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Abstract

This paper investigates the effects of Walsh code selection and baseband filtering on the statis-
tical moments of the bandlimited forward-link CDMA signal. A normalized moment, the “power
variance”, is proposed as a measure of the signal’s sensitivity to nonlinear amplification. The esti-
mation of the power variance for the case of a bandlimited QPSK-modulated random waveform is
presented as a baseline for illustrating the effect of filtering on a sampled signal. The bandlimited
CDMA signal case illustrates the interaction between the Walsh codes and the wave-shaping fil-
ter, and quantifies the influence of “missing Hadamard basis functions”. Results verify the accu-
racy of the statistical models and illustrate the importance of Walsh code selection in the reduction

of the power variance of a bandlimited CDMA waveform.

IEEE keywords: multi-access communication, intermodulation distortion.

1.0 Introduction

CDMA, or Code Division Multiple Access, is a modulation format that uses spread spectrum
to transmit multiple channels over a common bandwidth [14], [16]. It is generally accepted that
the capacity of a CDMA system is limited by the interference from other users [5], [6]. However,
if the transmit portion of a base-station contains nonlinear components, such as power amplifiers
(PAs), intermodulation distortion becomes an additional source of interference [4]. In general, it is
the AM component of the input signal that is converted by nonlinearities into intermodulation dis-
tortion.

“Walsh code selection” is the task of choosing which Walsh codes are to be used for data trans-
mission when only a subset of the available codes are required. The combination of Walsh code

selection and filtering affect the AM component of the CDMA waveform. For the purpose of



comparison, the AM component of the input signal is quantified using a statistical measure
referred to as the “power variance”. A lower power variance, in general, will result in less inter-
modulation distortion. Another influence on the power variance of the CDMA signal---correlation

between data sequences---is beyond the scope of this paper; it is discussed in [2].

The remainder of the introduction is as follows. Section 1.1 provides an overview of the trans-
mission architecture used to generate a bandlimited forward-link CDMA waveform, including a
power amplifier exhibiting mild nonlinearities. Section 1.2 introduces the power variance as a
measure of the signal's sensitivity to nonlinearities. Walsh code selection is proposed in
Section 1.3 as a means of reducing the power variance of a bandlimited CDMA waveform. The

outline of the paper is found in Section 1.4.

1.1 Overview of Forward-link CDMA Waveform

The simplified block diagram of the forward-link (base-station to mobile) CDMA transmit
architecture is shown in Figure 1. For the purpose of analyzing the CDMA waveform, there are

five key signals: sampled Walsh-coded signg),énT); sampled (digital) CDMA signal x(nT);
bandlimited (analog) baseband signglt)x RF input signal x«t); and RF output signakg(t).
The Walsh-coded signalay(nT), is a bipolar sequence which contains the amplitude informa-

tion. It is QPSK modulated to form the sampled CDMA signal, x(nT). The sampled CDMA signal

is lowpass filtered, up-converted, then amplified to form signdly xge(t), and &gt), respec-

tively.
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Fig. 1. Forward-link CDMA Transmit chain.

The equations for the baseband signals shown in Figure 1 are as follows. The Walsh-coded sig-

nal, Xap (nT), is

Xam(NT) = Z p;d;(nT) D/Vi(nT) Q)
i=0

where T is the sample (chip) interval ang=dl. Each data symbol,, ds held constant at +1 or -1
over an interval of 64T. Each Walsh codg, Womprises 64 chips that are repeated for each data

symbol:

Wi = [W,(0) W,(T) ... W,(63T)|- @)

The scale termp;, is used to adjust the transmitted power of the individual channel associated

with Walsh code Wy and it is assumed to constant over the data symbol interval [0,63T].

The sampled CDMA signal is generated by QPSK modulation using two PN sequences [10],
[11] (denoted by PNand PN):



X(nT) = Xq(nT) 27PN (nT) + ] PNG(nT)] 3)

The phase modulation has the effect of spreading the spectrum of the signal, as well as ensuring
that each baseband sample is uncorrelated with its neighbor (that is, E[x(nT) x(mT)] = 0 when n is

not equal to m).

The wave-shaping filter, h(t), is used to bandlimit the sampled CDMA signal:

Xp(t) = S x(nT) Ch(t—nT). 4)

n

For illustrative purposes, the wave-shaping filter, h(t), is assumed to perform perfect bandlimiting:
that is,

sin[0.5wy(t—nT)]

h(t=nT) = —5 5t

)
wherewsis the sample (chip) ratex = 2rvT). Equation (5) is a deviation from the 1S-95 specifi-
cation [8]. The RF input signal is given by
Xgp(t) = I Ceos(w.t) + Q Csin(w,t) (6)
wherewy is the carrier frequency; | = Re{it)} and Q = Im{x,(t)}.
The RF output signal is described by
ZRF(t) = GPA(‘XRF(t)D D(RF('[), (7

where G, is the nonlinear gain of the power amplifier anggH{)| denotes the envelope of the RF
input signal (equal to the modulus of the baseband sig(tl. )t is assumed thatgz can be rep-

resented, adequately, by the following series [13]:

Cpal*re)) = Go ) & e ®)

where aare complex coefficientsg & 1, and G is the nominal gain of the power amplifier. Since
the PA model is defined in terms of the envelopegg{tk, any measure of the effect of nonlinear-

ities on the transmitted waveform must include statistics of the RF input signal. One such nonlin-



ear measure, the power variance, is presented in Section 1.2. An input signal with a reduced
power variance has the desirable property of allowing the linearity requirements of the amplifier

to be relaxed.

1.2 Power Variance and Sensitivity to Nonlinearities

A perfectly linear amplifier has a constant gaipa G G,. Thus, the variation in £ is a good

measure of the nonlinearity of the amplifier for a given input signal format and power level. Using

a PA model with a second-order gain variation (thatygs; & and |g > 0), we assign the follow-

ing cost function:

Gpal [Xre(]} - Go\z

J=E
2
Gl

= 20ay|” CE[|xgd ©)

where EJ[] denotes expected value. With respect to distortion in the output signal, this simple

model captures third-order intermodulation products [13], and depends on the fourth-order
moment of the input signal, E[;hg|4].
In this paper, we are interested in comparing the nonlinear sensitivity of various input signals

created within the CDMA modulation format. Rather than use the fourth-order moment directly, it

is useful to normalize the cost function to remove dependence on the average power:

4
VZ:M_ (10)

2
2.0
ék[XRF ]E

The measure in (10), denoted\bﬁ, Is the normalized power variance; however, for convenience,
it will be referred to as the “power variance”.

An alternative measure of the sensitivity of modulation formats to nonlinearities can be found

in [3], which is based on distortion power rather than gain error.



1.3 Reducing Power Variance

IS-95 CDMA forward-link transmissions do not use all 64 Walsh codes at a given time. As a
result, the basestation can select which set of Walsh codes will be in-use (or “active”). Walsh code
selection can be used to reduce the power variance of the transmitted signal.

Consider as an example a nine-channel forward-link CDMA transmission comprising a pilot
channel, sync channel, paging channel, and six traffic channels. The pilot and sync channels are

always assigned to y\and W, respectively. The paging channel is one qftéd/WW,. The traffic

channels can be assigned to any of the remaining Walsh codes. There are 288,868,427 possible
Walsh code sets that fulfil the above-mentioned restrictions for a nine-channel transmission using
a 64 Walsh code space.

The goal of this paper is to identify which Walsh code sets can transmit the given data
sequences with the lowest power variance. To achieve this goal, the relationship between the
selected Walsh codes and the wave-shaping filter needs to be established. Once established, the

relationships can be exploited to reduce the power variance of the bandlimited CDMA signal.

1.4 Outline

The remainder of the paper is as follows. The power variance measure is applied to the band-
limited random waveform in Section 2.0, and to the CDMA waveform in Section 3.0. The results
from the former are used as baselines for comparison with the latter. Section 4.0 describes an
approach based on Walsh code selection that reduces the power variance of a bandlimited CDMA
signal. Section 5.0 provides results of simulations, verifying the statistical models derived in
Section 2.0 and Section 3.0, as well as demonstrating the reduction in power variance provided by

the approach proposed in Section 4.0. Section 6.0 contains the concluding remarks.

2.0 Estimation of Power Variance for a Bandlimited Random Waveform

In the following, the second- and fourth-order moments of bandlimited random waveforms are

derived. Two baseline waveforms are discussed: a signal generated from a sampled random



sequence, with zero mean, that is strictly bandlimited using the filter defined by (5); and a sam-
pled random sequence that is QPSK-modulated, as shown in (3), then bandlimited. The effect of
bandlimiting on the power variance in each case is of interest. For the case of the first baseline
waveform, bandlimiting makes the “power variation” of the waveform more Gaussian in nature
compared to the sampled signal. For the second baseline waveform, the statistics are moved

towards a Rayleigh distribution [9].
Consider a bandlimited random waveformgft), that is generated using random digital sam-
ples y(nT), interpolated using h(t), up-converted, then amplified; that is,
Yre(t) = Yu(t) 05, Bexp(jwgt) (11)

where
yp(t) = > y(nT) Ch(t—nT) (12)

and G, is chosen to be equal to unity, without loss of generality. The even-order statistics for both
the RF envelope and baseband signak(t)f and y(t), respectively, are equal. Thus, for the pur-
pose of measuring the power variance, we can use the even-order statisgity iobtgad of

Yrie(t), allowing us to consider only the baseband signal, as described by (12). In addition, the

average power (denoted b§) is equal for both the sampled and bandlimited signals:

0 = El|yre(V)]] = Elyy (0] = E[Y’(nT)]. (13)

Let us look at the auto-correlation of the sampled signals, y(nT) 4nd)y Since the base-

band samples, y(nT), are random with zero mean, we get

O

E[y(nT) Cy(mT)] = 0O for n=m (14)
% 0 otherwise

and



O
E[y2<nT)Ey2(mT)]:EE[V4(£'T)] for n=m . (15)
E o otherwise

From (14) and (15), it is apparent that all of the second- and fourth-order statistics of the sampled
signal are derived frorm? and E[\}(nT)].

Now let us look at E[§(t)], where t can be any instant of time, at or between the sample
instants, nT. Using (12), (14), and (15), and noting that

th(t—nT) =1, (16)
and

Et:osg%ng 17)

Wik

%h“(t—nT) = (1) = £+
we get

E[y, ()] = 30" O1-f(t)) + E[y'(nT)] O (1). (18)

It is apparent from (18) that the fourth-order moment is, in general, cyclostationary; that is, it is

dependent on the fractional portion of t/T (see the cosine term within (17)).

To remove the dependence on t, fém] is averaged over one sample interval [0, T] (see

cyclostationary processes in [9]): as a result,

]
Ely"] = 2 OJEly, (]t (19)
0

or

E[y"] = 30" q1- ) +E[y*(nT)] OF (20)

where



.
-1 B
f= TD{f(t)dt =

wIN

: (21)

It is apparent from (20) that, in general, fi[is not equal to E(nT)]; instead, the statistical dis-
tribution of the bandlimited waveform (EJY is a “blending” of two-thirds of the sampled signal
statistics (E[§(nT)]) and one-third of a Gaussian distributioa{B Thus, bandlimiting makes the
distribution of the waveform,yt), more Gaussian than the sampled signal, y(nT).

Figure 2 shows a bandlimited waveforig y(t) generated from a sampled random signal that
is QPSK-modulated using two PN sequences, &N PN, then filtered along the in-phase (1)

and quadrature (Q) paths using h(t). Assuming that the PN sequences are independent, the Gauss-

ian “blendings” within the | and Q bandlimited waveforms are also independent. As a result, the
one-third blending component within () is replaced by a Rayleigh distributii. @n the other-

hand, the two-thirds blending component is unaffected because the sampled random signal, y(nT),
is common to both the in-phase and quadrature signals. Thus, for bandlimited QPSK-modulated
signals, (20) is replaced by

Ellyig] = 20* 1) +Ely* (nT)] OF (22)

where Yy; is the time-average ofgy(t) over the interval [0,T].

Filter

y(nT) Yig(nT) Yig,h(t)

QP—»%—»

Fig. 2. Sampled random amplitude y(nT), QPSK-modulated random sjgfmany and bandlimited QPSK-
modulated random waveforng, y(t).




We now have enough information to compute the power variance. From (10), (), and (21), the

power variance of a bandlimited QPSK-modulated signal is

4
Ellv:
o

(23)

Baseline power variances derived from (23) appear in Section 5.0.

The key observation from this section is that QPSK-modulation and bandlimiting alter the
power variance of the original sampled signal, making it more like that of a signal whose envelope

has a Rayleigh distribution.

3.0 Estimation of Power Variance for the Forward-Link CDMA Waveform

This section develops statistical models for estimating the power variance of the forward-link

CDMA signal. Two even-order moments are derived, ﬁ[aqd E[|xf], which are used in (10) to

obtain the power variance. Section 3.1 discusses the intermodulation of Walsh codes, which is
present in calculation of higher-order moments. In Section 3.2 the even-order statistics of the sam-
pled CDMA signal are derived. The effect of bandlimiting is investigated in Section 3.3. Of par-
ticular interest is the interaction between the Walsh codes and wave-shaping filter that leads to

different power variances for different Walsh code sets.

3.1 Walsh Code Intermodulation

High-order Walsh code products arise when the CDMA signal passes through a nonlinearity.
For example, the PA gain model in (8) comprises a weighted sum of nonlinear operators applied
to the input signal, where the i-th order operatorF'Q&|i|xWaIsh code products also arise in the
calculation of the second- and fourth-order moments, presented in Section 3.2.

Consider the response of a CDMA signal to a second-order operator. At sample points, t = nT,
(5) has no ISI, therefore

10



XN = X(nT)? = Xau(nT) (24)
and

63
xiM(nT) = z PiP; Edi(nT)dj(nT) D/Vi(nT)Wj(nT). (25)
i,j=0
Equation (25) contains second-order intermodulation terms of the data seque%waed @)
and of the Walsh codes (¥\and WW;). The intermodulation of Walsh codes is discussed below.
Data intermodulation is not discussed because it is assumed later that the data sequences are

uncorrelated, making Ei[%j =1 and E[g¢dj] = 0 when i is not equal to j.

Each of the 64 Walsh codes can be represented as the product of 6 (or less) Hadamard basis

functions, which are shown in Figure 3 (see also Rademacher functions in [12]). A Walsh,code W

is defined as
W, = B, [B, B, [Bg (B[ B3y (26)
where
i = cq+2c,+4c, +8cg +16¢,g +32¢5, 27)
and
0 .
B, = O W, if the basis is activec{ = 1) (28)
E 1 ifthe basis is inactivecf = 0)

A Hadamard basis function Bhat is used in the definition of a Walsh codgi\teferred to as
“active”, and this active state is indicated Ry=cl. An inactive state is indicated by = 0. Two
examples of Walsh codes decomposed into the product of Hadamard basis functiopg are W

W8 W4 WZ and \MO = W32 W8'

11



Fig. 3. Hadamard basis functions used to form Walsh codes.

The product of two Walsh codes, &hd W, can be understood by noting an important prop-
erty: W W, = Wy = 1. An application of this property is \sWW,q = W35, W4 Wy = Wag. If the
indices 14 and 40 are rewritten in binary form (001110 and 101100), it can be seen that the result-

ant index 38 (100110) is obtained using an exclusive-or operation. In general, the product of two

Walsh codes, \\and W, produces a new Walsh code, which for convenience, is written 4§ W
= Wjg;. This Walsh code intermodulation can be extended to higher-order products using the
exclusive-or of the corresponding set of Walsh codgsMV. W, = Wi, ;-

The active basis functions for an intermodulation coglg; \afe determined by the basis func-
tions active within Wand W. Let the states of the basis functiopfBr Walsh codes Yand W
be denoted byi) and G(j), respectively. For the case of My (27) becomes

i0j = [cy(i)Ocqy(j)]+ ... +32cg,(1) O c35())] (29)

wherell is the exclusive-or operator.

Returning to the W,W o example, we see that the basis functiopsiBd B g are inactive in
both W, 4, and W, as well as in the resulting product}Vin general, if both &) and g(j) are
zero, the basis Bfor Wjp; is inactive (g(iJj) = 0). This means that Hadamard basis functions
that are “missing” from the initial Walsh code set @hd B g in the W, ,W,o example) are not

activated by intermodulation. Thus, intermodulation does not increase the dimension of the Walsh

12



code set. It should be noted that this “constant dimension” property holds for higher-order inter-

modulation products (\W;W,...), in addition to second-order products. The effect of missing

Hadamard basis functions on the power variance of the CDMA waveform is discussed in
Section 4.0.

The intermodulation properties of Walsh codes, mentioned above, are used in Section 3.2 to
derive fourth-order statistical properties of the CDMA waveform.
3.2 Sampled CDMA signal

Consider a CDMA waveform formed by 64 Walsh codes with various scale fgriBscause

of the PN sequence, the auto-correlation of the sampled CDMA signal is

O
2
E[x(nT) BX(mT)] = (O for n=m (30)
0o otherwise
0
where the average power is
2 03 2
o = Z p; - (31)

The important fourth-order statistics of the sampled CDMA signal, x(nT), are as follows:

63
EIX(nD’] = 30”20 5 pﬂ +Qc(n.n) (32)
i=0
EX(nT)20x(mT)’] = o+ Qg(n, m) +Qg(n, m) (33)
where
63 63 » 2
Qgr(n,m) = ZDZ Z P; P ERiDj(n, m) (34)

i=0[j=0
i%]

13



Qc(n, m) = PP PP, LT (N, M) (35)
c S(L%K ) iFiFkF =ik

Ri(n,m) = E[W,(nT)W,;(mT) [d;(nT)d,(mT)] (36)
Cij(n, m) = E[W, o ;(NT)W, o |(mT)d;; (nT)dy, (MT)] .

(37)
The notation S(i, j, k, 1) within (35) indicates that the summation includes;glle€cept for the
following terms: (i=j =k =1); (i=jand k =1); and (i = and j = k). The tergrelpresents the
product gl d;.
If the data symbols (pifor a given Walsh code, Ware uncorrelated in time, we get
0W;(nT) DW;(mT) for 0<n, m<63

Ri(n,m) = _
O 0 otherwise

(38)

If the data sequences;.d dy3, are uncorrelated in time and across Walsh code channels, then
Q.(n,m) = 0. In the following, it is assumed that the data sequences are uncorrelated sethat Q
0.

The effect of data correlation, which is beyond the scope of this paper, is described in [2].

3.3 Bandlimited CDMA Waveform

In the following, the fourth-order moment of the bandlimited CDMA waveform is derived rel-

ative to that of the bandlimited QPSK-modulated random waveform.

Let us assume that the second- and fourth-order moments are the same for both the sampled

Walsh-coded and sampled random signals: that is,
ElXay ()] = E[y*(nT)] (39)

E[Xay (nT)] = E[y'(nT)] . (40)

14



Despite having the same statistics at the sample instants (nT), the bandlimited CDMA and random
waveforms will differ at times between samples. In the following, the difference will be investi-

gated.

The bandlimited CDMA waveform is cyclostationary over a data symbol interval [0,64T],
which implies that the fourth-order moment is dependent on the fractional portion of t/64T. To
remove the dependence on t, averaging over the data symbol interval [0, 64T] is used (see cyclos-

tationary processes in [9]):

64T

BN = = O Elxy (). (41)
0

where it is assumed that t is within the interval [0, 64T].
Let us assume that the data sequences are uncorrelated (sg #@x @/e can write (41) with

respect to the bandlimited QPSK-modulated random waveform:

64T

El1X“= Ellyg7+5 {&% 0 qo<t)dt} (42)
0
where
dp(t) = 30y h°(t=nT) 3 Qu(n, m) Ch(t-mT). (43)
m#n

The term ¢(t) in (43) accounts for the effects of bandlimiting, but not QPSK-modulation. To

compensate for the effects of QPSK-modulation, a 2/3 scale factor is included in (42) (recall
Section 2.0 and (22)).

Let us introduce a new measure, referred to as the “relative power variance”. It is the difference

in the power variances for the bandlimited CDMA and random signals, under the assumption that

(39) and (40) are valid, and is denotedﬂﬁyez):

EX" —Ellyg 1 _ 2%
_

4
o o

A(ve) = (44)

15



wherey; is the contribution of \Msee below to (45)) ang} is the corresponding weight which is
dependent on the channel power and the intermodulation (see equations (34) and (35)).

Since it is assumed that the data ensembles are uncorrelated, s@ that\ie have

vi = z[Ewi(nT) OW,(mT) (T, mn] (45)
where
A.(nT, mT) = Eﬁ(nT, mT) for n#m (46)
° O 0 forn=m
and

64T
A(nT, m7 =30 [
0

h%(t—nT) Ch(t — mT)Jdt |

64T (“7)

Note thatn is a function of the wave-shaping filter h(t), and is represented by a matrix with a

band-like structure where the significant values are found near the diagonal. Also note that the

diagonal elements of the matrg are zero.

Figure 4 shows; as a function of the number of zero-crossings in the Walsh codiewoted

by N,ero It can be seen that there is a monotonic decreagemthe number of zero crossings

increases. A list of the number of zero crossings and the corresponding Walsh code appears in

Table 1. The corresponding valueogfdepends on the power levels of the Walsh codes involved

in creating the intermodulation codeg:W

63 5 ’
a; =2 ij [(pi[]j)] (48)
i=o

16
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Fig. 4. The contribution of Yo the relative power variancg,of (44), as a function of the number of zero-
crossings (Mo in W,;. The transition from positive to negatiyeoccurs between ]N,,= 26 and 27. This graph

shows that intermodulation power falling on Walsh codes with few (many) zero crossings increases (decreases)
the power variance of the bandlimited CDMA signal. The pairings,gi,Mith W; are listed in Table 1.

Table 1. The number of zero crossingse )l over the interval [0,64T] and the corresponding Walsh cogle (W

Nzero | Wi Nzero | Wi Nzero | Wi Nzero | Wi

0 Wy || 16 Wg || 32 W5 || 48 Ws
1 Ws, || 17 Wag || 33 Wss || 49 W37
2 Wi || 18 | Wasq || 34 [ wsy |90 | wag
3 Wi || 19 Wy, || 35 Wig || 51 W5,
4 Woyy || 20 Waq || 36 Wo7 || 52 Wag
5 Wsg || 21 Wso || 37 Wsg || 53 Ws1
6 Wyo || 22 Wye || 38 W3 || 54 W5
7 Wg || 23 Wi || 39 Wi, || 55 W3
8 Wy, || 24 Wi || 40 W5 || 56 Wy
9 Wya || 25 Wy || 41 W,z || 57 Wy,
10 Wi || 26 Wsg || 42 W3 || 58 Ws7
11 Wag || 27 Woe || 43 Waq || 59 Wo5
12 Woq || 28 Wig || 44 W3 || 60 W7
13 W, || 29 Wsg || 45 Wiss || 61 W9
14 Wse || 30 Way, || 46 Wag || 62 Waj
15 W, || 31 W, || 47 W, || 63 W,

17



From the viewpoint of limiting the power variance, one should select the set of active Walsh
codes that minimizes (44). That is, a desirable situation would be to have large (small) values for

anya; associated with Walsh codes ¥émprising many (few) zero crossings,.N However, it
is important to remember that the Wésociated witly; is an intermodulation Walsh code (W
W;W,). For example, if the active Walsh codes were chosen to &My and Wy, the inter-
modulation Walsh codes to be included within (44) would BeW¥, W3,, and Ws.

The key observation is that it is not possible to select only Walsh codes with Qjghd¢ause
intermodulation will produce new codes with lowdy, In the above-mentioned example; #hd
W33 have the maximum number of zero crossings, (N 63 and 62, respectively), whereag W
and W, have the minimum (),,= 0 and 1, respectively). The selection of Walsh codes for the

purpose of reducing the power variance is discussed in Section 4.0 and Section 5.0.

4.0 Reducing the Power Variance of a CDMA waveform

In the following, the effect of missing basis functions (see Section 3.1) on the power variance is

presented. In particular, it is shown that the presence of Hadamard basis fupdsi@s$ntial in

reducing the power variance below that of a bandlimited random waveform. Note that within this
section, the estimates of the relative power variance are based on assumptions that the data

sequences are not correlated (so that Q, see (35) and (44)) and that h(t) is used as the wave-
shaping filter.
To illustrate the effect of a missing basis functigndd the power variance, consider a set of

32 active Walsh codes with equal power. If the set comprises the even-numbered Walsh codes

(Wo, Wy, Wy,..., Wgy), the basis function Bis missing. The value of the relative power variance,
in this case, is +0.37. In contrast, if the set is missipg(Bat is, the set containsg\., Wis,
WSs,,..., Wy7), then the value of the relative power variance is -0.04. Recall from (44), that a posi-

tive (negative) value indicates that the power variance is greater (less) than that of a bandlimited

QPSK-modulated random waveform.

18



To better understand why there is such a large disparity in the power variances for the cases

where B and B g are missing, let us refer back to Table 1 and Figure 4. Consider first the case
when B, is missing. Recalling the “constant dimension” property from Section 3.1, all higher-
order intermodulations (VWV;...) are restricted to Walsh codes that are also missinyj &n be

seen from Table 1 that this set includes all intermodulation Walsh codes wjth<N82 (codes

Wg, Wy, W,,..., W) and, from Figure 4, that the intermodulation power will be concentrated in
the 32 highesy;’s. As a result, the power variance will be large. In contrast, the set that is missing
B1g Will find it’s intermodulation power on 32 Walsh codes whose respegtvare distributed

over the full range shown in Figure 4. As a result, the relative power variance is close to zero.

As a further illustration, consider a set of 16 equal power Walsh codes that is missing two basis

functions. If B, and B, are missing, the relative power variance is +0.65. In contragfahé B g

are missing, the relative power variance is -0.07. Returning again to Table 1 and Figure 4, we see

that when both Band B, are missing, the intermodulation power is restricted to the Walsh codes
where Ngro < 16. This corresponds to the 16 highg'st which leads to an even higher power
variance. In contrast, for the set that is missing bgthari8l B g, the availables's are still distrib-

uted over the full range, which leads to a relative power variance that is near zero.

Now consider code sets with nine channels, which will be used in Section 5.0. Nine-channel
code sets can be formed that are missing either zero, one, or two basis functions. The process of
intermodulation will tend to distribute power amongst Walsh codes that span the active basis func-

tions. As long as Band, to a lesser extent, Bre active basis functions, a wide rangg 'sfwill
be available, and the relative power variance will be small (assumirg0R Thus the specific
Walsh codes in-use are less important than which basis functions are active.
In summary, minimizing the power variance requires that the basis fungtioa &tive within
the Walsh code set. Assigning;\&s the paging channel is a recommended means of making B

active.
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5.0 Results

In this section, examples are provided to illustrate the effects of Walsh code selection on the
power variance of the CDMA signal. Section 5.1 compares measured and baseline values for the
pilot-only waveform, illustrating the effect of bandlimiting on the power variance. In Section 5.2,
the measured power variances for six different nine-channel CDMA signals are compared to illus-
trate the dependence of the power variance on Walsh code selection. Measured and predicted
power variances are also compared to verify the accuracy of the statistical models presented in
Section 2.0 and Section 3.0.

For the examples shown in this section, the measured power variances are obtained from com-

puter simulations where the bandlimited signajgt)>and y,(t), are over-sampled by a factor of

four compared to the chip rate. The 1S-95 baseband filter [8] is used for the wave-shaping instead
of h(t) described by (5). Note that the 1S-95 baseband filter has a blending factor (to be used in
(22)) of

4
) 400y higgs (t—nT)
figgs = —10 5 = 0733 (49)

[Z hcoe (t— nT)]

n

instead off = 0.667 for h(t) (note that the factor of 4 in the numerator of (49) is due to the four

times over-sampling). The phase equalizing filter [8] specified in IS-95 is not included.

The nine-channel forward-link CDMA signal is considered by many to be a “standard” test
waveform [7]. The Walsh code set contains pilot, paging, sync, and six traffic channels. Within

this paper, the pilot, paging, and sync channels are assigned relative scale gdpt)ref(1.0,
0.9, and 0.45, respectively. The traffic channels each have a relative scale factor of 0.8. The power
variance of the sampled Walsh-coded signal ,(ﬁ[%(nT)]/o“) is 2.76. However, the power vari-

ance of the CDMA waveform, after QPSK-modulation and bandlimiting, varies depending on the

active Walsh codes.
Uncorrelated data vectors, to be used in the nine-channel examples, are formed as follows. For

the case of nine active channels, the data vector has 256 distinct vﬁlbese(ﬂse only 8 of the
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data bits can change signs; the pilot data is consianatlil Since there are 512 symbol intervals
within a PN sequence period, each value is used twice. The time positions of the 512 data vectors
over the PN sequence period are selected using a random permutation.

Two baseline power variances, based on the bandlimited random waveforms described in
Section 2.0, appear in Table 2. They are generated from random sequences having sampled power
variances (E[§(nT))/o? of 1.0 and 2.76, which then are QPSK-modulated and bandlimited by
the 1S-95 filter. Using the prediction model described by (22),fagsl= 0.733, the predicted

(baseline) power variances are 1.27 and 2.56, respectively. These predictions are used as baselines

for the pilot-only signal and the nine-channel CDMA signal, respectively.

Table 2. Sampled and baseline power variances. Baseline waveform is QPSK-modulated and bandlimited using
the 1S-95 filter.

Sampled | Baseline
Power | Power

Baseline Signal Variance | Variance
Pilot-only Baseline: 1.0 1.27
Ely*'(nT)] =o"

9-Channel Baseline: 2.76 2.56

E[y%nT)} = 2.760%

5.1 CDMA Signal: Pilot-only

The measured power variance of the pilot-only waveform is 1.28. This confirms that bandlimit-
ing increases the power variance from unity towards the Rayleigh distribution’s power variance of
2. The measured value compares well with the baseline prediction of 1.27: an error of only 0.7
percent. This level of accuracy should be viewed as a validation of the prediction model described
by (22) and (49).

5.2 CDMA Signals: Nine Channels

Six Walsh code sets forming nine-channel CDMA signals are presented in Table 3. Within

each set, the pilot and sync channels ageaé W;,, respectively. The paging channel is Yor
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all sets except for Set 1, where it i$;Whe remaining Walsh codes are traffic channels. Within

Set 1 and Set 4, the paging and traffic channels are selected such that two Hadamard basis func-

tions are missing: Band B, for Set 1; and Band B gfor Set 4. Set 5 is missing B The remain-

ing sets have six active basis functions. Note that Set 5 is the default nine-channel forward-link

code assignment in [7].

Table 3. Measured and predicted power variances for various nine-channel Walsh code sets.

Measured| Predicted
Active Walsh codes Power Power
Set | (pi>0) Variance | Variance
Set1| W, W, Way Wg, Wig, 3.21 3.20
W4 Wao Wag Wse
Set2| W, Wy, Wap, Weg Weg, | 2.46 2.45
Weo We1, We2: Wes
Set3| W, Wy, Wap, Wa, Wy, 2.56 2.55
Wg, Wy5 W6 Wsy
Set4| W, Wy, Wap, Wo, Wa, 2.44 2.44
Wy, Ws, We, W7
Set5| W, Wy, Way, We, Wi, 2.49 2.48
Wig W11, Wi W3
Set6| W, Wy, Way, Wy, Wi, 2.60 2.59
Wg, W3 Wi Wig

The range of measured power variances in Table 3 indicates that a CDMA signal formed from
uncorrelated data is not the same, in general, as the baseline example of a random sequence that is
QPSK-modulated and bandlimited. The power variance for the latter is 2.56, whereas the former
has measured values ranging from 2.44 to 3.21. The dependence of the power variance on the
code set indicates the importance of Walsh code selection. Note that the power variance for Set 1
is significantly higher than any of the other five code sets. This confirms that it is beneficial to

specify Walsh code \Vas the paging channel.

The high power variance for Set 1 is a consequence of an unfavorable concentration of inter-

modulation powerd’s of (48), excludingry) amongst codes with lows. Set 1 has 72.9 and

100 percent of the total intermodulation powBL{ g3 0;) on codes with 0 < ), < 8 and 0 <
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N,ero < 16, respectively. The lowest power variances are Set 2 and Set 4, for each code set, only
1.4 and 15.4 percent of the total intermodulation power appears on codes with,@<8and 0

< N,ero< 16, respectively. The remaining three code sets (Set 3, Set 5, and Set 6) have balanced
distributions ofa; as a function of I, (27.5, 23.9, and 31 percentXd;, respectively, for 0 <

Nero < 16). As a result, the power variances are close to the baseline value. The unfavorable dis-
tribution ofa;’s for Set 1 is consistent with the predictions discussed in Section 4.0 (Set 1 is miss-
ing basis functions Band B,).

The predicted power variances in Table 3 are obtained as follows. The relative power variances
are predicted based on (42) and (44), and the filter h(t). Since the 1S-95 filter has a higher blending
factor than h(t), the predicted relative power variances are decreased by a factor of 0.667/0.733
(for the six sets, the relative power variances are reduced from [0.71, -0.12, -0.01, -0.13, -0.09,
+0.03] to [0.64, -0.11, -0.01, -0.12, -0.08, 0.03]). These adjusted values are then added to the
baseline power variance of 2.56. The predicted values are accurate; the typical error is -0.01, or
0.4 percent of the baseline power variance. Note that even if the incorrect blending factor of 2/3 is

used, the relative power variance measure provides an accurate ranking for the purpose of select-

ing the Walsh code set that minimizes the power variance.
One final observation is that multiplying a given code set by a Walsh cpi@d\ho effect on
the power variance (see (48)). For example, if Set 2 is multiplied &y W& obtain a new set
(Wg3, Wgo, W31, Ws, W,, W3, Wy, Wy, Wg). Since Set 4 and the new setgd/ Set 2) share six
of nine Walsh codes, it should not be surprising that Set 4 and Set 2 have similar power variances.

In addition. this observation allows missing basis functions properties to be extended to include

code sets with “common factor” basis functions. Although the requirement for a pilot channel W
prevents the use of sets for which all codes contain a common fagtwh#re k not equal to

zero), this observation allows one to predict the influence of a code subset possessing common

basis functions.
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6.0 Conclusion

The power variance of a bandlimited forward-link CDMA waveform is defined in terms of
selected Walsh codes. It is shown that the power variance is largest when the Hadamard basis

functions B and B, are missing from the Walsh code set.

Statistical models used to predict the power variance for bandlimited CDMA waveforms and
QPSK-modulated random waveforms are shown to be accurate. This information allows potential

code sets to be ranked in terms of their power variance, without the need for simulation or testing.
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