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Abstract

We consider the noise properties at the output of a di�erential detector under dis-

persive channel conditions when MSK is used as the modulation scheme. Using the

autocorrelation properties of the noise term and the method of Lagrange multipliers,

we present previously unreported bounds for both the noise variance and the com-

plementary autocorrelation function of the noise term. We show that both the noise

variance and the complementary autocorrelation function can increase or decrease un-

der particular channel conditions. Based on these �ndings, we are able to bound the

signal-to-noise ratio.

1 Introduction

The bene�ts of di�erential detection are widely acknowleged and understood. It provides an

inherent robustness to phase and frequency o�sets whilst enabling a low complexity solution.

However, a notorious problem with di�erential detection is the signi�cant increase in error

rate which occurs when the channel is time dispersive [1]. This problem arises from the

nonlinear behaviour of the detection process, which not only produces cross-product terms

in the output signal [1, 2, 3], but also a highly correlated noise term [4, 5]. For the additive

white Gaussian noise (AWGN) channel, it is known that the maximum noise variance at

the output of a di�erential detector is twice as large as the coherent case [6], however, when

the channel is time dispersive the variance is unknown.

In this paper we present analytical results for the noise term at the output of a di�eren-

tial detector under time dispersive channel conditions. Using the autocorrelation properties

of the noise term and the method of Lagrange multipliers we establish the �rst upper and

lower bounds (to our knowledge) for both the noise variance at the output of the di�erential

detector and the correlation between adjacent noise terms. In addition, we also derive the

form of the channel which attains these bounds. Finally, using these results, we determine

an upper bound on the signal-to-noise ratio (SNR). The implications of these results in the

context of detection are discussed brie
y at the end of the paper.
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2 Background

As a means of establishing some notation, we give a brief description of the operation of a

minimum shift keying (MSK) system employing di�erential detection. An MSK signal has

the following baseband representation

s(t) =

s
2Eb

T
exp [j�(t)] (1)

where Eb is the bit energy, T is the symbol duration, �(t) =
P

i
�i�h

R
t�iT
�1 g(u)du and j =p�1. The modulation index h is equal to 0.5, the information symbols �i 2 f�1;+1g are

mutually independent, and g(t) is a rectangular pulse of unit area. Using the representation

described in [7], the MSK signal can be represented as a linear superposition of amplitude

modulated pulses, such that we can write (1) as s(t) =
P

+1
i=�1 xip(t� iT ), where

xi = j�ixi�1; (2)

xi 2 f�1;+1;�j;+jg and p(:) is a suitable pulse shaping function given in [7]. Now suppose

s(t) is transmitted through a dispersive channel, hc(t), and is corrupted by AWGN. We

write y(t) =
P

+1
i=�1 xih(t � iT ) + n(t), where the composite channel impulse response is

h(t) =
R
+1
�1 p(u)hc(t� u)du and n(t) is complex valued AWGN with zero mean and noise

power spectral density 2No. If tk = kT + ts are the sampling instants, the sampled input

to the receiver is yk = y(kT + ts), where ts is the optimum sampling instant and k is an

integer. Assuming the channel has �nite duration, for convenience we de�ne the discrete

time equivalent channel as

yk = bk + nk (3)

where bk =
P

L�1
i=0

xk�ihi. Here hi are the complex coe�cients of the channel impulse

response, under the constraint of unit energy
P

L�1
i=0

jhij2, and the variance of the noise term

samples, nk, is �
2. We consider the complex 1-bit di�erential detector [8], which multiplies

the current received signal sample yk with the conjugate of the previous sample yielding

rk = yky
�
k�1 (4)

Substituting (3) into (4) and rearranging gives

rk =
L�1X
i=0

j�k�ijhij2 +
L�1X
n=0
n6=i

L�1X
i=0
i6=n

xk�ix
�
k�i�1hih

�
n + zk + nkn

�
k�1 (5)

where

zk = nkb
�
k�1 + n�k�1bk (6)

We note that (5) consists of four terms: a linear ISI part which is purely imaginary

and contains the wanted symbol �k, a complex nonlinear ISI part, a correlated noise

term zk which is a function of both the channel impulse response h and the symbols

(x�
k�1; ::; x

�
k�L); (xk; ::; xk�L+1), and �nally a weak noise term nkn

�
k�1. Since the nk noise

samples are i.i.d., we make the usual approximation, that is, the weak noise term nkn
�
k�1

will be typically insigni�cant [6]. We neglect this term throughout the remainder of the

paper.
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3 Correlated Noise

Consider the autocorrelation function (ACF) of zk, Rz(u), and the complementary auto-

correlation function (CACF) ~Rz(u). Noting that for complex Gaussian noise we have the

de�nitions [9], E(n2
k
) = 0 and E(jnkj2) = �2, we can write

Rz(u) = E(zkz
�
k+u) =

(
�2(jb�

k�1j2 + jbkj2) u = 0

0 u � 1
(7)

and

~Rz(u) = E(zkzk+u) =

8>>>>><
>>>>>:

0 u = 0

�2(b�
k�1bk+1) u = 1

0 u > 1

(8)

Since E(n2
k
) = 0, the ACF will be zero for all u > 0, and the CACF will only be nonzero

at shifts of u = 1. These unusual properties which exist in the structure of zk, arise from

the conjugation in the delayed complex noise term, n�
k�1. If we consider the CACF for N

noise terms, it can be shown that

E(zkzk+1zk+2zk+3 � � � zk+N ) =

8><
>:

E(zkzk+1)E(zk+2zk+3) � � �E(zk+N�2zk+N�1) N even

0 N odd

(9)

This factoring means that an even product of noise terms breaks up naturally into the

adjacent pairs zkzk+1, and any higher order correlations can always be calculated in terms of

pairwise correlations, and as such we only ever need to consider pairs of noise terms. In addi-

tion, it reveals the fact that on a pairwise basis, the noise terms are uncorrelated. However,

this does not mean that there is no correlation between zk+1 and zk+2, since E(zk+1zk+2) =

�2b�
k
bk+2 as expected, and E(zk+1zk+2zk+3zk+4) = E(zk+1zk+2)E(zk+3zk+4). It does mean

that the factoring into pairs merely depends on the noise terms under consideration (even

number). Furthermore, it is obvious that when N takes on odd values we have zero corre-

lation since E(zkzk+1zk+2) = �2b�
k�1bk+1E(zk+2), where E(zk+2) = 0.

3.1 Non-dispersive AWGN Channel

We investigate the correlation properties for the non-dispersive AWGN channel. If L =

h0 = 1 then bk = xk, and Rz(u) and ~Rz(u) are both real-valued functions 8u. If �2z is the

variance of the noise term zk, then �2z = Rz(0) = 2�2, which is invariant to a shift in k.

However, ~Rz(1) is dependent on the symbols (x�
k�1xk+1). If we use the relationship of (2),

we can write

~Rz(1) = ��2�k�k+1 (10)

where ~Rz(1) 2 ��2. In (10), an intimate relationship is revealed between pairs of in-

formation symbols, which gives an underlying connection with all previously transmitted

symbols. Clearly, ~Rz(u) is not invariant to a shift in k, and therefore, we can conclude that

zk is not strictly stationary [9].
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3.2 Dispersive Channel

We now consider the noise at the output of the di�erential detector when the channel is

dispersive. Unlike the AWGN channel, �2z , is not invariant to a shift in k, and is dependent

on both the channel impulse response and the symbols xk within the range fk; k�1; :::; k�
Lg. We now present Theorem 1.

Theorem 1 Under the constraint
P

L�1
i=0

jhij2 = 1 and L > 1, the variance, �2z , is upper

bounded by 2L�2.

Proof: Let �2z = �2(jb�
k�1j2 + jbkj2) be the variance at the output of the di�erential

detector, let xk�ihi = 
i + j�i, and consider jbkj2, in the form

F (
i; �i) =

"
L�1X
i=0


i

#2
+

"
L�1X
i=0

�i

#2
(11)

We wish to maximise F (
i; �i) over possible 
i; �i under the constraint
P

L�1
i=0

jhij2 = 1.

We write

L�1X
i=0


2i +
L�1X
i=0

�2i = 1 (12)

G =
L�1X
i=0


2i +
L�1X
i=0

�2i � 1 (13)

and use the method of Lagrange multipliers, with H(
i; �i) = F (
i; �i)� �G and

@H(
i; �i)

@
i
= 2

L�1X
i=0


i � 2�
i = 0 (14)

@H(
i; �i)

@�i
= 2

L�1X
i=0

�i � 2��i = 0 (15)

>From (14) and (15),
P

L�1
i=0


i = �
i, and
P

L�1
i=0

�i = ��i. This implies that 
i and �i
are independent of i. Letting 
 = 
i and � = �i 8i, then from (12)

L(
2 + �2) = 1 (16)

which from (11) gives

F (
; �) = L2(
2 + �2) = L (17)

Clearly then �2z = �2(jb�
k�1j2 + jbkj2) � 2L�2 and the upper bound for �2z can only be

attained in the case that jb�
k�1j2 and jbkj2 are equal and maximise at L.

Now

bk =
L�1X
i=0

xk�ihi �
L�1X
i=0

(
i + j�i) (18)

and since from (2), xk�1 = �j�kxk, we can write

bk�1 =
L�1X
i=0

xk�i�1hi =
L�1X
i=0

�k�i (�i � j
i) (19)
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Inserting (18) and (19) into (7) yields

�2z = �2

2
4
 
L�1X
i=0


i

!2

+

 
L�1X
i=0

�i

!2

+

 
L�1X
i=0

�k�i�i

!2

+

 
L�1X
i=0

�k�i
i

!2
3
5 (20)

Under the conditions 
i = 
 and �i = � 8i we get

�2z = �2

2
4L+

1

L

 
L�1X
i=0

�k�i

!2
3
5 (21)

So we see that �2z attains the upper bound of 2�2L exactly when jPL�1
i=0 �k�ij = L. This

requires all �k�i in the summation to have the same sign. 2

We next consider the CACF for the dispersive channel. It is obvious that, like the

AWGN channel, ~Rz(u) is not invariant to a shift in k, and so zk is not strictly stationary.

We now present our second theorem.

Theorem 2 Under the constraint
PL�1

i=0 jhij2 = 1 and L > 1, j ~Rz(1)j is upper bounded
by L�2.

Proof It is clear that j ~Rz(1)j2 = (�2)2jb�k�1j2jbk+1j2 has a maximum of �4L2 as jb�k�1j2
and jbk+1j2 each have a maximum of L. However, j ~Rz(1)j2 can only attain its maximum in

cases where jb�k�1j2 and jbk+1j2 are equal and maximise at L.

We write xk�1�ihi = �i + j�i. Clearly, jb�k�1j2 maximises under the conditions �i = �,

�i = � and �2 + �2 = 1
L
(as in Theorem 1).

Now

j ~Rz(1)j2 = �4

2
4
 
L�1X
i=0

�k+1�i�k�i�i

!2

+

 
L�1X
i=0

�k+1�i�k�i�i

!2
3
5
2
4
 
L�1X
i=0

�i

!2

+

 
L�1X
i=0

�i

!2
3
5(22)

for the case �i = �, �i = � and �2 + �2 = 1
L
we get

j ~Rz(1)j2 = �4

 
L�1X
i=0

�k+1�i�k�i

!2

(23)

It is clear that j ~Rz(1)j2 can only attain its maximum by satisfying jPL�1
i=0 �k+1�i�k�ij = L.

This requires all �j in the summation to have the same sign, or for the signs to alternate.

2

4 Worst Case Channel

We now present the channel that achieves the upper bound on �2z and j ~Rz(1)j. This channel
is important, since it can be considered as the worst case channel as it always exhibits the

highest noise variance. This will become clearer in the next section when we consider the

SNR at the output of the di�erential detector.

Again we assume the conditions 
i = 
 and �i = � 8i, this gives xk�ihi = xk+1�ihi�1
for i = 1 : : : L� 1. However: xk+1�i = j�k+1�ixk�i, which implies that hi = j�k+1�ihi�1.

We have established already that jPL�1
i=0 �k�ij = L is necessary to maximise �2z , which

suggests that there are two channels:

hi =

8><
>:

jhi�1 for i = 1 : : : L� 1 (a)

�jhi�1 for i = 1 : : : L� 1 (b)

(24)
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In each case h0 satis�es jh0j2 = 1
L
, which implies that

h0 =
ej�p
L

(25)

where � is an arbitrary phase shift. We now show that �2z can be zero for the same channel

impulse response that achieves the upper bound.

Consider the channel that attains the maximum of �2z , but examine the conditions

when �2z vanishes. Now bk =
PL�1

i=0 xk�ihi, so if bk is to vanish by terms cancelling, then

L has to be even. Consider odd values of i, then using channel (a) with hi = jhi�1 and

xk�i = �j�k�i+1xk�i+1 we can write

hixk�i = �k�(i�1)hi�1xk�(i�1)

So, if hixk�i is to cancel the term hi�1xk�(i�1) then �k�(i�1) has to be negative. Similarly,

in bk�1, if this is to vanish by cancellation then for odd i, �k�1�(i�1) = �1. Hence, for

channel (a), the relevant string of �k : : : �k�L+1 (dependent on the choice of k) all have

to equal -1. For channel (b), when hi = �jhi�1, there is a sign reversal, so the relevant

�k : : : �k�L+1 have to equal +1. This will now be demonstrated using a speci�c example.

Example 1: If L = 2, the upper and lower bound for �2z and j ~Rz(1)j is attained by

the channel impulse response h = 1p
2
(1; j). Using (7) and (8), we tabulate �2z and j ~Rz(1)j

normalised to �2, and we include their associated sequences for k = 0, see Table I. For

convenience, we let � = 0. In comparison, for the non-dispersive AWGN channel, it is

simple to show that �2z=�
2 = 2 and j ~Rz(1)j=�2 = 1 holds for all sequences. In this example,

we note the maximum of �2z=�
2 for the dispersive channel is attained when �0 = ��1 = 1

and the minimum is attained for �0 = ��1 = �1. Similarly, the maximum of j ~Rz(1)j=�2
is attained when �1 = �0 = ��1 = 1 or �1 = ��0 = ��1 = 1. We note also, these

sequences will invert for channel (b) hi = �jhi�1. Here we have used the simplest channel

model to illustrate the bounds proved earlier. Obviously, under realistic channel conditions,

for example, a Rayleigh fading exponentially decaying power delay pro�le, these values will

vary (depending on the rms delay spread of the channel) within the upper and lower bounds.

h = 1p
2
(1; j)

�1; �0; ��1 x1; x0; x�1; x�2 �2z=�
2 j ~Rz(1)j=�2

�1� 1� 1 +j � 1� j + 1 0 0

�1� 1 + 1 �j + 1 + j + 1 2 0

�1 + 1� 1 �j + 1� j + 1 2 0

�1 + 1 + 1 +j � 1 + j + 1 4 0

+1� 1� 1 �j � 1� j + 1 0 0

+1� 1 + 1 +j + 1 + j + 1 2 2

+1 + 1� 1 +j + 1� j + 1 2 0

+1 + 1 + 1 �j � 1 + j + 1 4 2

TABLE I

Normalised �2z and j ~Rz(1)j for the time dipsersive channel
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5 Signal-to-Noise Ratio

Using our results from Theorem 1 and Theorem 2, we now consider the SNR at the output

of the di�erential detector. Suppose nk = 0, then from (4), the signal power is

sk = rkr
�
k = jbkj2jbk�1j2 (26)

Now the noise power is E(jzkj2) = �2z , and so we write the SNR as

SNR =
jbkj2jbk�1j2

�2 (jbkj2 + jbk�1j2)
(27)

As shown in the proof of Theorem 2, it is clear that sk maximises at L2 as jbkj2 and jbk�1j2
each maximise at L. Futhermore, it is clear that sk vanishes when �2z vanishes. As shown

previously, for �2z to vanish requires jbkj2 and jbk�1j2 to both vanish. For sk to vanish there

is only a requirement that jbkj2 or jbk�1j2 vanish. For channel (a), this means that either

�k�(i�1) = �1 or �k�i = �1 for odd i, and every other �k�i = +1. For channel (b), there

is a sign reversal. We now present our third theorem

Theorem 3 Under the constraint
PL�1

i=0 jhij2 = 1, the SNR is upper bounded by L=2�2

Proof For the channel that attains the maximum of �2z there are sequences for which

both jbkj2 and jbk�1j2 are not equal to their maximum value, however, both are non-zero.

Let jbkj2 = L� ck and jbk�1j2 = L� ck�1 where 0 < ck; ck�1 < L. From (27), we can write

the SNR as

SNR =
1

�2
(L� ck)(L� ck�1)

2L� ck � ck�1
(28)

which can be rewritten as

SNR =
1

�2

�
L

2
� 1

2

�
ck (L� ck�1) + ck�1 (L� ck)

2L� ck � ck�1

��
(29)

Since 0 < ck; ck�1 < L, it is clear that the term in square brackets in (29) is positive.

As this is subtracted from L=2, this means that L=2�2 is the maximum SNR 2.

We now present a second example to illustrate this point.

Example 2: Let L = 4, so the channel (a) impulse response is h = 1p
4
(1; j;�1;�j).

Using (27), we tabulate �2:SNR, and we include the associated sequences for k = 0, see

Table II. Again for convenience, we let � = 0, and for the non-dispersive AWGN channel, it

is simple to show that �2:SNR = 1=2 holds for all sequences. In this example, we note the

maximum of �2:SNR for the dispersive channel is attained when �0 = ��1 = ��2 = ��3 =

1, the same sequence that maximises �2z for this channel. We note also, these sequences

will invert for channel (b). Again we have used the simplest channel model to illustrate the

variation in SNR.

We have used the symbol 0y in Table II to indicate the situation when both sk and

�2z vanish. In these cases where sk = �2z = 0, the ratio has been set to zero by virtue

of the nkn
�
k�1 term in (5) being small but �nite. From (5), let ~zk = zk + nkn

�
k�1, then

E(~zk~z
�
k) = �2z + �4, so the denominator of the SNR is in fact still �nite even when �2z = 0.

We remark, the results of Table II suggest appropriate coding of signals can be used to

increase the SNR.
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h = 1p
4
(1; j;�1;�j)

�0; ��1; ��2; ��3 x0; x�1; x�2; x�3; x�4 �2:SNR

�1� 1� 1� 1 +1 + j � 1� j + 1 0y
�1� 1� 1 + 1 �1 + j � 1� j + 1 0

�1� 1 + 1� 1 �1� j � 1� j + 1 0

�1� 1 + 1 + 1 +1� j � 1� j + 1 0.5

�1 + 1� 1� 1 �1� j + 1� j + 1 0

�1 + 1� 1 + 1 +1� j + 1� j + 1 0y
�1 + 1 + 1� 1 +1 + j + 1� j + 1 0.5

�1 + 1 + 1 + 1 �1 + j + 1� j + 1 0.8

+1� 1� 1� 1 �1� j + 1 + j + 1 0

+1� 1� 1 + 1 +1� j + 1 + j + 1 0.5

+1� 1 + 1� 1 +1 + j + 1 + j + 1 0y
+1� 1 + 1 + 1 �1 + j + 1 + j + 1 0

+1 + 1� 1� 1 +1 + j � 1 + j + 1 0.5

+1 + 1� 1 + 1 �1 + j � 1 + j + 1 0

+1 + 1 + 1� 1 �1� j � 1 + j + 1 0.8

+1 + 1 + 1 + 1 +1� j � 1 + j + 1 2

TABLE II

�2:SNR for the time dispersive channel

6 Conclusions

We have presented some insight into the behaviour of the noise term zk de�ned in (6).

In particular, we have obtained bounds for �2z and j ~Rz(1)j under time dispersive channel

conditions. We have presented the channel that attains these bounds and the associated

data sequences. Using these results we have determined the upper bound on the SNR for

di�erential detection of MSK under dispersive channel conditions.

Finally, we mention the technique of multiple symbol di�erential detection (MSDD) of

MPSK described in [10], which can also be generalized to GMSK modulation [11]. This

technique uses j ~Rz(1)j to achieve the same performance as coherent detection. This is done

by allowing the observation interval over which symbol decisions are made to be longer than

two symbol intervals, whilst making a joint decision on several symbols simultaneously.

However, MSDD in its present form does not re
ect the dependency of j ~Rz(1)j and �2z on x

and h, relying on the assumption that j ~Rz(1)j and �2z are constant. As shown, for the time

dispersive channel this is not the case. It is anticipated that a form of MSDD can also be

used for the time dispersive channel. The development of this technique is the subject of

continuing investigation.
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