
Lattice Attacks on Digital
Signature Schemes

N.A. Howgrave-Graham, N.P. Smart
MCS Department
HPL Laboratories Bristol
HPL-1999-90
3rd August, 1999*

digital signatures,
lattices

We describe a lattice attack on the Digital Signature
Algorithm (DSA) when used to sign many messages,
mi , under the assumption that a proportion of the bits of
each of the associated ephemeral keys, yi, can be
recovered by alternative techniques.

* Internal Accession Date Only
 Copyright Hewlett-Packard Company 1999

LATTICE ATTACKS ON DIGITAL SIGNATURE SCHEMES

N.A. HOWGRAVE-GRAHAM AND N.P. SMART

Abstract. We describe a lattice attack on the Digital Signature Algorithm

(DSA) when used to sign many messages, mi, under the assumption that a

proportion of the bits of each of the associated ephemeral keys, yi, can be

recovered by alternative techniques.

1. Introduction

Lattice attacks have recently been used to attack RSA schemes under various
additional assumptions, such as low exponent versions of RSA, or factoring the
modulus when a certain portion of the bits of p are known in advance. Many of
these attacks have derived from ground breaking ideas of Coppersmith on how one
can use the LLL algorithm [9] to solve univariate and bivariate modular polynomial
equations. For more details on this and related matters the reader should consult,
[2], [4], [5], [7] and [8].

ElGamal signatures, see [6], are based on the assumption that one has a �nite
abelian group, G, for which it is computationally infeasible to solve the discrete
logarithm and Di�e-Hellman problems. ElGamal type signature schemes have
been deployed and standardized in the Digital Signature Algorithm, DSA, and its
elliptic curve variant, EC-DSA.

In the above mentioned protocols, based on the discrete logarithm problem, Alice
publishes the group G, along with its cardinality p = #G, which we assume to be
a large prime of over 160 bits in length. Alice also publishes an element g 2 G, and
h = gx for some private integer x. In what follows f is any mapping from G to
Z=pZ, that is almost bijective, and which is also assumed to be public knowledge.

For Alice to sign a message m 2 Z=pZ she computes b such that

m � by � xf(gy) (mod p); (1)

for some randomly chosen y 2 f1; : : : ; p � 1g, and sends Bob the triple (m; gy; b).
The integer y is usually referred to as the ephemeral key, since it needs to be di�erent
for each message and is only required for the short space of time it requires to sign
the message.

Bob may verify that

gmb�1hf(g
y)b�1 = gy

without ever knowing the quantity y (clearly knowledge of y immediately leads to
the discovery of x). There are various other signing/verifying equations that one
could use, but they are all roughly of the same form and our attack will apply to
any scheme which uses an auxiliary equation such as Equation (1).

In this paper we analyze the situation where Alice signs many messages, mi,
using her �xed private key x and the ephemeral keys yi. The messages Alice will

Key words and phrases. digital signatures, lattices.

1

sign will not be chosen by the adversary. However, we do assume that a few of the
bits of the random quantities yi are also known. We do not address how these few
bits of yi are to be determined, it may be due to a weak random number generator,
a timing attack or using some probe on the device used to generate the signatures.

Under the above assumption we show that the remaining bits of the yi may
be discovered in essentially polynomial time. However, we observe that when the
number of known bits of each yi is very small, the increasing size of the lattices
we need to consider make the method increasingly impractical. Notice that if we
manage to recover any one of the ephemeral keys then we recover the private key,
x, and are so able to impersonate the valid user.

Our method resembles some of the techniques used in [3] in that it uses a polyno-
mial time algorithm of Babai [1] to �nd a lattice vector which is close to a non-lattice
vector.

2. Basic strategy

Assume we intercept h messages, then we have the following set of equations

mi � biyi + xfi � 0 (mod p)

for 1 � i � h, where fi = f(gyi) and only x and yi are unknown.
Rearranging these equations we obtain equations of the form yi +Cix+Di � 0

(mod p), for some integers Ci; Di. If we know no information about any bits of x
then we can eliminate x and obtain h� 1 equations of the form yi+C 0

iyh+D0

i � 0
(mod p) for some other integers C 0

i and D
0

i. On the other hand if we do know some
information about x then we may as well use it.

In either case we obtain n = h or h� 1 equations of the form

yi +Aiy0 +Bi � 0 (mod p) for i = 1; : : : ; n; (2)

for some given integers Ai; Bi 2 [0; : : : ; p � 1], where y0 = x or y0 = yh. It is on
these equations that our attack will be mounted and not the discrete logarithm
problem from which a single instance of the protocol derives its security.

Suppose that we do not know a certain set of (contiguous) bits of the yi, for
i = 0; : : : ; n. In other words, for i = 0; : : : ; n, we have

yi = z0i + 2�izi + 2�iz00i

where z0i; z
00

i ; �i and �i are known and the zi are the only unknowns. Clearly in the
above representation of yi we are assuming

0 � z0i < 2�i ; 0 � zi < Xi = 2�i��i ; �i < �i and 0 � z00i :

By rearranging the Equations (2) we obtain equations in the zi given by

zi + siz0 + ti � 0 (mod p) for i = 1; : : : ; n; (3)

for some integers si; ti 2 [0; : : : ; p� 1].
A random set of equations of this form would have solutions with zi � p. But

our set is not a random set since we know there is a solution with zi < Xi < p. In
the examples we consider the size of the zi could be as much as p0:95, even so we
know there is a solution which is smaller than one would expect from a random set
of equations.

We have reduced our problem to �nding a `small' solution to a set of modular
equations. Since one would expect such `small' solutions to be rare, one can hope

2

that any solution to the above congruences, which is suitably small in some sense,
will be precisely the small solution we require.

To tackle this problem of �nding a `small' solution to the set of simultaneous
linear equations we consider the lattice, L, generated by the rows of the following
matrix:

A =

0
BBBBB@

�1 s1 s2 : : : sn
0 p 0 : : : 0
0 0 p 0
...

. . .
...

0 : : : : : : : : : p

1
CCCCCA
2M(n+1);(n+1)(Z):

Hence L = fxA : x 2 Zn+1g. Now consider the non-lattice vector given by

t = (0; t1; t2; : : : ; tn) 2 Z
n+1:

By construction we know that there is a vector x 2 Zn+1 such that

xA� t = (z0; z1; : : : ; zn) 2 Z
n+1:

So there is a lattice vector, xA, whose distance from the vector t is bounded by

kxA� tk2 �
nX

i=0

X2
i

In [1], Babai gives a polynomial time algorithm to �nd a closest lattice vector to
a given non-lattice point. Suppose we �rst transform A to an LLL-reduced basis
represented by the rows of the matrix B. Let b�i denote the corresponding Gram-
Schmidt basis derived from B in the usual way. Babai proves the following theorem:

Theorem 1 (Babai). In polynomial time, one can determine a lattice vector w

which satis�es

kw� tk2 � c1kb
�

n+1k
2;

for some constant c1 depending on n.

Heuristically we believe the vector size of kb�n+1k to be slightly larger than

�1=(n+1), where � is the lattice determinant, say

kb�n+1k � c2�
1=(n+1):

for some constant, c2 > 1, depending on n. In our case we have � = pn, so if

nX
i=0

X2
i < c1c2�

2=(n+1) = c1c2p
2n=(n+1)

then there is a good chance that Babai's algorithm will produce a lattice vector w
such that

w � t = (z0; z1; : : : ; zn):

We are making the heuristic assumption that if Babai's algorithm �nds a lattice
vector which is close enough to t, then it will be the vector which corresponds to a
solution to our original problem. This heuristic seems to be born out in practice,
and is common in lattice arguments. We know, after all, that there exists a lattice
vector which is closer to the vector t than one would expect from a purely random
lattice. Such close vectors should be rare, so if Babai's algorithm �nds a close
lattice vector then it should be the one we are after.

3

Notice that the above result of Babai is the theoretical bound derived from
the de�nition of an LLL-reduced basis. It is well known that the LLL algorithm
performs much better than one would expect from theory, so heuristically we hope
that the constant c1 in Babai's theorem should really be slightly larger than one
and that the constant c2 is at most n. Then, hopefully, the condition

max
0�i�n

Xi < pn=(n+1)

will be su�cient to derive the required solution to our problem.
Even if it does not, we may obtain a vector which is close enough such that

the resulting ephemeral keys are indistinguishable from the correct ephemeral keys.
This last case would allow us to claim, by revealing the (bogus) ephemeral keys,
that it was us and not the legitimate party which signed the original messages.

On the other hand, Babai's algorithm may reveal a close vector which is not
close enough for our purposes in that it may give rise to ephemeral keys which we
can not use to pretend we sent the original messages. But as we argued above, if
our heuristics hold, then such a situation should be very rare.

To see what all this means in practice we make the simplifying assumption that
the same number of bits of the yi are known, for all i. This is not necessary for
the attack to work, but makes the following argument simpler, If the proportion of
known bits is � 2 (0; : : : ; 1), then we have Xi = p1��. Our inequality then becomes

p(1��) < pn=(n+1):

Hence,

� >
1

n+ 1
:

So the more messages we use in our lattice attack then the smaller the number of
known bits we need. However, the more messages we use, the larger the lattices
and the more likely that our heuristic breaks down.

3. Experimental Results

It remains to consider whether the above heuristic simpli�cations are sensible
and are born out in practice. We implemented the above attack using C++ and
the NTL library, [10], to perform the LLL reduction. Since the DSA mandates 160
bit values of p, to agree with the output length of the SHA-1 function, we chose
a prime p of 160 bits. We then generated sets of random equations such as those
in Equation (3), such that the unknown values of zi are bounded by p1��. Our
heuristic would imply that we would require

n � 1=�

such equations to recover all the unknown variables.
The following table indicates the range of applicability of our heuristic and the

resulting algorithm: The times are averaged over a series of runs, for a prime of 160
bits. The actual value of n is the value used which recovers the ephemeral keys, for
the majority of the series of runs of the algorithm.

4

Actual Value Time in
� 1=� of n required Seconds

:500 2 2 0:0102
:250 4 4 0:0360
:100 10 11 0:4428
:050 20 30 8:6970
:025 40 � Infeasible

The entry of `Infeasible' means we could not �nd the keys with this value of � with
our implementation and the values of n we attempted. Notice that � = :025, for a
prime of 160 bits, means that only four bits of each ephemeral keys are known to
the attacker. As we can see our heuristic is more accurate when a higher proportion
of the bits are known, and so a smaller number of equations are needed. However,
when � = 0:05 we can mount a successful attack using very little computing re-
sources, with only 8 bits known out of every 160 bits of ephemeral key and only 30
signed messages.

4. Non-contiguous blocks of bits

When the known bits of the ephemeral keys do not occur in one contiguous
block, the lattice techniques still work with exactly the same theoretical bounds,
although the time taken to �nd the remaining bits does increase. In this section we
detail the necessary modi�cations to the original algorithm.

We assume there are d blocks of unknown bits in the private key x and ephemeral
keys yi, i.e.

x = x0 +

dX
j=1

xj2
�j ; and yi = y0i +

dX
j=1

yi;j2
�i;j ;

for some unknown positive integers xi; yi;j such that

xj < Xj < 2�j+1��j and yi;j < Yi;j < 2�i;j+1��i;j ;

and for known integers x0 and y0i. We further restrict ourselves to the case when
the number of unknown bits in x and the yi is approximately the same, i.e. for all
1 � i � h we have the following:

dY
j=1

Xj �
dY

j=1

Yi;j � p1��:

Using the same transformations as in Section 2 we let zi;j , for i = 0; : : : ; n and
j = 1; : : : ; t, denote our unknown quantities and write our system of equations as

zi;1 +

dX
j=2

si;jzi;j +

dX
j=1

ri;jz0;j + ti � 0 (mod p) for i = 1; : : : ; n:

In terms of the unknowns zi;j we assume their respective bounds, Zi;j 2 Z, satisfy

dY
j=1

Zi;j � p1��

for each i = 0; : : : ; n. Set Ji;j = J=Zi;j 2 Z, for all i and j, where

J =
Y

0�i�n
1�j�d

Zi;j ' p(1��)(n+1):

5

These quantities will be used to weight our lattice so as to take into account vari-
ations in the size of the Zi;j . Let Il denote the identity matrix of dimension l and
consider the lattice, L, generated by the rows of the following matrix:

B =

0
@ �Id(n+1)�n

Rt

S

0 �pIn

1
A�D;

where R = (ri;j) and S denotes the matrix

S =

0
B@
s1 0

. . .

0 sn

1
CA 2Mn(d�1);n(Z);

with si denoting the column vector given by (si;j)
d
j=2. The matrix D is the diagonal

matrix given by

D = diag (J0;1; : : : ; J0;d; J1;2; : : : ; J1;d; : : : ; Jn;2; : : : ; Jn;d; J1;1; : : : ; Jn;1)

= diag (j) :

If we consider the non-lattice vector given by

t = (0; : : : ; 0; t1J1;1; : : : ; tnJn;1) ;

then we know there exists a vector x 2 Zd(n+1) such that

xB � t = (z0;1; : : : ; z0;d; z1;2; : : : ; z1;d; : : : ; zn;2; : : : ; zn;d; z1;1; : : : ; zn;1) � j:

By the choice of weights we have used, every entry in the right hand vector has size
around J . We then use Babai's algorithm to �nd a lattice vector, w, close to the
vector t. Hopefully we will obtain w = xB.

Since

det(B) = pn
Y

0�i�n
1�j�d

Ji;j = pnJd(n+1)
Y

0�i�n
1�j�d

Z�1
i;j = pnJd(n+1)�1;

in order to satisfy the criteria of Theorem 1 (under the same heuristic assumptions
of Section 2) we wish the to ensure that

J < det(B)1=d(n+1):

But J ' p(1��)(n+1), hence we obtain

(1� �)(n+ 1) �
1

d(n+ 1)
(n+ (1� �)(n+ 1)(d(n+ 1)� 1)) :

In other words

� >
1

n+ 1
;

which can be seen to be the same bound as in the contiguous case.
Even though the same theoretical bound on � is reached, in practice the non-

contiguous case is harder to solve. This is due to the fact that the increased
dimension of the lattice to reduce both increases the time for LLL-reduction whilst
decreasing the chances of the heuristics holding.

We ran some experiments, setting Zi;j = p(1��)=d and obtained the following
results, again using a 160 bit prime number p;

6

Actual Value Time in
d � 1=� of n Seconds

2 :500 2 2 0:067
4 :500 2 2 0:304
8 :500 2 2 1:135
16 :500 2 � Infeasible
2 :250 4 4 0:393
4 :250 4 4 1:785
8 :250 4 � Infeasible
2 :100 10 12 6:256
4 :100 10 � Infeasible
2 :050 20 � Infeasible

Hence as � decreases we could only use fewer numbers of blocks to still recover the
keys. This is because as � decreases and d increases we obtain larger and larger
matrices.

5. Conclusions

We have shown how to use lattice methods to break digital signature algorithms
when small numbers of bits of many ephemeral keys are known. It goes without
saying that our attack also applies when a large number of bits are known of a
small number of ephemeral keys. Our attack relies on solving the many equations
which arise in the multiple calls to the digital signature algorithm, rather than
any underlying weaknesses of the discrete log problem or the choice of group. We
have shown that in designing implementations in hardware or software of digital
signature algorithms it is important that no bits of the ephemeral keys are leaked
for whatever reason.

References

[1] L. Babai, On Lov�asz lattice reduction and the nearest point problem. Combinatorica, 6, 1{13,

1986.

[2] D. Boneh and G. Durfee, Cryptanalysis of RSA with private key of less than N0:292. Advances

in Cryptology, EUROCRYPT '99, editor J. Stern. Springer-Verlag, LNCS 1592, 1{11, 1999.

[3] D. Boneh and R. Venkatesan, Hardness of computing the most signi�cant bits of secret keys

in Di�e-Hellman and related schemes. Advances in Cryptology, CRYPTO '96, editor N.

Koblitz, Springer-Verlag, LNCS 1109, 129{142, 1996.

[4] D. Coppersmith, Finding a small root of a bivariate integer equation; factoring with high

bits known. Advances in Cryptology, EUROCRYPT '96, editor U. Maurer, Springer-Verlag,

LNCS 1070, 178{189, 1996.

[5] D. Coppersmith, Small solutions to polynomial equations, and low exponent RSA vulnera-

bilities. J. of Cryptology, 10, 233{260, 1997.

[6] T. ElGamal, A public-key cryptosystem and a signature scheme based on discrete logarithms

IEEE Trans. Inform. Theory, 31, 469-472, 1985.

[7] N. Howgrave-Graham, Finding small roots of univariate modular equations revisited. Proc.

of Cryptography and Coding, Springer-Verlag, LNCS 1355, 131-142, 1997.

[8] N. Howgrave-Graham, Computational mathematics inspired by RSA. PhD. Thesis, Univer-

sity of Bath, 1999.

[9] A.K. Lenstra, H.W. Lenstra and L. Lov�asz, Factoring polynomials with rational coe�cients.

Math. Ann., 261, 515{534, 1982.

[10] V. Shoup, NTL: A Library for doing Number Theory http://www.shoup.net/

7

Hewlett-Packard Laboratories, Filton Road, Stoke Gifford, Bristol, BS12 6QZ,

United Kingdom

E-mail address: nichow@hplb.hpl.hp.com

Hewlett-Packard Laboratories, Filton Road, Stoke Gifford, Bristol, BS12 6QZ,

United Kingdom

E-mail address: nigel smart@hpl.hp.com

8

