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  Abstract

This paper investigates the effect of interactions between the Walsh codes and data sequences

on the statistical moments of the forward-link CDMA signal. Of primary interest is the normal-

ized fourth-order moment, which is referred to as the “power variance”. Several techniques for

reducing the power variance of the CDMA signal are discussed that are based on Walsh code

selection and data encoding. Results illustrate the effects of data correlation, and demonstrate the

reduction in the power variance afforded by two novel approaches referred to as “channel hop-

ping” and “data bit reversal”.

IEEE keywords: multi-access communication, intermodulation distortion.

1.0  Introduction

CDMA, or Code Division Multiple Access, is a modulation format that uses spread spectrum

to transmit multiple channels over a common bandwidth [16], [18]. It is generally accepted that a

CDMA system is limited by the interference from other users [6], [7]. However, if the transmit

portion of a base-station (referred to as the “forward-link”) contains nonlinear components, such

as power amplifiers, intermodulation distortion becomes an additional source of interference [4].

In general, it is the AM component of the input signal that is converted by nonlinearities into

intermodulation distortion. Thus, methods of reducing the amplitude variations in the signal are of

interest.

In this paper, we investigate how Walsh code selection and data encoding can be used within

the CDMA modulation format to reduce the “power variance” of the input signal, prior to any

nonlinear devices, while it is still in a digital form. The proposed methods exploit correlations

between data sequences within specific groups of Walsh codes to minimize the power variance.
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Walsh code selection has an additional effect when the CDMA signal is bandlimited; however,

this topic is beyond the scope of this paper and is discussed in [2].

The remainder of the introduction describes the digital baseband portion of a forward-link

CDMA signal, and introduces the power variance as a measure of the signal’s sensitivity to non-

linearities. An outline for the paper is found at the end of this section.

The generation of a forward-link CDMA signal is shown as a block diagram in Figure 1. For

the purpose of analyzing the digital baseband portion of the forward-link, there are three key sig-

nals: Walsh-coded signal xAM(nT); sampled CDMA signal x(nT); and output signal z(nT). The

Walsh-coded signal, xAM(nT), is a bipolar sequence which contains the amplitude information. It

is QPSK modulated to form the sampled CDMA signal, x(nT). The output signal, z(nT), is a dis-

torted version of the sampled CDMA signal after it has passed through a nonlinear device.

Fig. 1. Generation of a forward-link CDMA signal.

The equations for the baseband signals shown in Figure 1 are as follows. The Walsh-coded sig-

nal, xAM(nT), is

(1)

where T is the sample (chip) interval and d0 = 1. Each data symbol, di, is held constant at +1 or -1

over an interval of 64T. Each Walsh code, Wi, comprises 64 chips that are repeated for each data
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. (2)

The scale term,ρi, is used to adjust the transmitted power of the individual channel associated

with Walsh code Wi, and it is assumed to be constant over the data symbol interval [0,63T]. The

relationship between the chip interval (T) and the symbol interval ([0,63T]) is shown in Figure 2.

Fig. 2. Walsh code and data symbol timing and alignment.

The sampled CDMA signal is generated by QPSK modulation using two PN sequences [12],

[13] (denoted by PNI and PNQ):

(3)

The phase modulation has the effect of spreading the spectrum of the signal, as well as ensuring

that each baseband sample is uncorrelated with it’s neighbor (that is, E[x(nT) x(mT)] = 0 when n

is not equal to m).

The output signal is described by

, (4)

where G is the nonlinear gain of the device. It is assumed that G can be represented, adequately,

by the following series:

(5)

where ai are complex coefficients, a0 = 1, and Go is the nominal gain of the nonlinear device.

Since the device model is defined in terms of the envelope of x(nT), any measure of the effect of
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nonlinearities on the output signal must include statistics of the input signal. One such nonlinear

measure, the power variance, is discussed below. An input signal with a reduced power variance

has the desirable property of allowing the linearity requirements of output devices, such as ampli-

fiers, to be relaxed.

A perfectly linear device has a constant gain, G = Go. Thus, the variation in G is a good mea-

sure of the nonlinearity of the device for a given input signal format and power level. Using a

model with a second-order gain variation (that is, a0 = 1 and |a2| > 0), we assign the following cost

function:

(6)

where E[] denotes expected value. With respect to distortion in the output signal, this simple

model captures third-order intermodulation products [15], and depends on the fourth-order

moment of the input signal.

In this paper, we are interested in comparing the nonlinear sensitivity of various input signals

created within the CDMA modulation format. Rather than use the fourth-order moment directly, it

is useful to normalize the cost function to remove dependence on the average power:

. (7)

The measure in (7), denoted byνe
2, is the normalized power variance; however, for convenience,

it will be referred to as the “power variance”. The power variance can be viewed as a substitute for

the peak-to-average power measure. The former measure has the advantage over the latter of

being more repeatable.

An alternative measure of the sensitivity of modulation formats to nonlinearities can be found

in [3], which is based on distortion power rather than gain error.

The remainder of the paper is as follows. In Section 2.0, the power variance of the sampled

CDMA signal is defined in terms of data sequences and Walsh codes. Approaches for reducing

the power variance of the sampled CDMA signal by using Walsh code selection and data encod-
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ing are discussed in Section 3.0. Section 4.0 contains results of simulations verifying the statisti-

cal models derived in Section 2.0, as well as demonstrating the reduction in power variance

provided by the approaches proposed in Section 3.0. Section 5.0 contains the concluding remarks.

2.0  Estimation of Power Variance for the Forward-Link CDMA Signal

This section defines two even-order moments, E[|x(nT)|2] and E[|x(nT)|4], of the forward-link

CDMA signal in terms of Walsh codes and data sequences. These even-order moments, used to

compute the power variance, contain intermodulation products of Walsh codes and data. Interest-

ing characteristics of code domain intermodulation are discussed in Section 2.1. In particular, it is

shown that the product of two or more Walsh codes is another Walsh code from the original 64

code set. In Section 2.2, the fourth-order moment is derived. It is shown that correlation between

data sequences from specific Walsh code groups alters the fourth-order moment.

2.1  Walsh Code and Data Intermodulation

High-order Walsh code products arise when a CDMA signal passes through a nonlinearity. For

example, the gain model in (5) comprises a weighted sum of nonlinear operators applied to the

input signal, where the i-th order operator is |x(nT)|i. Walsh code products also arise is the calcu-

lation of the second- and fourth-order moments used to compute the power variance (see

Section 2.2).

Consider the response of a CDMA signal to a second-order operator. Noting that |x(nT)|2 =

xAM
2(nT), we have

. (8)

Equation (8) contains second-order intermodulation terms of the data sequences (di
2 and didj) and

of the Walsh codes (Wi
2 and WiWj). These second-order intermodulation terms are discussed

below.

xAM
2

nT( ) ρiρ j d⋅
i
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i
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Each of the 64 Walsh codes can be represented as the product of 6 (or less) Hadamard basis

functions, which are shown in Figure 3 (see also Rademacher functions in [14]). A Walsh code Wi

is defined as

(9)

where

(10)

and

. (11)

A Hadamard basis function Bk that is used in the definition of a Walsh code Wi is referred to as

“active”, and this active state is indicated by ck = 1. An inactive state is indicated by ck = 0. Two

examples of Walsh codes decomposed into the product of Hadamard basis functions are W14 =

W8 W4 W2 and W40 = W32 W8.

Fig. 3. Hadamard basis functions used to form Walsh codes.

The product of two Walsh codes, Wi and Wj, can be understood by noting an important prop-

erty: Wi Wi = W0 = 1. An application of this property is W14 W40 = W32 W4 W2 = W38. If the

indices 14 and 40 are rewritten in binary form (001110 and 101100), it can be seen that the result-
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ant index 38 (100110) is obtained using an exclusive-or operation. In general, the product of two

Walsh codes, Wi and Wj, produces a new Walsh code, which for convenience, is written as Wi Wj

= Wi⊕j. This Walsh code intermodulation can be extended to higher-order products using the

exclusive-or of the corresponding set of Walsh codes: Wi Wj... Wz = Wi⊕j⊕...⊕z. For example, the

fourth-order product can be written as Wi Wj Wk Wl = Wi⊕j⊕k⊕l.

The active basis functions for an intermodulation code Wi⊕j are determined by the basis func-

tions active within Wi and Wj. Let the corresponding states of the basis function Bk for Walsh

codes Wi and Wj be denoted by ck(i) and ck(j), respectively. If ck(i) and ck(j) are different (only

one is active), the basis Bk of Wi⊕j will be active (ck(i⊕j) = 1); if both share the same state, the

basis Bk of Wi⊕j will be inactive (ck(i⊕j) = 0). Thus, for the case of Wi⊕j, (10) becomes

(12)

where⊕ is the exclusive-or operator.

Consider, now, the product of data sequences. Each data sequence is bipolar, containing values

of 1 and -1. The square of a data sequence is unity: di di = 1. The product of two independent data

sequences results in a third bipolar sequence: that is, di dj = dm wheni is not equal toj. As was the

case with the Walsh codes, the intermodulation of data sequences can be extended to higher-order

products, where the resultant data sequence, di dj... dz, is denoted by dij...z.

The intermodulation properties of Walsh codes and data, mentioned above, are used in

Section 2.2 to derive the second- and fourth-order moments of the sampled CDMA signal.

2.2  Second- and Fourth-order Moments

Consider a CDMA signal described by (3). The second-order moment, or the average power, of

the sampled CDMA signal is

. (13)

i j⊕ c1 i( ) c1 j( )⊕[ ] … 32 c32 i( ) c32 j( )⊕[ ]⋅+ +=

E x nT( ) 2[ ] ρiρ j E dij nT( ) W⋅
i j⊕ nT( )[ ]⋅

i j, 0=
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∑=



8

Since the data sequences are independent of the Walsh codes, we can simplify (13) by replacing

E[dij  Wi⊕j] with the product E[dij ] E[Wi⊕j].

The expected value of Walsh code W0 is unity; for all other Walsh codes Wi, it is zero. Thus,

E[Wi⊕j] is unity when i = j, and zero otherwise. Similarly, E[dij ] = 1, when i = j. However, E[dij ],

when i is not equal to j, can have any value between -1 and 1, depending on the correlation

between data sequences di(nT) and dj(nT). Substituting the above-mentioned expectations in (13),

the average power is

. (14)

From (14), it is apparent that the average power is determined by the scale terms,ρi, and is not

affected by data correlation.

The fourth-order moment of the sampled CDMA signal is

(15)

where

. (16)

The values of E[Wi⊕j⊕k⊕l] and E[dijkl ] are unity when one of the following three conditions exist:

(i = j = k = l); (i = j and k = l); and (i = l and j = k). Thus, we can rewrite (15) as

(17)

where

. (18)

The notation S(i, j, k, l) within (18) indicates that the summation includes all Cijkl  except for the

following terms: (i = j = k = l); (i = j and k = l); and (i = l and j = k).
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For Qc to be non-zero, the four selected Walsh codes within Cijkl  must combine such that

WiWjWkWl = W0. That is, E[Wi⊕j⊕k⊕l] = 1 when i⊕j⊕k⊕l=0 and zero otherwise. Thus, (18) can

be simplified:

. (19)

It is apparent that Qc is affected by data correlation (E[dijkl ]) and Walsh code selection (ρi > 0).

The four Walsh code groups where the product WiWjWkWl = W0 are referred to as “quadru-

ples”. If, in addition, all four codes are active (ρi ρj ρk ρl > 0), then the four Walsh code group is

referred to as an “active quadruple”. It can be seen from (19) that the overall correlation (Qc) is

the weighted average of the all active quadruples, where the weighting factor isρi ρj ρk ρl. Thus,

when more than four Walsh codes are active, the effect of data correlation is determined by

decomposing the signal into a set of active quadruples.

Since the goal is to reduce the power variance (and the fourth-order moment), Qc should be

made negative. This is achieved using data encoding and Walsh code selection, as described in

Section 3.0.

In the following, references to “data correlation” should be interpreted as correlation between

data symbols from different Walsh code channels, as opposed to a temporal correlation of a data

sequence from a single Walsh code channel.

3.0  Reducing the Power Variance of a CDMA Signal

In this section, four approaches are proposed that exploit the data and Walsh code relationship

to reduce the short-term power variance. Much of the initial discussion involves defining the

transformation between the 64 data symbols in the code domain and the 64 samples in the time

domain. Finally, “orthogonal variable short functions” (OVSF), proposed for use in “third genera-

tion” (3G) CDMA standards [5], [9], are discussed, and their effect on the power variance is

investigated.

QC n( ) ρiρ jρkρ
l

E dijkl nT( )[ ]⋅
i j k l≠ ≠ ≠

i j k l⊕ ⊕ ⊕ 0=

∑=



10

Let us look at the relationship between the sampled signal, xAM(nT), and the data ensembles.

The sampled signal, xAM(nT), over the symbol interval [0,63T], is described by the following

vector:

. (20)

The vector describing the data ensemble within the corresponding interval is

(21)

where the channel scale termsρi have been included. Note that the vectorsxAM andd are the time

domain and code domain representations, respectively, of the information within the interval

[0,63T]. The vectorsxAM andd are related through the Hadamard matrix, which is denoted by

H64x64:

(22)

where

. (23)

The columns of H64x64 are the 64 chips of the individual Walsh codes; the rows are the indices of

the 64 available Walsh codes (that is, column = time, row = code index). Note that H64x64 is sym-

metrical and orthonormal.

The “short-term power variance” is defined by (9), measured over the data symbol interval

[0,63T]. The short-term power variance is highest (worst-case) when all of the signal energy is

concentrated into a single peak. From (22), the amplitude at sample kT is

. (24)

xAM xAM 0( ) xAM T( ) … xAM 63T( )
T

=

d ρ0( ) ρ1d
1

( ) … ρ63d
63

( )
T

=

xAM H64x64 d⋅= and d H= 64x64 x⋅ AM

H64x64
1
64
------ W0

T
W1

T … W63
T⋅

T
=

xAM kT( )
Wk d⋅

64
---------------=
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A peak occurs at kT whend is identical to (or the negative of) one of the Walsh code Wk; a null

occurs at sample kT whend is orthogonal to the Walsh code Wk. Thus, when the data vector is the

same as one of the Walsh code (for example,d = W0
T), one peak and 63 nulls appear over the

symbol interval. This worst-case power variance isνe
2 = 64, which is much larger than the base-

line value defined by (17) when Qc = 0 (that is,νe
2 < 3.0). This worst case requires that all 64

Walsh code be active and have the same power (allρi’s are equal).

Let us consider a more practical case where only a subset of the channels are active. For an

inactive channel, whereρk = 0, the sign of the data symbol dk is not relevant, thereby making the

symbol a “don’t care” element within the data vectord. A data vectord containing don’t care ele-

ments has the potential of matching multiple Walsh codes, and from (24), producing multiple

peak responses within the symbol interval [0,63T].

The short-term power variance can be expressed in terms of a weighted sum of active quadru-

ples. If the quadruple is viewed in isolation (the other 60 channels are inactive), the sampled sig-

nal |xAM(nT)| has the following characteristics over the symbol interval [0, 63T]: 16 peak

responses of equal magnitude and 48 null responses when the data correlation is positive (didjdkdl

> 0); and 64 responses of equal magnitude when the correlation is negative (didjdkdl < 0). The

former case is the largest short-term variance (νe
2 = 4), whereas the latter case is the smallest (νe

2

= 1). Having high weights (ρiρjρkρl) associated with negative-correlated quadruples is desirable

because it leads to a lower power variance.

In the following, four approaches for reducing the power variance are described; they are

referred to as (1) “data bit reversal”, (2) “reduced amplitude coding”, (3) “channel hopping”, and

(4) “channel selection”. The first three approaches can be viewed as types of data encoding where

the short-term power variance is reduced altering the data vector such that positive-correlated qua-

druples are transformed into negative ones. The fourth approach is based on the selection of a

Walsh code set that minimizes the number of active quadruples.

The first approach, “data bit reversal”, involves identifying a symbol interval that has a large

short-term power variance, then reversing the sign of one of the data symbols to reduce it. By

changing the sign of di, for example, the correlation of each active quadruple containing di
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changes sign. For a symbol interval with a large short-term variance, the majority of active qua-

druples are positive. As a result, the sign reversal creates more negative quadruples, and hence,

lowers the overall power variance. Introducing a sign error is less effective when the short-term

power variance is modest. This is due to the fact that the sign reversal may actually increase the

power variance by transforming more negative-correlated quadruples into positive ones than posi-

tive into negative. Note that a data bit reversal creates a bit error, thereby increasing the bit error

rate of the system. Although a CDMA system can tolerate modest amounts of data errors, the data

bit reversals should be used sparingly. For an example of the potential improvement using the data

bit reversal approach, see Table 5 in Section 4.0.

The second approach, “reduced amplitude coding”, transmits encoding data on otherwise inac-

tive channels to reduce the power variance. These new Walsh code channels, referred to as

“encoding channels”, form quadruples with the original active channels. In the limiting case,

referred to as “constant amplitude coding [17]”, the data on the encoding channels are selected

such that all quadruples are negative, giving the sampled CDMA signal a constant amplitude. To

achieve this, the numbers of encoding channels for various numbers of transmitted channels are as

follows: one encoding channel is required for four transmitted channels (one encoding, three

active); seven encoding channels are required for 16 transmitted channels; and 37 encoding chan-

nels are required for 64 transmitted channels. There are also restrictions on the number of Walsh

codes that are transmitted (L = 4n including both active and encoding channels), as well as which

Walsh codes are grouped together.

In general, the drawback of the constant amplitude coding approach is that the use of encoding

channels increases the average power transmitted. For the 16 transmitted channels example of

[17], the average power increases by 16/9. It is noted in [17] that the additional power can be

recovered if all channels are demodulated at the receiver and the encoding data is used for error

detection and correction; however, the complexity of the system is increased.

“Reduced amplitude coding” is a generalization of [17] which is obtained by allowing the sam-

pled CDMA signal to have modest amplitude variations. We use encoding channels to reduce the

short-term power variance without embracing the limiting case of a constant amplitude. The data

on the encoding channels are selected such that the newly formed quadruples are negative, on
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average. Accepting a modest variation in amplitude in exchange for a reduced number of encod-

ing channels is a good compromise for Walsh code sets with a large number of active channels.

In the previous two approaches, it is assumed that the scale term,ρi, is constant. However, it

need only be constant over each symbol interval [0,63T]. By allowing inter-symbol power varia-

tions, many new possibilities exist. One such approach, believed to be novel, is “channel hop-

ping”, which is described in the following.

The third approach, “channel hopping”, reduces the power variance by transmitting a data sym-

bol over one of a group of assigned channels, typically two. It assumes that only a subset of the 64

Walsh code channels are in-use. Within the proposed approach, two Walsh codes, Wi and Wj, are

assigned to a voice transmission. To perform channel hopping, the scale factors for the two Walsh

codes are set as a pair: either (ρi,ρj) = (0,1) or (1,0) over the symbol interval [0,63T].

When multiple voice transmissions are setup for channel hopping, it is advantageous to con-

sider all hopping alternatives together, selecting the set of Walsh codes that minimizes the short-

term power variance for the current data vector. Since the best Walsh code set is dependent on the

data vector, the channel assignment will, in general, change with each symbol interval [0,63T]. At

the mobile receiver, both assigned channels for a given voice transmission are demodulated and

the data symbol with the larger power is used. The increased complexity at the handset is modest

because the two Walsh codes are synchronized to a common pilot, and the handset does not

require knowledge of the hopping algorithm. For the basestation, the average transmitted power is

not affected. Channel hopping is discussed further in Section 4.0 (see Table 4).

The fourth and final approach for reducing the power variance of the sampled CDMA signal is

“channel selection”. The Walsh code set is selected to minimize the number of active quadruples.

One such set is presented in Section 4.0 (Set 3). In general, each of the six basis functions (Bi, see

Section 2.1) must be active in at least one of the Walsh codes to minimize the number of active

quadruples.

In summary, each of the four approaches for reducing the power variance of the sampled

CDMA signal involve trade-offs. The “data bit reversal” approach has the advantage of being eas-

ily incorporated into the IS-95 system because there are no modifications to the mobile; however,

improvements in the power variance introduce data bit errors. The “constant amplitude coding”
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approach of [17] provides significant improvement in the power variance and can be implemented

without modifying the mobile. However, there is an increase in the transmitted power due to the

encoding channels, which results in reduced capacity of the CDMA network because of increased

interference between cells [6]. The “channel hopping” approach improves the power variance

without increasing the data error rate or transmitted power. It has the disadvantage that the mobile

must demodulate two channels simultaneously. The “channel selection” approach is possible

without modification of the IS-95 mobile or basestation; however, the improvement in the power

variance is less pronounced than the other approaches.

Proposed third generation (3G) CDMA standards, such as cdma2000 [9] and WCDMA [5],

include upgrades over the IS-95 version of CDMA. One change that affects the power variance of

the signal is the use of “orthogonal variable short functions (OVSF) [5]”. The OVSF approach

uses Walsh codes of various lengths to transmit data. Short functions, whose lengths are L = 2n <

64 chips, are derived from code sets comprising fewer (n < 6) basis functions, and are suitable for

data transmissions whose rate exceeds that of a single voice channel. In this paper, short func-

tions, or “short Walsh codes”, will be denoted by Wi(SF=L), wherei is the channel number and L =

2n is the length of the code (number of chips per data symbol), as well as the size of the code set.

The utility of short Walsh codes, such as SF = 26-n, is that higher data rates of 2n are obtained.

For example, W1(SF=16) is the short Walsh code 1 with a length of 16 chips. The time alignment of

the short Walsh code (SF = 16) relative to the original Walsh codes (SF = 64) is shown in

Figure 4. With respect to the original SF=64 code set, the SF=16 Walsh code channel transmits at

four times data rate. Although short Walsh codes can accommodate a 2n increase in the data rate,

it is obtained by using 2n channels from the original 64 Walsh code set. However, it is important to

note that the use of a short Walsh code is not the same as the parallel transmission of multiple

Walsh codes from the SF=64 set. The former has a lower power variance (νe
2 = 1 compared toνe

2

= 2.5 for the example shown in Figure 4). Thus, the OVSF approach allows the transmission of

high data rates without incurring the high power variance associated with the parallel transmission

of multiple IS-95 (SF=64) Walsh codes.
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Fig. 4. Time alignment of short Walsh code W1(SF=16) and four data symbol intervals (SF = 16) relative to the four
original Walsh codes, W1, W17, W33, and W49, and one data symbol interval (SF = 64).

Let us relate OVSF to the concept of active quadruples. Let the four data symbols associated

with W1(SF=16) be denoted byy = [y(0) y(1) y(2) y(3)]T where each SF=16 symbol spans 16

chips; let the four data symbols associated with Wi(SF=64) be denoted byd = [d1 d17 d33 d49]
T. It

can be shown that

(25)

where

. (26)

For a negative-correlated quadruple, where y(0)y(1)y(2)y(3) < 0, all four SF=64 Walsh codes are

transmitting at equal power (ρ1 = ρ17 = ρ33 = ρ49 and d1d17d33d49 < 0). However, when

64 T

4 symbols
SF = 16

1 symbol
SF = 64

1 code
SF = 16

4 codes
SF = 64

16T

W1(SF=64)

W1(SF=16)

W17(SF=64)

W33(SF=64)

W49(SF=64)

d H4x4 y⋅=

H4x4
1
4
--- W0 SF 4=( )

T … W3 SF 4=( )
T⋅

T
=
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y(0)y(1)y(2)y(3) > 0, the vectory matches one of the SF=4 Walsh codes in H4x4, causing all of the

power to be transmitted on one Walsh code channel. This latter form of transmission is the same

as channel hopping. Thus, OVSF is a hybrid of parallel transmission and channel hopping where

the choice of techniques is determined by the data correlation within the active quadruple (nega-

tive and positive correlation, respectively).

Shorter Walsh codes, used for higher data rates, provide further reductions in the power vari-

ance. However, the higher-rate OVSF approaches can still be decomposed, recursively, into a

hybrid of parallel transmission and channel hopping.

4.0  Results

In this section, measurements from six Walsh code sets and four data vectors illustrate the vari-

ability of the short-term power variance in the presence of data correlation. It is shown that the

spread in the power variance is proportional to the number of active quadruples within the Walsh

code set. Examples are presented for the “channel hopping” and “data bit reversal” approaches,

which show a desired reduction in the power variance.

For the examples shown in this section, the measured values of the power variance are obtained

from computer simulations where the signals are over-sampled, by a factor of four compared to

the chip rate, and lowpass filtered (bandlimited) using the IS-95 baseband filter [10]. The phase

equalizing filter [10] specified in IS-95 is not included. The effects of bandlimiting on the power

variance were not modeled in the previous sections, but are described in [2]. In general, when the

basis function B1 is present in at least one Walsh code, the variations in the power variance due to

filtering will be much smaller than the variations due to data correlation.

The nine-channel forward-link CDMA signal is considered by many to be a “standard” test

waveform [8]. It contains pilot, paging, sync, and six traffic channels. Within this paper, the pilot,

paging, and sync channels are assigned relative scale factors (ρi/ρ0) of 1.0, 0.9, and 0.45, respec-

tively. The traffic channels each have a relative scale factor of 0.8.

Six Walsh code sets are presented in Table 1; each forming a nine-channel forward-link

CDMA signal. Within each set, the pilot and sync channels are W0 and W32, respectively. The
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paging channel is W1 for all sets except for Set 1, where it is W4. The remaining Walsh codes are

traffic channels. Within Set 1 and Set 4, the paging and traffic channels are selected such that two

Hadamard basis functions (see Section 2.1) are not used in any of the active Walsh codes (referred

to as “missing” in [2]): B1 and B2 for Set 1; and B8 and B16 for Set 4. These two sets have the

maximum number of active quadruples. For Set 2 and Set 5, the traffic channels are selected as a

block of six consecutive Walsh codes: W58 to W63 for Set 2; and W8 to W13 for Set 5. Set 5 is the

default nine-channel forward-link code assignment in [8]. For Set 3, the Walsh codes are selected

to have zero active quadruples. Set 6 is a modification of Set 3, designed to introduce active qua-

druples into the code set. Sets 3 and 6 are used later in the “channel hopping” example where two

of the traffic channels are allowed to hop in order to reduce the power variance (discussed later;

see Table 3 and Table 4).

Table 1. Measured power variance and peak-to-average for various Walsh code sets and data vectors.

Active
Walsh codes
ρi > 0

Data vector
d = [d0... d63]

Peak to
average

Measured
Power
Variance

Set 1:

0, 4, 8,

16, 24, 32,

40, 48, 56

all di = 1 14.3 dB 7.25

d8 = -1; 12.0 dB 3.11

d8 = d16 = -1; 10.5 dB 2.62

random 13.8 dB 3.21

Set 2:

0, 1, 32,

58, 59, 60,

61, 62, 63

all di = 1 10.5 dB 3.76

d59 = -1; 9.1 dB 2.55

d59 = d60 = -1; 8.5 dB 2.04

random 10.4 dB 2.46

Set 3:

0, 1, 2,

4, 8, 15,

16, 32, 51

all di = 1 10.7 dB 2.59

d8 = -1; 10.4 dB 2.72

d8 = d15 = -1; 11.0 dB 2.72

random 10.8 dB 2.56

Set 4:

0, 1, 2,

3, 4, 5,

6, 7, 32

all di = 1 9.8 dB 5.59

d2 = -1; 8.4 dB 2.51

d2 = d3 = -1; 6.3 dB 1.81

random 9.8 dB 2.44
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Two measurements are made in Table 1: the peak-to-average and the power variance. Both

measure the extent of the AM component of the CDMA signal; however, they are not equivalent.

For a given code set, the peak-to-average increases with the power variance. However, between

code sets, the two measures diverge. For example, the peak-to-average for Set 4 is much lower

(for a given power variance) than measurements obtained from other sets. The main problem is

that the peak is defined by a single measurement whereas the power variance is a statistical mea-

sure based on the entire waveform. As a result, the power variance is more repeatable measure-

ment, and in the opinion of the author, easier to predict.

For each of the six Walsh code sets listed in Table 1, measurements are provided using four

data vectors. Both constant and random data vectors are used to illustrate the effect of the data

correlation, as well as the reduction in power variance provided by “data bit reversal” encoding

(see Section 3.0). For the constant data vectors,d has a fixed value for the entire period of the PN

sequence. Three constant data vectors are used: the worst-case data vector,d = W0 = [1... 1];

worst-case plus the reversal of one data bit; and the worst-case plus the reversal of two data bits.

(Recall that the worst-case data vectors match the Walsh codes, such asd = W0). The random data

vectors are formed as follows. For the case of nine active channels, the data vector has 256 distinct

values (28 because only 8 of the data bits can change signs; the pilot data is constant, d0 = 1).

Since there are 512 symbol intervals within a PN sequence period, each value is used twice. The

Set 5:

0, 1, 8,

9, 10, 11,

12, 13, 32

all di = 1 10.5 dB 3.84

d8 = -1; 9.5 dB 2.62

d8 = d13 = -1; 8.7 dB 2.04

random 10.4 dB 2.49

Set 6:

0, 1, 2,

4, 8, 13,

16, 18, 32

all di = 1 11.6 dB 3.26

d13 = -1; 10.7 dB 2.71

d13 = d18 = -1; 9.1 dB 2.09

random 11.1 dB 2.60

Table 1. Measured power variance and peak-to-average for various Walsh code sets and data vectors.

Active
Walsh codes
ρi > 0

Data vector
d = [d0... d63]

Peak to
average

Measured
Power
Variance
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time positions of the 512 data vectors over the PN sequence period are selected using a random

permutation.

Let us compare the power variances for the constant data vectors listed in Table 1 to determine

the effect of bit reversals. For Set 3, the power variance is not affected significantly by the choice

of data vectors; however, this is an exceptional case. For the remaining sets, “reversals” of one or

two bits within the worst-case data vector improves (reduces) the power variance. The reduction is

most pronounced for Set 1 and Set 4, which have the most active quadruples. It is important to

note that there is no advantage to reversing more than two bits for the case a nine-channel code

set. For Set 1 and Set 4, reversing one, two, and three bits from the worst-case data vector causes

seven, eight, and seven active quadruples, respectively, to become negative. Since negative qua-

druples reduce the power variance, reversing two of the nine bits within the worst-case data vector

provides the best results. In general, there is no benefit to reversing more than 1/4 of the bits

within the active code set.

The quadruples affected by a single bit reversal, for each set, are shown in Table 2. Set 1 and

Set 4 each have 7 active quadruples that become negative due to the bit reversal. It is not surpris-

ing that the changes in the power variances are large: 4.14 and 3.08, respectively. Set 2 and Set 5

have 3 active quadruples that are affected by the bit reversal; the changes in the power variances

are moderate, with values of 1.21 and 1.22, respectively. For Set 6, only one active quadruple is

affected, and the resulting change in the power variance is only 0.65. No active quadruples are

present within Set 3; as a result, the power variance is unaffected by data correlation across Walsh

codes. However, there is still a minor variation in the power variance, -0.16, which is due to the

effects of filtering (see [2]). Despite the minor variations, there is a good correspondence between

the number of active quadruples affected by the data bit reversal and the spread of the measured

power variance. Thus, the extent with which data correlation and Walsh code selection affect the

power variance is predictable, and it is proportional to the number of active quadruples.
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In the remainder of this section, two approaches for reducing the power variance are demon-

strated: “channel hopping” and “data bit reversal”. Let us first look at the effect of channel hop-

ping on the power variance. Channel hopping allows each data vector to be transmitted using a

“favorable” code set. The first step is to choose a default Walsh code set, then assign a second

channel (referred to as a hopping channel) to a subset of the traffic channels. When “n” of the traf-

fic channels are allowed to hop, the potential channel assignments span 2n code sets. The simplest

Table 2. Active quadruples affected by a one-bit reversal from worst-case data vector,d = [1...1].

Code
Sets

Reversed
data bit

Affected
Active Quadruples

Change in
Power Var.
(1 bit rev.)

Set 1 d8 W0W8W16W24

W0W8W32W40

W0W8W48W56

W8W16W32W56

W8W16W40W48

W8W24W32W48

W8W24W40W56

4.14

Set 2 d59 W0W1W58W59

W58W59W60W61

W58W59W62W63

1.21

Set 3 d8 none -0.16

Set 4 d2 W0W1W2W3

W0W2W4W6

W0W2W5W7

W1W2W4W7

W1W2W5W6

W2W3W4W5

W2W3W6W7

3.08

Set 5 d8 W0W1W8W9

W8W9W10W11

W8W9W12W13

1.22

Set 6 d13 W1W4W8W13 0.65
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hopping criterion involves computing the active quadruples for each code set, then selecting the

traffic/hop channels associated with the most negative quadruples (lowest short-term power vari-

ance).

 An example of a channel assignment based on the channel hopping approach appears in

Table 3. Set 3 is used as a default code set, ensuring that the “favorable” set is at least as good as

the baseline power variance (where Qc = 0). Traffic channels 5 and 6 are allowed to hop from their

default Walsh codes of W15 and W51 to W13 and W18, respectively. The criteria for traffic chan-

nels 5 and 6 to hop are d1d4d8d15(13) < 0 and d0d2d16d51(18) < 0, respectively.

The channel hopping algorithm selects one of four code sets depending on the signs of

d1d4d8d15(13) and d0d2d16d51(18). The default code set (Set 3) has no active quadruples. Forcing

either traffic channel 5 or 6 to hop introduces one active quadruple; forcing both to hop introduces

two. The hopping criteria are chosen so that each active quadruple is negative, which reduces the

power variance. The results of applying the algorithm for the case of random data appear in

Table 4. The hopping of two channels reduces the power variance by 10 percent from the baseline

value of 2.56. Greater improvement can be expected by introducing more hopping channels to

produce code sets with more active quadruples.

Table 3. Channel assignment for channel hopping example. Default assignment is the same as Set 3.

Channel
Type

Default
Channel

Hop
Channel

Hop
Criterion

Traffic 5 W15 W13 d1d4d8d15(13)< 0

Traffic 6 W51 W18 d0d2d16d51(18) < 0

Fixed Channels: W0, W1, W32, W2, W4, W8, W16

Table 4. Measured power variance and peak-to-average for the channel hopping example (see Table 3). A random
data vector is used.

Walsh codes Data
Peak to
average

Power

Variance

Fixed codes of
Set 3

random 10.8 dB 2.56

Hopping codes
of Table 3

random 10.5 dB 2.30
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Table 5 shows the results of the data bit reversal approach, applied to the random data case, for

Set 4. The one-bit reversal is applied to the 32 worst-case data vectors occurring within the 512

symbol intervals spanned by the PN sequence. The power variance is reduced by 12 percent.

Comparing the channel hopping and data bit reversal examples, we see that the reduction in

power variance is similar. However, the peak-to-average is reduced for the latter case, and largely

unaffected in the former. On the otherhand, the data bit reversal approach introduces 32 bit errors

over the 512 symbol intervals. Assuming that these errors are distributed equally amongst the six

traffic channels, the bit error rate for each channel would be 1.0 percent. The channel hopping is

desirable in the sense that no data bit errors are introduced. However, to be effective, the channel

hopping approach requires that a certain fraction of the mobile units in-use have the ability to

detect and process two channels concurrently.

In both the channel hopping and data bit reversal examples, the resulting power variance is

lower than any of the sets using random data within Table 1.

5.0  Conclusion

The power variance of a forward-link CDMA signal has been defined in terms of data

sequences and Walsh codes. It is shown that Walsh code selection and data encoding can be used

to produce active quadruples with negative correlations, which in turn results in lower power vari-

ances for sampled CDMA signal. The effectiveness of two data encoding methods, the data bit

reversal encoding and channel hopping, have been demonstrated.

Table 5. Data bit reversal encoding example using the Walsh codes in Set 4. A single bit reversal is applied to 32
of 512 data vectors spanned by the PN sequence.

Walsh codes Data
Peak to
average

Power
Variance

Set 4 (no encoding) random 9.8 dB 2.44

Set 4 with 32
single-bit reversals.

random + bit
reversals

8.8 dB 2.25
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