width of the current instruction in the IR is denoted by Wcurr measured in units of

quanta. These are the instruction register bits that have been consumed in the current cycle. In

general, some initial prefix in the ODR, Wconsumed, may also have been consumed by previous

instructions. In order to prepare the IR for the next cycle, we need to shift the unused bits in the IR

to the left and fill the remaining bits from the unused bits of the ODR (Wcurr < WA �Wconsumed)

and, possibly, from the prefetch buffer (Wcurr � WA � Wconsumed). If the bits in the ODR are

completely consumed in this process, the prefetch buffer is also advanced by one packet.

A potential stall situation in the above scheme arises when the IR and the ODR are both almost

fully consumed and there are no instruction packet requests outstanding in the instruction cache.

42

If we assume that an instruction packet is just as big as the maximum sized instruction, i.e., WA =

WImax, and a series of maximum sized instructions are encountered, the prefetch buffer should

have enough packets prefetched to cover up the cache access latency TA, or else stall cycles may

have to inserted. A buffer length of TA would ensures that by the time the prefetched packets are

all consumed at full rate (WImax = WA per cycle), the next packet from the cache would be ready

to be dispatched. On the other hand, typically the instruction packet size is rounded up to the next

power of 2 in order to fit a cache line properly so this situation may not arise in practice.

If an instruction consists entirely of no-ops, it may be eliminated entirely from the instruction

stream and the number of no-op cycles is encoded as a count into the previous instruction in a

multi-noop field. This effectively amounts to introducing a controlled number of bubbles in the

instruction issue pipeline which is handled by the pipeline control logic.

6.2.3 Branch target fetching

Processing a branch instruction introduces some more design issues. As discussed earlier, on

encountering a branch that is resolved to be taken, all the unused bits in the IR, the ODR and the

prefetch buffer must be thrown away. Instead, fetching is initiated from the branch target address.

After the branch latency, the instruction packet containing the branch target is loaded directly into

the ODR from the I-cache as shown in Figure 12. However, the actual target instruction may

be displaced by some amount Ptarget from the packet boundary. Depending on the amount of

displacement, either enough bits may be available to load the IR (WIR � WA � Ptarget), or the

next packet may also be required to be fetched in order to bring enough bits into the IR (WIR >

WA � Ptarget), further adding to the branch latency and making it target dependent.

It is possible to eliminate this problem entirely by ensuring during program assembly that branch

target instructions do not span an instruction packet boundary, or better still, that branch targets

are aligned to the instruction packet boundary, i.e., QT = WA. The latter constraint eliminates

the initial target displacement Ptarget entirely. In either case, this constraint may introduce holes

in the code space between the branch target instruction and the immediately preceding instruction

43

Ptarget

IR ODR I -Cache

WIR WA

WA

Wcurr

WIR ≤ WA - Ptarget

WIR > WA - Ptarget

Figure 12: Branch target fetching.

that must be skipped during a fall-through branch. We accomplish this by adding a consume-to-

end-of-packet bit to each instruction that, if set to 1, effectively increases the width of the current

instruction to the next instruction packet boundary.

The above scheme demonstrates a tradeoff between the code size and the complexity of the in-

struction pipeline where we have chosen to simplifying the pipeline at the expense of some code

space.

6.3 Designing the instruction pipeline

We will now describe how the various components of the above pipeline schema are designed and

interconnected. Figure 13 shows the overall controlpath design schema. The figure also shows

how the various datapath control ports that were left hanging in Figure 7 are now connected to the

44

Sext

o0 i1i0

p

op

clk

FU cell instance
d0 s1s0

sp FU cell template

FU mdes

LAND
IADD

sp ? s0, s1 : d0

dr0

dr1

dw0aw0

ar1

ar0
gpr

RF
2:1

Templ.
Decode

FU0
Decode

FUn
Decode

...

I-
C
a
c
h
e

Sequencer

O
n
D
e
c
k
R
e
g

I
n
s
t.

R
e
g

BranchFUPC

Wcurr,EoP

MAR

F
I
F
O

IU Control

Interrupt

cachePktRdy

Figure 13: Controlpath schema.

appropriate control signals taken either directly from the output of the IR (e.g. register file address

bits), or from the output of the control logic that decodes the current instruction.

The instruction pipeline consist of the following major components that are discussed below.

1. The instruction cache

2. The instruction prefetch buffer

3. The shift-and-align network

4. The instruction unit control logic

5. The instruction decode logic

45

6.3.1 Instruction Cache

The design of the instruction cache is done as part of designing the memory hierarchy and is out-

side the scope of this paper. This involves choosing its number of ports, line size, associativity,

overall size, addressability etc. based on both architectural requirements and the application char-

acteristics.

For the purpose of the controlpath design, the relevant instruction cache parameters that are needed

are the fetch packet width WA and the cache access time TA. The fetch packet width determines

the width of the instruction prefetch buffer and the access time is used to determine its depth as

described below.

6.3.2 Instruction prefetch buffer

The purpose of the prefetch buffer is to smooth out the variability of the multiple sized instructions

(WImin � � �WImax) issued from the instruction register and match it to the fixed sized instruction

packet (WA) fetched from the instruction cache, balancing the overall instruction throughput. On

the one hand, the prefetch buffer immediately provides the additional bytes needed to fill up the

instruction register when a short instruction is followed by a series of long ones, while on the

other hand, it buffers the already requested packets from the instruction cache when the rate of

consumption falls due to encountering a series of short instructions.

The width of the prefetch buffer is matched to the instruction packet size in order to allow direct

transfer of data from the instruction cache. The required depth of the buffer depends on the instruc-

tion fetch policy, namely, how is the inventory of packets being fetched managed. The inventory

is defined as the sum of the number of packets already present in the buffer and those in flight in

the instruction cache pipeline. Our instruction fetch policy is to keep this number at a constant

by issuing just enough fetches at the right time to cover up the cache access latency while accom-

modating the variable rate of consumption of instruction bits. The number of packets needed in

the inventory in the worst case, therefore, is given by dTA �Wimax=WAe, which accounts for the

maximum sized instructions being issued at each cycle.

46

 0 … WIR-1 WIR … WA+WIR-1 WA+ WIR … 2*WA+WIR-1 ...

IR ODR FIFO0 I-Cache FIFO0 I-Cache FIFO1

IR ODR FIFO 0

Figure 14: Treating IR, ODR, and FIFO as a logical shift register.

The inventory size is an upper bound for the prefetch buffer depth because, by definition, there are

no other packets in the instruction pipeline. It is also a lower bound if the processor is allowed to

stall due to some reason (e.g. data cache miss) because the packets in flight in the instruction cache

may need to be drained into the prefetch buffer. Therefore, the depth of the prefetch buffer is given

by,

NFIFO = dTA �Wimax=WAe

However, if the processor is not allowed to stall due to any reason, some fraction of the inventory

may always be kept in flight and the actual buffer size needed may be reduced.

6.3.3 Instruction alignment network

The heart of the instruction pipeline is the shift-and-align network that is responsible for bringing

the correct set of bits left-aligned into the instruction register at each cycle. The sequential and

branch target fetching schema described above illustrate the various cases that need to be consid-

ered.

Since the length of each instruction is always some multiple of quantum width, QI , we need to

shift the bits in the IR only by these amounts and not by every bit position. As shown in Figure 13,

this is accomplished by using a set of parallel multiplexors at the input of the IR for each quantum

sized set of bits. The inputs to these multiplexors come from the corresponding bit positions in

other quanta stored in the IR, the ODR, or the head of the FIFO.

47

In order to define precisely which multiplexor inputs come from which quantum bits, we treat the

IR, ODR and the FIFO as a single logical shift register as shown in Figure 14. Each quantum sized

set of IR multiplexors selects among some range of quanta to the right depending on the size of the

current instruction. Specifically, the kth quantum multiplexors (0 � k � WIR � 1) select among

the quanta between,
8
>>><
>>>:

k +WImin; when the last instruction was minimum size

k +WA +WIR � 1; when the last instruction was maximum size and all of ODR
was consumed

Note that we have assumed WIR = WImax in the second case. Once WA, WImin and WImax are

defined at design time, the above range of inputs is statically fixed for each value of k. Therefore,

the corresponding network of connections can be generated at design time.

At run time, the multiplexor for each quantum has to be provided with the appropriate select control

depending on the width of the current instruction. Looking at Figures 11 and 12, the multiplexor

select control for the kth quantum multiplexors is given by,
8>>>>><
>>>>>:

k +Wcurr; sequential fetching, k +Wcurr < WIR

k +Wcurr +Wconsumed; sequential fetching, k +Wcurr � WIR

k +WIR + Ptarget; branch target fetching

The only dynamic quantities in the above computation are Wcurr and Wconsumed that change as

various instructions are fetched and decoded. At design time, we can generate pipeline control

logic for each value of k that selects the appropriate case on the basis of given values of Wcurr and

Wconsumed.

The bits in the ODR and the FIFO, on the other hand, need only be advanced by a full packet size,

WA. The ODR accepts its packet from either the head of the FIFO or the instruction cache directly,

while the FIFO advances by one and, possibly, accepts a new packet from the instruction cache.

On certain cycles, the ODR and the FIFO may not need to be advanced at all because the unused

bits in the IR and the ODR are sufficient to prepare the IR for the next cycle. The selection control

for the multiplexor at the input of the ODR and the advancement control of the FIFO are also part

of the pipeline control logic as discussed below.

48

6.3.4 Instruction unit control logic

The instruction fetch policy described in Section 6.2 is implemented in control logic that keeps

track of the packet inventory – the packets in flight, packets in the prefetch buffer, and the un-

consumed part of the ODR. It also issues instruction cache fetch requests, FIFO load and advance

requests, and ODR load request at the appropriate times, and provides the appropriate selection

control for the shift and align network and other multiplexors in the instruction pipeline. Finally,

the control logic is also responsible for flushing or stalling the pipeline upon request from the

sequencer due to a branch or an interrupt, or from the instruction decode logic due to multi-noops.

The control logic may be expressed as pseudo-code as shown in Figure 15 that consists of a set

of conditions and various actions to be performed under those conditions. The logic keeps track

of the inventory of packets internally including those in flight in the instruction cache pipeline

(numCachePkts) and those sitting in the prefetch buffer (numFIFOPkts). This is used to issue a

fetch request whenever the inventory size falls below the threshold (Line 3). The corresponding

instruction packet is ready to be read at the output of the cache TA cycles after the fetch is initiated

(Line 7). This packet may be loaded directly into the ODR if the rest of the pipeline is empty

(Line 9), or it may be saved in the FIFO (Line 12). These packets are later loaded into the ODR as

needed (Line 17).

Upon encountering a taken branch signal or an interrupt signal from the sequencer (flushPipe), the

control logic flushes the instruction pipeline by reseting the internal state (Line 23). This enables

the pipeline to start fetching instructions from the new address from the next cycle. Otherwise,

the next instruction in sequence needs to be aligned into the instruction register (Line 28) after

suitable number of multi-noop cycles. If the end-of-packet (EOP) bit is set, the current packet

residing in the ODR is considered to be fully consumed and the IR is shifted to the next packet

available. Otherwise, the IR is shifted by the width of the current instruction Wcurr. In either

case, the multiplexors of the shift and alignment network in front of the IR are provided with the

appropriate selection control as described in the last section.

The control logic shown above may be translated to a formal hardware specification language such

49

module IUControl(bool cachePktRdy, bool flushPipe, bool EOP, int Wcurr, int mNop)
1: // Design time constants: pktSize (WA), invSize (dTA �Wimax=WAe)
2: // Internal(initial) state: numCachePkts(0), numFIFOPkts(0), Wconsumed(WA)
3: if (numFIFOPkts + numCachePkts < invSize) then // launch fetches
4: Request I-cache fetch ;
5: numCachePkts++ ;
6: endif
7: if (cachePktRdy) then // packets are ready TA cycles later
8: numCachePkts– ;
9: if (Wconsumed � WA and numFIFOPkts == 0) then // load packet into ODR
10: Load cachePkt into ODR ;
11: Wconsumed = 0 ;
12: else // otherwise save packet in FIFO
13: Load cachePkt into FIFO ;
14: numFIFOPkts++ ;
15: endif
16: endif
17: if (Wconsumed � WA and numFIFOPkts > 0) then // draw packet from FIFO
18: Load FIFOPkt into ODR ;
19: Wconsumed -= WA ;
20: Advance FIFO ;
21: numFIFOPkts– ;
22: endif
23: if (flushPipe) then // branch or interrupt processing
24: Flush I-cache and FIFO ;
25: numCachePkts = 0 ;
26: numFIFOPkts = 0 ;
27: Wconsumed = WA ;
28: else // sequential instruction processing
29: if (mNop > 0) then // introduce no-op bubbles
30: Bubble pipeline by mNop cycles ;
31: endif
32: if (EOP) then // skip to the end-of-packet
33: Shift IR by WIR +WA ;
34: Wconsumed = WA ;
35: else // shift to next instruction
36: Shift IR by Wcurr ;
37: Wconsumed += Wcurr ;
38: endif
39: endif

Figure 15: Pseudo-Code for instruction unit control logic.

50

as VHDL or Verilog and synthesized into a finite-state machine (FSM) using standard synthesis

tools producing a concrete implementation in terms of gates or PLA logic along with control

registers to keep track of the sequential state.

6.3.5 Instruction decode logic

The above hardware, when not stalled, guarantees that a valid instruction would be left-aligned

in the instruction register at each cycle. This instruction needs to be decoded to determine the

values of the various datapath control signals such as functional unit opcodes and register file read

addresses, as well as feedback to the instruction unit to find the start of the next instruction.

In our current scheme, we use multiple, parallel decoders implemented as PLAs to control each

functional unit and provide feedback to the instruction unit. Each PLA description is a sequence

of control logic tables directly derived from the instruction template and field specifications as

determined by the instruction format design. The instruction unit PLA decodes the template iden-

tifier and the consume-to-end-of-packet bit to determine the width of the current instruction and

hence the number of quanta by which to shift the instruction register. It also decodes the number

of multi-noops following the current instruction. The functional unit PLAs decode the operation

fields within the current template that belong to each unit. If a template does not contain any

operation for a functional unit, its PLA implicitly decodes a no-op.

7 VHDL and other outputs

7.1 Structural VHDL

The final step of the design process is to produce a structural description of the hardware at the

RTL-level in a standard hardware description language such as VHDL. This description can be

linked with the respective HDL component libraries pointed to by the macrocell database and pro-

cessed further for hardware synthesis and simulation. The PICO system also optionally generates

51

a list of empty stubs for the library components used in the structural design. This allows for visual

inspection of the design in a schematic viewer without linking to a real macrocell library.

7.2 Synthesis Feedback

The PICO system also produces a synthesis report consisting of a breakdown of the area estimate

for the processor by components and feedback information for the architectural Spacewalker with

regard to the utilization of various hardware resources and instruction format bits by the various

components of the archspec.

The VLIW synthesis feedback information is output into a single file, organized into various sec-

tions according to the synthesis phase the information belongs to. Below, we describe the purpose

and the textual format of the output in each section. The order of appearance of the sections within

the output file can be arbitrary, but the order of fields within a section and their format (except

whitespace) is fixed. The synthesis feedback output for the machine specified in Appendix A is

shown in Appendix B.

The various information sections are defined as follows:

INFO-OUTPUT ::= [VLIW-COST-SECTION]

[VLIW-REGPORT-SECTION]

[VLIW-MACROCELL-SECTION]

[INST-TEMPLATE-SECTION]

7.2.1 VLIW Cost

In the VLIW cost section we report a grand total for the whole VLIW processor (excluding caches

and local memory) followed by a cost breakup for interconnect, register files, and functional unit

macrocells. The interconnect consists of multiplexors, de-multiplexors, tri-states, decode and con-

trol PLAs, and miscellaneous control logic. We divide the cost of interconnect into three sub-

headings: interconnect cost for datapath, interconnect cost for controlpath and the sequencing and

52

decode control logic cost. In case of register files and macrocells, individual AIR component cost

is listed. All area numbers are in mm2. The names of register files and macrocells correspond to

the same names appearing in the register file porting section and the macrocell coverage section.

VLIW-COST-SECTION ::= vliw costf

total cost = float

dpath ic = float

cpath ic = float

control = float

rf-name = float

:::

mcell-name = float

:::g

7.2.2 Register File Porting

In the register file porting section we report the number of input and output ports required for each

register file during VLIW synthesis and the names of the operation groups that request each port.

VLIW-REGPORT-SECTION ::= vliw regportsf

num regfiles = int

rf-name = RF-INFO

:::g

RF-INFO ::= fnum input ports = int

num output ports = int

input req = PORT-INFO

output req = PORT-INFOg

PORT-INFO ::= fOPGROUP-INFO:::g

53

OPGROUP-INFO ::= fopgroup-name:::g

7.2.3 Macrocell Coverage

In the VLIW macrocell coverage section we report the operation groups covered by each macrocell

used within the VLIW processor.

VLIW-MACROCELL-SECTION ::= vliw macrocellsf

num macrocells = int

mcell-name = OPGROUP-INFO

:::g

7.2.4 Instruction Templates

In the instruction format template section we report the total bit widths of all the instruction tem-

plates used within the VLIW processor. We also provide a break down of bit width for each

template according to its constituent operation groups.

INST-TEMPLATE-SECTION ::= vliw inst templatesf

max inst size = int

min inst size = int

quantum size = int

num templates = int

template-name = TEMPLATE-INFO

:::g

TEMPLATE-INFO ::= fbit width = int

num par sets = int

par-set-name = PAR-SET-INFO

54

:::g

PAR-SET-INFO ::= fnum opgroups = int

opgroup-name = int

:::g

7.3 Architecture Manual

Finally, the system automatically generates an architecture manual for the target processor com-

plete with a reference manual for its concrete instruction set architecture. The architecture manual

documents all the architectural features of the target processor including whether it is designed

for predication and/or speculation, the type and number of physical registers, schematic datapath

showing the register files and the functional units, and co-processor architecture (if any). The con-

crete ISA description includes the operation repertoire, operation formats and the detailed structure

of all the instruction templates. It also optionally contains information on the application for which

the target processor was customized and the performance of the processor for that application. A

sample architecture manual appears in Appendix C for the specification given in Appendix A cus-

tomized to the “jpeg” application.

8 Related work

The related work focuses on either the datapath design using a Spacewalker or the processor design

from a concrete instruction set architecture (ISA), which contains the same type of detailed infor-

mation as an architecture manual. The MOVE project at Delft University falls in the first category.

The emphasis is on the design of processor datapaths for Transport Triggered Architectures [5].

The datapath template used by the Spacewalker consists of a set of functional units, a set of regis-

ter files and a set of buses connecting the functional units and the register files. The Spacewalker

works with a structural representation of the datapath, adding and deleting register files, functional

units, buses and interconnection points to come up with a set of Pareto-optimal datapaths. The

55

philosophy for designing the control is simple, similar to horizontal microprogramming, i.e., each

control point is controlled by a separate field in the instruction word. Thus, the work doesn't ad-

dress the design of sophisticated instruction formats optimized for code size and the corresponding

instruction fetch and decode logic within the processor.

The work by Fisher et al. at HP Labs [7] is similar in nature and focuses on the design of processor

datapath for a clustered VLIW architecture, similar to the Multiflow Trace architecture [4]. The

datapath template used in the design process is highly stylized; for example, it doesn't permit

register port sharing and assumes that each functional unit has dedicated ports to register files. A

major component of their work is directed towards understanding how a processor designed for

an application or a group of applications performs on other applications in the same domain, e.g.,

image processing.

The approach presented by Hadjiyiannis et al. [11] uses Instruction Set Description Language

(ISDL) to specify a concrete ISA, which includes not only the desired operations but also the

detailed instruction format and the constraints on instruction issue. The specification is then used

to design the processor hardware in the form of synthesizable Verilog and to retarget various tools,

such as a code-generator, assembler and simulator, needed to evaluate the performance. ISDL

is a very general language capable of specifying many different types of architectures. Since an

ISDL specification is at the level of a concrete ISA, the designer (either a person or a Spacewalker)

has to do most of the work (e.g., instruction format design) that our system does automatically.

In our opinion, this makes it less suitable as a tool for comprehensive design space exploration

and more suitable for a design process that requires only small incremental changes to an existing

specification.

9 Conclusions

PICO-VLIW is a synthesis system for automatically designing the architecture and the micro-

architecture of VLIW and EPIC processors. It was designed with automatic design space explo-

ration in mind; the VLIW synthesis in PICO-VLIW is driven by an abstract rather than a con-

56

crete ISA specification, since it is easier for the Spacewalker (or, for that matter, a human being)

to specify the former. Starting from an abstract specification of the instruction-set architecture,

PICO-VLIW automatically generates,

1. the concrete ISA for the processor,

2. the detailed micro-architecture output in the form of RTL-level structural VHDL,

3. a machine description for use by our retargetable compiler, assembler and simulator, and,

4. an architecture manual and detailed statistics for the Spacewalker.

PICO-VLIW designs sophisticated VLIW and EPIC processors with non-trivial requirements and

constraints upon their ILP, shared register ports, variable-length multi-template instruction formats

that minimize code size, an instruction prefetch unit that covers the instruction cache latency, and

instruction alignment and distribution networks to deal with the variable length instructions. In

the course of a typical exploration, VLIW synthesis is invoked tens or hundreds of time and each

resulting design is evaluated in the context of the given application.

PICO-VLIW has been operational as a research prototype since late 1997. At this point, we have

exercised it with several applications ranging from loop-intensive algorithms for signal and image

processing to less structured ones such as compress and ghostscript.

References

[1] Shail Aditya, B. Ramakrishna Rau, and Richard C. Johnson. Automatic design of VLIW and
EPIC instruction formats. Technical Report HPL-1999-94, Hewlett-Packard Laboratories,
1999.

[2] Arvind and Xiaowei Shen. Design and verification of processors using term rewriting sys-
tems. IEEE Micro, May/June 1999. Special Issue on Modeling and Validation of Micropro-
cessors.

[3] G. J. Chaitin. Register allocation and spilling via graph coloring. In Proceedings of the 1982
SIGPLAN Symposium on Compiler Construction, pages 98–105, Boston, Massachusetts,
June 23–25, 1982.

[4] R. P. Colwell, R. P. Nix, J. J. O'Donnell, D. P. Papworth, and P. K. Rodman. A VLIW
architecture for a trace scheduling compiler. In Second Intl. Conf. on Architectural Support

57

for Programming Languages and Operating Systems (ASPLOS II), pages 180–192, Palo Alto,
CA, October 1987.

[5] Henk Corporaal and Reinoud Lamberts. TTA Processor Synthesis. In First Annual Conf. of
ASCI, Heijen, The Netherlands, May 1995.

[6] A. Fauth. Beyond tool specific machine descriptions. In P. Marwedel and G. Goossens,
editors, Code Generation for Embedded Processors, pages 138–152. Kluwer Academic Pub-
lishers, 1995.

[7] Joseph A. Fisher, Paolo Faraboschi, and Giuseppe Desoli. Custom-Fit Processors: Letting
Applications Define Architectures. In 29th Annual IEEE/ACM Symposium on Microarchitec-
ture (MICRO-29), pages 324–335, Paris, December 1996.

[8] Michael R. Garey and David. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. W. H. Freeman & Company, 1979.

[9] John C. Gyllenhaal, Wen-mei W. Hwu, and B. Ramakrishna Rau. HMDES version 2.0 speci-
fication. Technical Report IMPACT-96-3, University of Illinois at Urbana-Champaign, 1996.

[10] G. Hadjiyiannis, S. Hanono, and S. Devadas. ISDL: An instruction set description language
for retargetability. In ACM/IEEE Design Automation Conference, 1997.

[11] G. Hadjiyiannis, P. Russo, and S. Devadas. A Methodology for Accurate Performance Evalu-
ation in Architecture Exploration. In Design Automation Conference, New Orleans, LA, June
1999.

[12] Ellis Horowitz and Sartaj Sahni. Fundamentals of Computer Algorithms. Computer Science
Press, Rockville, MD, 1984.

[13] Vinod Kathail, Mike Schlansker, and B. Ramakrishna Rau. HPL PlayDoh architecture speci-
fication: Version 1.0. Technical Report HPL-93-80, Hewlett-Packard Laboratories, February
1994.

[14] D. Lanneer, J. Van Praet, A. K. Kifli, K. Schoofs, W. Geurts, F. Thoen, and G. Goossens.
CHESS: retargetable code generation for embedded DSP processors. In P. Marwedel and
G. Goossens, editors, Code Generation for Embedded Processors, pages 85–102. Kluwer
Academic Publishers, 1995.

[15] R. Leupers and P. Marwedel. Retargetable generation of code selectors from HDL processor
models. In Proceedings of European Design and Test Conference, pages 140–144, March
1997.

[16] B. Ramakrishna Rau, Vinod Kathail, and Shail Aditya. Machine-description driven compilers
for EPIC and VLIW processors. Technical Report HPL-98-40, Hewlett-Packard Laborato-
ries, September 1998. To appear in Journal of Design Automation for Embedded Systems,
1999.

58

A Example Architecture Specification

$include "VLIW_family.hmdes2"

SECTION Register
{
gpr0(); gpr1(); gpr2(); gpr3(); gpr4(); gpr5(); gpr6(); gpr7(); gpr8();
gpr9(); gpr10(); gpr11(); gpr12(); gpr13(); gpr14(); gpr15(); gpr16();
gpr17(); gpr18(); gpr19(); gpr20(); gpr21(); gpr22(); gpr23(); gpr24();
gpr25(); gpr26(); gpr27(); gpr28(); gpr29(); gpr30(); gpr31(); gpr32();
gpr33(); gpr34(); gpr35(); gpr36(); gpr37(); gpr38(); gpr39(); gpr40();
gpr41(); gpr42(); gpr43(); gpr44(); gpr45(); gpr46(); gpr47(); gpr48();
gpr49(); gpr50(); gpr51(); gpr52(); gpr53(); gpr54(); gpr55(); gpr56();
gpr57(); gpr58(); gpr59(); gpr60(); gpr61(); gpr62(); gpr63(); fpr0();
fpr1(); fpr2(); fpr3(); fpr4(); fpr5(); fpr6(); fpr7(); fpr8(); fpr9();
fpr10(); fpr11(); fpr12(); fpr13(); fpr14(); fpr15(); fpr16(); fpr17();
fpr18(); fpr19(); fpr20(); fpr21(); fpr22(); fpr23(); fpr24(); fpr25();
fpr26(); fpr27(); fpr28(); fpr29(); fpr30(); fpr31(); fpr32(); fpr33();
fpr34(); fpr35(); fpr36(); fpr37(); fpr38(); fpr39(); fpr40(); fpr41();
fpr42(); fpr43(); fpr44(); fpr45(); fpr46(); fpr47(); fpr48(); fpr49();
fpr50(); fpr51(); fpr52(); fpr53(); fpr54(); fpr55(); fpr56(); fpr57();
fpr58(); fpr59(); fpr60(); fpr61(); fpr62(); fpr63(); pr0(); pr1(); pr2();
pr3(); pr4(); pr5(); pr6(); pr7(); pr8(); pr9(); pr10(); pr11(); pr12();
pr13(); pr14(); pr15(); pr16(); pr17(); pr18(); pr19(); pr20(); pr21();
pr22(); pr23(); pr24(); pr25(); pr26(); pr27(); pr28(); pr29(); pr30();
pr31(); pr32(); pr33(); pr34(); pr35(); pr36(); pr37(); pr38(); pr39();
pr40(); pr41(); pr42(); pr43(); pr44(); pr45(); pr46(); pr47(); pr48();
pr49(); pr50(); pr51(); pr52(); pr53(); pr54(); pr55(); pr56(); pr57();
pr58(); pr59(); pr60(); pr61(); pr62(); pr63(); cr0(); cr1(); cr2(); cr3();
cr4(); cr5(); cr6(); cr7(); btr0(); btr1(); btr2(); btr3(); btr4(); btr5();
btr6(); btr7(); btr8(); btr9(); btr10(); btr11(); btr12(); btr13(); btr14();
btr15();

}

SECTION Register_File
{
gpr (width(32)

static(gpr0 gpr1 gpr2 gpr3 gpr4 gpr5 gpr6 gpr7 gpr8 gpr9
gpr10 gpr11 gpr12 gpr13 gpr14 gpr15 gpr16 gpr17
gpr18 gpr19 gpr20 gpr21 gpr22 gpr23 gpr24 gpr25
gpr26 gpr27 gpr28 gpr29 gpr30 gpr31 gpr32 gpr33
gpr34 gpr35 gpr36 gpr37 gpr38 gpr39 gpr40 gpr41
gpr42 gpr43 gpr44 gpr45 gpr46 gpr47 gpr48 gpr49
gpr50 gpr51 gpr52 gpr53 gpr54 gpr55 gpr56 gpr57
gpr58 gpr59 gpr60 gpr61 gpr62 gpr63)

speculative(0)
virtual("I"));

fpr (width(64)
static(fpr0 fpr1 fpr2 fpr3 fpr4 fpr5 fpr6 fpr7 fpr8 fpr9

fpr10 fpr11 fpr12 fpr13 fpr14 fpr15 fpr16 fpr17
fpr18 fpr19 fpr20 fpr21 fpr22 fpr23 fpr24 fpr25
fpr26 fpr27 fpr28 fpr29 fpr30 fpr31 fpr32 fpr33
fpr34 fpr35 fpr36 fpr37 fpr38 fpr39 fpr40 fpr41
fpr42 fpr43 fpr44 fpr45 fpr46 fpr47 fpr48 fpr49
fpr50 fpr51 fpr52 fpr53 fpr54 fpr55 fpr56 fpr57
fpr58 fpr59 fpr60 fpr61 fpr62 fpr63)

speculative(0)
virtual("F"));

pr (width(1)
static(pr0 pr1 pr2 pr3 pr4 pr5 pr6 pr7 pr8 pr9 pr10 pr11

pr12 pr13 pr14 pr15 pr16 pr17 pr18 pr19 pr20 pr21
pr22 pr23 pr24 pr25 pr26 pr27 pr28 pr29 pr30 pr31
pr32 pr33 pr34 pr35 pr36 pr37 pr38 pr39 pr40 pr41

59

pr42 pr43 pr44 pr45 pr46 pr47 pr48 pr49 pr50 pr51
pr52 pr53 pr54 pr55 pr56 pr57 pr58 pr59 pr60 pr61
pr62 pr63)

speculative(0)
virtual("P"));

cr (width(32)
static(cr0 cr1 cr2 cr3 cr4 cr5 cr6 cr7)
speculative(0)
virtual("C"));

btr (width(64)
static(btr0 btr1 btr2 btr3 btr4 btr5 btr6 btr7 btr8 btr9

btr10 btr11 btr12 btr13 btr14 btr15)
speculative(0)
virtual("B"));

s (width(6)
virtual("L")
intrange(-32 31));

m (width(9)
virtual("L")
intrange(-256 255));

n (width(32)
virtual("L")
intrange(-2147483648 2147483647));

o (width(17)
virtual("L")
intrange(-65536 65535));

U (width(0)
virtual("U"));

}

SECTION VLIW_RF_Map
{
RFMap_i_f_p_c_a_s

(vrf("I" "F" "P" "C" "B" "L" "U")
prf("gpr" "fpr" "pr" "cr" "btr" "s" "U"));

RFMap_i_f_p_c_a_m
(vrf("I" "F" "P" "C" "B" "L" "U")
prf("gpr" "fpr" "pr" "cr" "btr" "m" "U"));

RFMap_i_f_p_c_a_n
(vrf("I" "F" "P" "C" "B" "L" "U")
prf("gpr" "fpr" "pr" "cr" "btr" "n" "U"));

RFMap_i_f_p_c_a_o
(vrf("I" "F" "P" "C" "B" "L" "U")
prf("gpr" "fpr" "pr" "cr" "btr" "o" "U"));

}

SECTION VLIW_Operation_Group
{
VOG_o79c4i0 (opset("EOS_brcond_branch")

src_rfmap(RFMap_i_f_p_c_a_s)
dest_rfmap(RFMap_i_f_p_c_a_s)
latency(OL_branch)
resv(RT_VOG_o79c4i0)
alt_priority(0));

VOG_o80c4i0 (opset("EOS_brlink_branch")
src_rfmap(RFMap_i_f_p_c_a_s)
dest_rfmap(RFMap_i_f_p_c_a_s)
latency(OL_branch)
resv(RT_VOG_o80c4i0)
alt_priority(0));

VOG_o78c4i0 (opset("EOS_brucond_branch")
src_rfmap(RFMap_i_f_p_c_a_s)
dest_rfmap(RFMap_i_f_p_c_a_s)
latency(OL_branch)

60

resv(RT_VOG_o78c4i0)
alt_priority(0));

VOG_o22c1i0 (opset("EOS_btr_literal_moves")
src_rfmap(RFMap_i_f_p_c_a_n)
dest_rfmap(RFMap_i_f_p_c_a_n)
latency(OL_int)
resv(RT_VOG_o22c1i0)
alt_priority(1));

VOG_o38c2i0 (opset("EOS_convff_float")
src_rfmap(RFMap_i_f_p_c_a_s)
dest_rfmap(RFMap_i_f_p_c_a_s)
latency(OL_float)
resv(RT_VOG_o38c2i0)
alt_priority(0));

VOG_o37c2i0 (opset("EOS_convfi_D_float")
src_rfmap(RFMap_i_f_p_c_a_s)
dest_rfmap(RFMap_i_f_p_c_a_s)
latency(OL_float)
resv(RT_VOG_o37c2i0)
alt_priority(0));

VOG_o34c2i0 (opset("EOS_convif_S_float")
src_rfmap(RFMap_i_f_p_c_a_s)
dest_rfmap(RFMap_i_f_p_c_a_s)
latency(OL_float)
resv(RT_VOG_o34c2i0)
alt_priority(0));

VOG_o31c2i0 (opset("EOS_floatarith2_D_float")
src_rfmap(RFMap_i_f_p_c_a_s)
dest_rfmap(RFMap_i_f_p_c_a_s)
latency(OL_float)
resv(RT_VOG_o31c2i0)
alt_priority(0));

VOG_o27c2i0 (opset("EOS_floatarith2_S_floatdiv")
src_rfmap(RFMap_i_f_p_c_a_s)
dest_rfmap(RFMap_i_f_p_c_a_s)
latency(OL_floatdiv)
resv(RT_VOG_o27c2i0)
alt_priority(0));

VOG_o28c2i0 (opset("EOS_floatarith2_S_floatmpy")
src_rfmap(RFMap_i_f_p_c_a_s)
dest_rfmap(RFMap_i_f_p_c_a_s)
latency(OL_floatmpy)
resv(RT_VOG_o28c2i0)
alt_priority(0));

VOG_o56c3i0 (opset("EOS_floatload_load1")
src_rfmap(RFMap_i_f_p_c_a_s)
dest_rfmap(RFMap_i_f_p_c_a_s)
latency(OL_load1)
resv(RT_VOG_o56c3i0)
alt_priority(0));

VOG_o62c3i0 (opset("EOS_floatstore_store")
src_rfmap(RFMap_i_f_p_c_a_s)
dest_rfmap(RFMap_i_f_p_c_a_s)
latency(OL_store)
resv(RT_VOG_o62c3i0)
alt_priority(0));

VOG_o1c1i0 (opset("EOS_intarith2_int")
src_rfmap(RFMap_i_f_p_c_a_s)
dest_rfmap(RFMap_i_f_p_c_a_s)
latency(OL_int)
resv(RT_VOG_o1c1i0)
alt_priority(1));

VOG_o1c1i1 (opset("EOS_intarith2_int")
src_rfmap(RFMap_i_f_p_c_a_s)

61

dest_rfmap(RFMap_i_f_p_c_a_s)
latency(OL_int)
resv(RT_VOG_o1c1i1)
alt_priority(1));

VOG_o3c1i0 (opset("EOS_intarith2_intdiv")
src_rfmap(RFMap_i_f_p_c_a_s)
dest_rfmap(RFMap_i_f_p_c_a_s)
latency(OL_intdiv)
resv(RT_VOG_o3c1i0)
alt_priority(1));

VOG_o4c1i0 (opset("EOS_intarith2_intmpy")
src_rfmap(RFMap_i_f_p_c_a_s)
dest_rfmap(RFMap_i_f_p_c_a_s)
latency(OL_intmpy)
resv(RT_VOG_o4c1i0)
alt_priority(1));

VOG_o2c1i0 (opset("EOS_intarith2_intshift")
src_rfmap(RFMap_i_f_p_c_a_s)
dest_rfmap(RFMap_i_f_p_c_a_s)
latency(OL_int)
resv(RT_VOG_o2c1i0)
alt_priority(1));

VOG_o2c1i1 (opset("EOS_intarith2_intshift")
src_rfmap(RFMap_i_f_p_c_a_s)
dest_rfmap(RFMap_i_f_p_c_a_s)
latency(OL_int)
resv(RT_VOG_o2c1i1)
alt_priority(1));

VOG_o18c1i0 (opset("EOS_intcmpp_uncond")
src_rfmap(RFMap_i_f_p_c_a_s)
dest_rfmap(RFMap_i_f_p_c_a_s)
latency(OL_intcmpp)
resv(RT_VOG_o18c1i0)
alt_priority(1));

VOG_o52c3i0 (opset("EOS_intload_load1")
src_rfmap(RFMap_i_f_p_c_a_s)
dest_rfmap(RFMap_i_f_p_c_a_s)
latency(OL_load1)
resv(RT_VOG_o52c3i0)
alt_priority(0));

VOG_o5c1i0 (opset("EOS_intsext_int")
src_rfmap(RFMap_i_f_p_c_a_s)
dest_rfmap(RFMap_i_f_p_c_a_s)
latency(OL_int)
resv(RT_VOG_o5c1i0)
alt_priority(1));

VOG_o60c3i0 (opset("EOS_intstore_store")
src_rfmap(RFMap_i_f_p_c_a_s)
dest_rfmap(RFMap_i_f_p_c_a_s)
latency(OL_store)
resv(RT_VOG_o60c3i0)
alt_priority(0));

VOG_o6c1i0 (opset("EOS_moveii_int")
src_rfmap(RFMap_i_f_p_c_a_s)
dest_rfmap(RFMap_i_f_p_c_a_s)
latency(OL_int)
resv(RT_VOG_o6c1i0)
alt_priority(1));

VOG_o21c1i0 (opset("EOS_pbr_int")
src_rfmap(RFMap_i_f_p_c_a_s)
dest_rfmap(RFMap_i_f_p_c_a_s)
latency(OL_int)
resv(RT_VOG_o21c1i0)
alt_priority(1));

62

}

SECTION VLIW_Exclusion_Group
{
VEG_RES_FU_4_0(opgroups(VOG_o79c4i0 VOG_o80c4i0 VOG_o78c4i0));
VEG_RES_FU_1_0(opgroups(VOG_o22c1i0 VOG_o1c1i0 VOG_o3c1i0 VOG_o4c1i0

VOG_o2c1i0 VOG_o18c1i0 VOG_o5c1i0 VOG_o6c1i0
VOG_o21c1i0));

VEG_RES_FU_2_0(opgroups(VOG_o38c2i0 VOG_o37c2i0 VOG_o34c2i0 VOG_o31c2i0
VOG_o27c2i0 VOG_o28c2i0));

VEG_RES_FU_3_0(opgroups(VOG_o56c3i0 VOG_o62c3i0 VOG_o52c3i0 VOG_o60c3i0));
VEG_RES_FU_1_1(opgroups(VOG_o1c1i1 VOG_o2c1i1));

}

SECTION Architecture_Flag
OPTIONAL intvalue(INT);
OPTIONAL doublevalue(DOUBLE);
OPTIONAL stringvalue(STRING);

{
predication_hw(intvalue(0));
speculation_hw(intvalue(0));
systolic_hw (intvalue(0));
technology_scale(doublevalue(0.25));

}

B Synthesis Feedback Report

vliw_cost { // area in mmˆ2
total_cost = 25.515
dpath_ic = 1.496
cpath_ic = 1.020
control = 0.754
gpr = 2.432
fpr = 1.050
pr = 0.023
cr = 0.158
btr = 0.340
PD_f_bas_sd_0 = 2.857
PD_m_ifsd_1 = 2.857
PD_i_bas_2 = 0.714
PD_branch_3 = 0.714
PD_pbr_4 = 0.357
PD_f_div_sd_5 = 5.714
PD_i_div_6 = 2.143
PD_i_mpyadd_7 = 1.429
PD_i_bas_8 = 0.714
PD_i_shift_9 = 0.357
PD_i_shift_10 = 0.357
misc. = 0.028

}

vliw_regports {
num_regfiles = 5
gpr = {
num_input_ports = 4
num_output_ports = 7
input_req = {
{ VOG_o37c2i0 }
{ VOG_o1c1i0 VOG_o3c1i0 VOG_o4c1i0 VOG_o2c1i0 VOG_o5c1i0 VOG_o6c1i0 }

63

{ VOG_o1c1i1 VOG_o2c1i1 }
{ VOG_o52c3i0 }

}
output_req = {
{ VOG_o34c2i0 }
{ VOG_o56c3i0 VOG_o62c3i0 VOG_o52c3i0 VOG_o60c3i0 }
{ VOG_o1c1i0 VOG_o3c1i0 VOG_o4c1i0 VOG_o2c1i0 VOG_o18c1i0 VOG_o5c1i0 VOG_o6c1i0 VOG_o21c1i0 }
{ VOG_o1c1i0 VOG_o3c1i0 VOG_o4c1i0 VOG_o2c1i0 VOG_o18c1i0 }
{ VOG_o1c1i1 VOG_o2c1i1 }
{ VOG_o1c1i1 VOG_o2c1i1 }
{ VOG_o60c3i0 }

}
}
fpr = {
num_input_ports = 2
num_output_ports = 3
input_req = {
{ VOG_o38c2i0 VOG_o34c2i0 VOG_o31c2i0 VOG_o27c2i0 VOG_o28c2i0 }
{ VOG_o56c3i0 }

}
output_req = {
{ VOG_o38c2i0 VOG_o37c2i0 VOG_o31c2i0 VOG_o27c2i0 VOG_o28c2i0 }
{ VOG_o31c2i0 VOG_o27c2i0 VOG_o28c2i0 }
{ VOG_o62c3i0 }

}
}
pr = {
num_input_ports = 1
num_output_ports = 1
input_req = {
{ VOG_o18c1i0 }

}
output_req = {
{ VOG_o79c4i0 }

}
}
cr = {
num_input_ports = 3
num_output_ports = 5
input_req = {
{ VOG_o1c1i0 VOG_o3c1i0 VOG_o4c1i0 VOG_o2c1i0 VOG_o6c1i0 }
{ VOG_o1c1i1 VOG_o2c1i1 }
{ VOG_o52c3i0 }

}
output_req = {
{ VOG_o1c1i0 VOG_o3c1i0 VOG_o4c1i0 VOG_o2c1i0 VOG_o6c1i0 }
{ VOG_o1c1i0 VOG_o3c1i0 VOG_o4c1i0 VOG_o2c1i0 }
{ VOG_o1c1i1 VOG_o2c1i1 }
{ VOG_o1c1i1 VOG_o2c1i1 }
{ VOG_o60c3i0 }

}
}
btr = {
num_input_ports = 3
num_output_ports = 3
input_req = {
{ VOG_o80c4i0 }
{ VOG_o22c1i0 VOG_o6c1i0 VOG_o21c1i0 }
{ VOG_o52c3i0 }

}
output_req = {
{ VOG_o79c4i0 VOG_o80c4i0 VOG_o78c4i0 }
{ VOG_o60c3i0 }
{ VOG_o6c1i0 VOG_o21c1i0 }

64

}
}

}

vliw_macrocells {
num_macrocells = 11
PD_f_bas_sd_0 = { VOG_o38c2i0 VOG_o37c2i0 VOG_o34c2i0 VOG_o31c2i0 VOG_o28c2i0 }
PD_m_ifsd_1 = { VOG_o56c3i0 VOG_o62c3i0 VOG_o52c3i0 VOG_o60c3i0 }
PD_i_bas_2 = { VOG_o1c1i0 VOG_o18c1i0 VOG_o5c1i0 VOG_o6c1i0 }
PD_branch_3 = { VOG_o79c4i0 VOG_o80c4i0 VOG_o78c4i0 }
PD_pbr_4 = { VOG_o22c1i0 VOG_o21c1i0 }
PD_f_div_sd_5 = { VOG_o27c2i0 }
PD_i_div_6 = { VOG_o3c1i0 }
PD_i_mpyadd_7 = { VOG_o4c1i0 }
PD_i_bas_8 = { VOG_o1c1i1 }
PD_i_shift_9 = { VOG_o2c1i0 }
PD_i_shift_10 = { VOG_o2c1i1 }

}

vliw_inst_templates {
max_inst_size = 160
min_inst_size = 32
quantum_size = 32
packet_width = 256
num_templates = 8
template_0 = {
bit_width = 160
num_par_sets = 5
par_set_0 = {
num_opgroups = 3
VOG_o79c4i0(EOS_brcond_branch) = 11
VOG_o80c4i0(EOS_brlink_branch) = 8
VOG_o78c4i0(EOS_brucond_branch) = 5

}
par_set_1 = {
num_opgroups = 9
VOG_o22c1i0(EOS_btr_literal_moves) = 38
VOG_o1c1i0(EOS_intarith2_int) = 28
VOG_o3c1i0(EOS_intarith2_intdiv) = 25
VOG_o4c1i0(EOS_intarith2_intmpy) = 24
VOG_o2c1i0(EOS_intarith2_intshift) = 25
VOG_o18c1i0(EOS_intcmpp_uncond) = 26
VOG_o5c1i0(EOS_intsext_int) = 13
VOG_o6c1i0(EOS_moveii_int) = 16
VOG_o21c1i0(EOS_pbr_int) = 19

}
par_set_2 = {
num_opgroups = 6
VOG_o38c2i0(EOS_convff_float) = 13
VOG_o37c2i0(EOS_convfi_D_float) = 12
VOG_o34c2i0(EOS_convif_S_float) = 12
VOG_o31c2i0(EOS_floatarith2_D_float) = 20
VOG_o27c2i0(EOS_floatarith2_S_floatdiv) = 18
VOG_o28c2i0(EOS_floatarith2_S_floatmpy) = 18

}
par_set_3 = {
num_opgroups = 4
VOG_o56c3i0(EOS_floatload_load1) = 13
VOG_o62c3i0(EOS_floatstore_store) = 13
VOG_o52c3i0(EOS_intload_load1) = 16
VOG_o60c3i0(EOS_intstore_store) = 16

}
par_set_4 = {
num_opgroups = 2

65

VOG_o1c1i1(EOS_intarith2_int) = 28
VOG_o2c1i1(EOS_intarith2_intshift) = 27

}
}
template_1 = {
bit_width = 64
num_par_sets = 2
par_set_0 = {
num_opgroups = 1
VOG_o1c1i0(EOS_intarith2_int) = 28

}
par_set_1 = {
num_opgroups = 1
VOG_o52c3i0(EOS_intload_load1) = 16

}
}
template_2 = {
bit_width = 64
num_par_sets = 2
par_set_0 = {
num_opgroups = 1
VOG_o1c1i0(EOS_intarith2_int) = 28

}
par_set_1 = {
num_opgroups = 1
VOG_o60c3i0(EOS_intstore_store) = 16

}
}
template_3 = {
bit_width = 64
num_par_sets = 1
par_set_0 = {
num_opgroups = 1
VOG_o1c1i0(EOS_intarith2_int) = 28

}
}
template_4 = {
bit_width = 32
num_par_sets = 1
par_set_0 = {
num_opgroups = 1
VOG_o21c1i0(EOS_pbr_int) = 19

}
}
template_5 = {
bit_width = 32
num_par_sets = 1
par_set_0 = {
num_opgroups = 1
VOG_o6c1i0(EOS_moveii_int) = 16

}
}
template_6 = {
bit_width = 32
num_par_sets = 1
par_set_0 = {
num_opgroups = 1
VOG_o18c1i0(EOS_intcmpp_uncond) = 26

}
}
template_7 = {
bit_width = 32
num_par_sets = 1
par_set_0 = {

66

num_opgroups = 1
VOG_o2c1i0(EOS_intarith2_intshift) = 25

}
}

}

C Architecture Manual

In the following pages, the architecture manual for a machine specified in Appendix A is pre-
sented. The machine is customized to the “jpeg” application. The entire manual is generated
automatically.

67

January 25, 2000

Application Speci�c Architecture for the Benchmark jpeg99

generated by Elcor reporting facility

Hewlett-Packard Laboratories

1 Architecture Description

This section provides the description of the processor architecture and the memory hierar-

chy.

1.1 Processor architecture

Architectural feature checklist
Predication not supported

Speculation conventional support

Table above shows which of the architectural features that are available are used in this

experiment. The support for \predication" implies that operations can be conditionally

executed depending on the value of their boolean input operand.

The following two tables shows the register �le con�guration of the processor and the

sizes of literal �elds in instructions.

Register �les

Integer register 64

Floating-point registers 64

Branch target registers 16

Literal �elds
Short literal size 6 bits

Memory literal size 9 bits

Branch literal size 32 bits

Long literal size 17 bits

1.2 Memory hierarchy

Level 1 data cache con�guration

Cache line size 64 bytes

Cache associativity 2 way

Cache size 8192 bytes

Number of ports 1

1

January 25, 2000

1
2

0
1

0
1

2
3

0
1

0
1

2
0

1
0

1
2

3
0

1
2

0
1

2
0

0
1

2
0

0
1

2
0

0
1

2
3

0
0

1
2

0
1

0
1

2
0

0
1

2
0

0
1

2
3

0
1

2
3

4
5

6
0

1
0

1
2

0
0

0
1

2
0

1
2

3
4

0
1

2
0

1
2

P
D
_
f
_
b
a
s
_
s
d
_
0

P
D
_
m
_
i
f
s
d
_
1

P
D
_
i
_
b
a
s
_
2

P
D
_
b
r
a
n
c
h
_
3

P
D
_
p
b
r
_
4

P
D
_
f
_
d
i
v
_
s
d
_
5

P
D
_
i
_
d
i
v
_
6

P
D
_
i
_
m
p
y
a
d
d
_
7

P
D
_
i
_
b
a
s
_
8

P
D
_
i
_
s
h
i
f
t
_
9

P
D
_
i
_
s
h
i
f
t
_
1
0

g
p
r

f
p
r

p
r

c
r

b
t
r

F
ig
u
re
1
:
V
L
IW

p
ro
ce
ss
o
r
d
a
ta
p
a
th
s

2

January 25, 2000

Level 1 instruction cache con�guration

Cache line size 64 bytes

Cache associativity 2 way

Cache size 8192 bytes

Number of ports 1

Level 2 cache con�guration

Cache line size 64 bytes

Cache associativity direct mapped

Cache size 65536 bytes

Number of ports 1

1.3 System area

The following table shows the chip area breakdown for the system

System area breakdown

VLIW processor area 25.515 mm2

Cache area 28.619 mm2

Total area 54.134 mm2

2 Instruction Format

This section provides the instruction format for the processor.

2.1 Instruction Issue Templates

EOP< 3 > T0< 0 � � � 2 > VOG o79c4i0 VOG o22c1i0 VOG o38c2i0 VOG o56c3i0 VOG o1c1i1

VOG o80c4i0 VOG o1c1i0 VOG o37c2i0 VOG o62c3i0 VOG o2c1i1

VOG o78c4i0 VOG o3c1i0 VOG o34c2i0 VOG o52c3i0

VOG o4c1i0 VOG o31c2i0 VOG o60c3i0

VOG o2c1i0 VOG o27c2i0

VOG o18c1i0 VOG o28c2i0

VOG o5c1i0

VOG o6c1i0

VOG o21c1i0

EOP< 3 > T1< 0 � � � 2 > VOG o1c1i0 VOG o52c3i0

EOP< 3 > T2< 0 � � � 2 > VOG o1c1i0 VOG o60c3i0

EOP< 3 > T3< 0 � � � 2 > VOG o1c1i0

EOP< 3 > T4< 0 � � � 2 > VOG o21c1i0

EOP< 3 > T5< 0 � � � 2 > VOG o6c1i0

3

January 25, 2000

EOP< 3 > T6< 0 � � � 2 > VOG o18c1i0

EOP< 3 > T7< 0 � � � 2 > VOG o2c1i0

2.2 IO Formats for Operation Sets

Opset: EOS brcond branch

SRC1 SRC2

4 bits 6 bits

btr pr

Opset: EOS brlink branch

SRC1 DEST1

4 bits 4 bits

btr btr

Opset: EOS brucond branch

SRC1

4 bits

btr

Opset: EOS btr literal moves

SRC1 DEST1

32 bits 4 bits

n btr

Opset: EOS intarith2 int

SRC1 SRC2 DEST1

6 bits 6 bits 6 bits

00 gpr 00 gpr 0 gpr

01 cr 01 cr 1 cr

10 s 10 s

Opset: EOS intarith2 intdiv

SRC1 SRC2 DEST1

6 bits 6 bits 6 bits

00 gpr 00 gpr 0 gpr

01 cr 01 cr 1 cr

10 s 10 s

Opset: EOS intarith2 intmpy

SRC1 SRC2 DEST1

6 bits 6 bits 6 bits

00 gpr 00 gpr 0 gpr

01 cr 01 cr 1 cr

10 s 10 s

Opset: EOS intarith2 intshift

4

January 25, 2000

SRC1 SRC2 DEST1

6 bits 6 bits 6 bits

00 gpr 00 gpr 0 gpr

01 cr 01 cr 1 cr

10 s 10 s

Opset: EOS intcmpp uncond

SRC1 SRC2 DEST1

6 bits 6 bits 6 bits

0 gpr 0 gpr pr

1 s 1 s

Opset: EOS intsext int

SRC1 DEST1

6 bits 6 bits

gpr gpr

Opset: EOS moveii int

SRC1 DEST1

6 bits 6 bits

00 gpr 00 gpr

01 cr 01 cr

10 btr 10 btr

11 s

Opset: EOS pbr int

SRC1 SRC2 DEST1

6 bits 6 bits 4 bits

00 gpr s btr

01 btr

10 s

Opset: EOS conv� oat

SRC1 DEST1

6 bits 6 bits

fpr fpr

Opset: EOS conv� D oat

SRC1 DEST1

6 bits 6 bits

fpr gpr

Opset: EOS convif S oat

SRC1 DEST1

6 bits 6 bits

gpr fpr

Opset: EOS oatarith2 D oat

SRC1 SRC2 DEST1

6 bits 6 bits 6 bits

fpr fpr fpr

5

January 25, 2000

Opset: EOS oatarith2 S oatdiv

SRC1 SRC2 DEST1

6 bits 6 bits 6 bits

fpr fpr fpr

Opset: EOS oatarith2 S oatmpy

SRC1 SRC2 DEST1

6 bits 6 bits 6 bits

fpr fpr fpr

Opset: EOS oatload load1

SRC1 DEST1

6 bits 6 bits

gpr fpr

Opset: EOS oatstore store

SRC1 SRC2

6 bits 6 bits

gpr fpr

Opset: EOS intload load1

SRC1 DEST1

6 bits 6 bits

gpr 00 gpr

01 cr

10 btr

Opset: EOS intstore store

SRC1 SRC2

6 bits 6 bits

gpr 00 gpr

01 cr

10 btr

11 s

2.3 Instruction Formats for Operation Groups

VOG o79c4i0 : (Opset: EOS brcond branch)
IO descriptor: pr ? btr , pr :

Template OPCODE SRC1 SRC2

T0 < 31 > < 32; 33 >< 40; 41 > < 48 � � � 53 >

VOG o80c4i0 : (Opset: EOS brlink branch)
IO descriptor: pr ? btr : btr

Template SRC1 DEST1

T0 < 32; 33 >< 40; 41 > < 31 >< 48 � � � 50 >

VOG o78c4i0 : (Opset: EOS brucond branch)
IO descriptor: pr ? btr :

Template OPCODE SRC1

T0 < 31 > < 32; 33 >< 40; 41 >

6

January 25, 2000

VOG o22c1i0 : (Opset: EOS btr literal moves)
IO descriptor: pr ? n : btr

Template OPCODE SRC1 DEST1

T0 < 4; 5 > < 6 � � � 13 >< 18 � � � 22 >< 24 � � � 29 >< 58 � � � 70 > < 14 � � � 17 >

VOG o1c1i0 : (Opset: EOS intarith2 int)
IO descriptor: pr ? gpr cr s , gpr cr s : gpr cr

Template OPCODE SRC1 SRC2 DEST1

T0 < 22 >< 24 � � � 27 > < 28; 29 >< 6 � � � 11 > < 58; 59 >< 4; 5 >< 12; 13 >< 20; 21 > < 60 >< 14 � � � 19 >

T1 < 22 >< 24 � � � 27 > < 28; 29 >< 6 � � � 11 > < 58; 59 >< 4; 5 >< 12; 13 >< 20; 21 > < 60 >< 14 � � � 19 >

T2 < 22 >< 24 � � � 27 > < 28; 29 >< 6 � � � 11 > < 58; 59 >< 4; 5 >< 12; 13 >< 20; 21 > < 60 >< 14 � � � 19 >

T3 < 22 >< 24 � � � 27 > < 28; 29 >< 6 � � � 11 > < 58; 59 >< 4; 5 >< 12; 13 >< 20; 21 > < 60 >< 14 � � � 19 >

VOG o3c1i0 : (Opset: EOS intarith2 intdiv)
IO descriptor: pr ? gpr cr s , gpr cr s : gpr cr

Template OPCODE SRC1 SRC2 DEST1

T0 < 22 >< 24 > < 25; 26 >< 6 � � � 11 > < 27; 28 >< 4; 5 >< 12; 13 >< 20; 21 > < 29 >< 14 � � � 19 >

VOG o4c1i0 : (Opset: EOS intarith2 intmpy)
IO descriptor: pr ? gpr cr s , gpr cr s : gpr cr

Template OPCODE SRC1 SRC2 DEST1

T0 < 22 > < 24; 25 >< 6 � � � 11 > < 26; 27 >< 4; 5 >< 12; 13 >< 20; 21 > < 28 >< 14 � � � 19 >

VOG o2c1i0 : (Opset: EOS intarith2 intshift)
IO descriptor: pr ? gpr cr s , gpr cr s : gpr cr

Template OPCODE SRC1 SRC2 DEST1

T0 < 22 >< 24 > < 25; 26 >< 6 � � � 11 > < 27; 28 >< 4; 5 >< 12; 13 >< 20; 21 > < 29 >< 14 � � � 19 >

T7 < 22 >< 24 > < 25; 26 >< 6 � � � 11 > < 27; 28 >< 4; 5 >< 12; 13 >< 20; 21 > < 29 >< 14 � � � 19 >

VOG o18c1i0 : (Opset: EOS intcmpp uncond)
IO descriptor: pr ? gpr s , gpr s : pr , pr

Template OPCODE SRC1 SRC2 DEST1

T0 < 14 � � � 19 > < 22 >< 6 � � � 11 > < 58 >< 4; 5 >< 12; 13 >< 20; 21 > < 24 � � � 29 >

T6 < 14 � � � 19 > < 22 >< 6 � � � 11 > < 58 >< 4; 5 >< 12; 13 >< 20; 21 > < 24 � � � 29 >

VOG o5c1i0 : (Opset: EOS intsext int)
IO descriptor: pr ? gpr : gpr

Template OPCODE SRC1 DEST1

T0 < 4 > < 6 � � � 11 > < 14 � � � 19 >

VOG o6c1i0 : (Opset: EOS moveii int)
IO descriptor: pr ? gpr cr btr s : gpr cr btr

Template SRC1 DEST1

T0 < 4; 5 >< 6 � � � 11 > < 12; 13 >< 14 � � � 19 >

T5 < 4; 5 >< 6 � � � 11 > < 12; 13 >< 14 � � � 19 >

VOG o21c1i0 : (Opset: EOS pbr int)
IO descriptor: pr ? gpr btr s , s : btr

Template OPCODE SRC1 SRC2 DEST1

T0 < 4 > < 5 >< 12 >< 6 � � � 11 > < 13 >< 18 � � � 22 > < 14 � � � 17 >

T4 < 4 > < 5 >< 12 >< 6 � � � 11 > < 13 >< 18 � � � 22 > < 14 � � � 17 >

7

January 25, 2000

VOG o38c2i0 : (Opset: EOS conv� oat)
IO descriptor: pr ? fpr : fpr

Template OPCODE SRC1 DEST1

T0 < 74 > < 76 � � � 81 > < 82 � � � 87 >

VOG o37c2i0 : (Opset: EOS conv� D oat)
IO descriptor: pr ? fpr : gpr

Template SRC1 DEST1

T0 < 76 � � � 81 > < 74; 75 >< 82 � � � 85 >

VOG o34c2i0 : (Opset: EOS convif S oat)
IO descriptor: pr ? gpr : fpr

Template SRC1 DEST1

T0 < 74 � � � 79 > < 82 � � � 87 >

VOG o31c2i0 : (Opset: EOS oatarith2 D oat)
IO descriptor: pr ? fpr , fpr : fpr

Template OPCODE SRC1 SRC2 DEST1

T0 < 74; 75 > < 76 � � � 81 > < 88 � � � 93 > < 82 � � � 87 >

VOG o27c2i0 : (Opset: EOS oatarith2 S oatdiv)
IO descriptor: pr ? fpr , fpr : fpr

Template SRC1 SRC2 DEST1

T0 < 76 � � � 81 > < 88 � � � 93 > < 82 � � � 87 >

VOG o28c2i0 : (Opset: EOS oatarith2 S oatmpy)
IO descriptor: pr ? fpr , fpr : fpr

Template SRC1 SRC2 DEST1

T0 < 76 � � � 81 > < 88 � � � 93 > < 82 � � � 87 >

VOG o56c3i0 : (Opset: EOS oatload load1)
IO descriptor: pr ? gpr : fpr

Template OPCODE SRC1 DEST1

T0 < 42 > < 34 � � � 39 > < 43 � � � 47 >< 97 >

VOG o62c3i0 : (Opset: EOS oatstore store)
IO descriptor: pr ? gpr , fpr :

Template OPCODE SRC1 SRC2

T0 < 42 > < 34 � � � 39 > < 43 � � � 47 >< 97 >

VOG o52c3i0 : (Opset: EOS intload load1)
IO descriptor: pr ? gpr : gpr cr btr

Template OPCODE SRC1 DEST1

T0 < 97; 98 > < 34 � � � 39 > < 99; 100 >< 42 � � � 47 >

T1 < 97; 98 > < 34 � � � 39 > < 99; 100 >< 42 � � � 47 >

VOG o60c3i0 : (Opset: EOS intstore store)
IO descriptor: pr ? gpr , gpr cr btr s :

Template OPCODE SRC1 SRC2

T0 < 97; 98 > < 34 � � � 39 > < 99; 100 >< 42 � � � 47 >

T2 < 97; 98 > < 34 � � � 39 > < 99; 100 >< 42 � � � 47 >

8

January 25, 2000

VOG o1c1i1 : (Opset: EOS intarith2 int)
IO descriptor: pr ? gpr cr s , gpr cr s : gpr cr

Template OPCODE SRC1 SRC2 DEST1

T0 < 103 � � � 107 > < 108; 109 >< 110 � � � 115 > < 116; 117 >< 118 � � � 123 > < 124 >< 125 � � � 130 >

VOG o2c1i1 : (Opset: EOS intarith2 intshift)
IO descriptor: pr ? gpr cr s , gpr cr s : gpr cr

Template OPCODE SRC1 SRC2 DEST1

T0 < 103; 104 > < 105; 106 >< 110 � � � 115 > < 107; 108 >< 116 � � � 123 > < 109 >< 125 � � � 130 >

3 Application statistics

Application performance summary

VLIW execution time with perfect cache 3.235e+07 cycles

Total execution time with cache 34758920 cycles

The table above shows the overall application performance for the given architecture

with a perfect cache and with the cache whose parameters are in Section 1.2.

3.1 Achieved instructions per cycle

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

0 0.5 1 1.5 2 2.5

F
un

ct
io

n
ex

ec
ut

io
n

tim
e

OPC (dynamic)

Figure 2: Plot of function execution time vs. OPC

9

January 25, 2000

Figure 2 is a scatter plot of all the functions that were called at least once during the

execution of the program. The x-axis is the dynamic average of instructions scheduled per

cycle for a function and y-axis is the total execution time of a function over all calls.

The OPC shown in this graph does not take cache e�ects into account.

3.2 Number of functions responsible for cumulative execution time

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35

P
er

ce
nt

ag
e

of
 to

ta
l e

xe
cu

tio
n

tim
e

Number of functions

Figure 3: Cumulative execution time distribution over the most important functions

Figure 3 shows the cumulative execution for the most important functions in this applica-

tion. The x-axis is the number of functions in the execution time and y-axis is the percentage

of overall execution time these functions are responsible for.

As shown in this �gure, top ten functions account for 99 percent of the total execution

time. The top three most important functions are systolic dct, EN Encode Block, and

EN Encode Scan Gray responsible for 93 percent of execution.

3.3 Most important functions

Table 9 lists the top 25 most important functions in their order of importance in their con-

tribution to total execution time. The columns in this table are the name of the function,

execution time of this function as a percentage of total execution time, the cumulative per-

centage of total execution time including this function, dynamic average issued operations

10

January 25, 2000

Table 9: Most important functions

cumul. static cumul.

exec. exec. op static op

Function time % time % OPC count count %

systolic dct 69 69 1.52 693 5

EN Encode Block 13 82 2.19 1083 14

EN Encode Scan Gray 10 93 1.92 2965 39

EB Write Bits 6 99 2.05 228 41

EN Encode DC 0 99 1.82 132 42

BuildHu�manTable 0 99 2.05 2757 65

Scale Matrix 0 99 1.64 1276 75

Fill Winograd Quant Table 0 99 0.68 40 76

EP Write DHTs 0 99 2.24 685 81

Read Next Rows From File 0 99 1.29 18 82

EB Read Next Rows 0 99 1.25 15 82

EP Write DQT 0 99 1.80 42 82

Write Bytes To File 0 99 1.33 16 82

getint 0 99 1.76 157 84

EB Write Bytes 0 99 1.63 78 84

main 0 99 1.73 407 88

EN Encode 0 99 1.56 709 93

read ppm 0 99 1.64 134 95

EP Write SOF 0 99 1.81 113 96

EJ Encode JPEG 0 99 1.57 47 96

EP Write SOS 0 99 1.83 75 97

EP End 0 99 1.56 25 97

EJ Encode JPEG File To File 0 99 1.56 25 97

EP Begin 0 99 1.50 27 97

EP Write EOI 0 99 1.43 20 97

11

January 25, 2000

per cycle, the number of operations in the function body and the cumulative percentage of

total number of operations including this function.

3.4 Breakdown of static operation count

Table 10: Static operation count components

Function int% oat% mem% cmpp% pbr% branch%

systolic dct 60 0 37 0 0 0

EN Encode Block 44 0 17 9 14 14

EN Encode Scan Gray 57 0 27 3 6 6

EB Write Bits 43 0 31 5 10 10

EN Encode DC 45 0 26 3 12 12

BuildHu�manTable 53 0 33 3 4 4

Scale Matrix 51 0 32 3 6 6

Fill Winograd Quant Table 40 15 20 5 10 10

EP Write DHTs 52 0 35 3 4 4

Read Next Rows From File 50 0 27 0 11 11

EB Read Next Rows 40 0 33 0 13 13

EP Write DQT 52 0 30 2 7 7

Write Bytes To File 43 0 31 0 12 12

getint 31 0 22 9 17 17

EB Write Bytes 42 0 33 3 10 10

main 39 0 25 4 15 15

EN Encode 45 0 20 4 14 14

read ppm 37 0 29 4 14 14

EP Write SOF 53 0 29 3 7 7

EJ Encode JPEG 53 0 34 0 6 6

EP Write SOS 46 0 26 5 10 10

EP End 40 0 32 4 12 12

EJ Encode JPEG File To File 44 0 40 0 8 8

EP Begin 40 0 25 3 14 14

EP Write EOI 45 0 35 0 10 10

Table 10 shows the breakdown of static operations into categories for the same top 25 most

important functions as in Table 9. The columns in this table are the name of the function,

and the percentage of integer, oating-point, memory, compare-to-predicate, prepare-to-

branch and branch instructions in the static operation count.

12

January 25, 2000

3.5 Opcode usage

Table 11 lists the static and dynamic usage statistics of all PlayDoh opcodes in the order of

their dynamic importance. The integer operations are shown in black. The oating-point

operations are in red, the compare-to-predicate, prepare-to-branch, and branch operations

are in green and �nally load and store operations are in cyan.

Table 11: Opcode usage statistics

Opcode stat. wght dyn. wght dyn. sum

ADD W 33.2 37.5 37.5

L W C1 C1 14.4 15.1 52.6

S W C1 12.1 13.4 66

SHL W 2.8 6.1 72.1

SHRA W 1.9 5.9 78

PBRR 7.3 3.2 81.2

BRCT 4 2.8 84

ADDL W 3.7 2.5 86.6

SUB W 0.4 2.1 88.7

L H C1 C1 0.3 1.6 90.4

S H C1 0.9 1.4 91.8

EXTS H 0.2 1.4 93.3

MOVE 8.4 1.1 94.3

CMPP W LEQ UN UN 0.7 0.9 95.2

CMPP W LT UN UN 0.8 0.8 96

L B C1 C1 0.7 0.8 96.8

MPY W 0.3 0.8 97.6

CMPP W GT UN UN 0.8 0.6 98.2

CMPP W EQ UN UN 0.4 0.5 98.7

AND W 0.7 0.4 99.1

S B C1 0.7 0.2 99.3

OR W 0 0.2 99.4

BRL 1.5 0.1 99.6

PBRA 0.3 0.1 99.7

RTS 0.3 0.1 99.8

BRU 1.9 0.1 99.9

CMPP W GEQ UN UN 0.8 0 100

CMPP W LGEQ UN UN 0 0 100

CMPP W NEQ UN UN 0.4 0 100

DIV W 0.1 0 100

FL S C1 C1 0 0 100

FL D C1 C1 0 0 100

CONVDW 0 0 100

13

January 25, 2000

Table 11: Opcode usage statistics

Opcode stat. wght dyn. wght dyn. sum

CONVWS 0 0 100

FDIV S 0 0 100

CONVSD 0 0 100

FADD D 0 0 100

FMPY S 0 0 100

CMPP W LGT UN UN 0 0 100

EXTS B 0 0 100

MPYL W 0 0 100

14

