
CellFast: Interactive Unstructured
Volume Rendering

Craig M. Wittenbrink,
Computer Systems Laboratory
HP Laboratories Palo Alto
HPL-1999-81(R.1)
September, 1999

tetrahedral cell,
irregular grid,
volume
visualization,
OpenGL,
visibility sorting,
quicksort,
triangle fan

Shirley and Tuchman's projected tetrahedra approach is a fast
algorithm for unstructured volume visualization, because it
generates triangles that may be rendered by hardware
acceleration. In this paper, I explore optimizations using OpenGL
triangle fans, customized quicksort, memory organization for cache
efficiency, display lists, and tetrahedral culling. The optimizations
improve the performance of projected tetrahedra rendering to
provide 1 frame/second for 240,122 tetrahedral cells, 3
frames/second for 70,125 tetrahedral cells, and 15 frames/second
for 12,936 tetrahedral cells. Resolutions of 3840x1024 were
rendered by using the HP-Visualize Center at full frame rates.

1999 IEEE Conference on Visualization--Late Breaking
Hot Topics, San Francisco, CA
 Copyright Hewlett-Packard Company 1997

CellFast: Interactive Unstructured Volume Rendering

Craig M. Wittenbrink

Hewlett-Packard Labs
1501 Page Mill Road
Palo Alto, CA 94304

Abstract

Shirley and Tuchman’s projected tetrahedra approach is a fast
algorithm for unstructured volume visualization, because it
generates triangles that may be rendered by hardware accel-
eration. In this paper, I explore optimizations using OpenGL
triangle fans, customized quicksort, memory organization for
cache efficiency, display lists, and tetrahedral culling. The
optimizations improve the performance of projected tetrahe-
dra rendering to provide 1 frame/second for 240,122 tetrahe-
dral cells, 3 frames/second for 70,125 tetrahedral cells, and
15 frames/second for 12,936 tetrahedral cells. Resolutions of
3840x1024 were rendered by using the HP-Visualize Center at
full frame rates.

Keywords: tetrahedral cell, irregular grid, volume visualiza-
tion, OpenGL, visibility sorting, quicksort, triangle fan

1 INTRODUCTION

Interactive volume rendering has always been a challenging
problem. This paper is all about making unstructured render-
ing as interactive as possible on available hardware platforms.
The projected tetrahedra algorithm of Shirley and Tuchman
[5] uses the geometry acceleration and rasterization of poly-
gon rendering to maximum advantage. The majority of the
work, the scan conversion and compositing, are accelerated
by existing graphics hardware. In earlier work, I investigated
hardware acceleration with parallel compositing on PixelFlow
[10]. OpenGL hardware acceleration is now widely available
in desktop systems, and using the earlier implementation as a
starting point I investigated further optimizations to improve
desktop rendering performance. Figure 1 provides pseudo-
code of Shirley and Tuchman’s [5] projected tetrahedra algo-
rithm, where tetrahedra are projected at the screen plane, and
subdivided into triangles. Figure 3 shows the four classes of
projections that result in one to four triangles.

Preprocessing is necessary to calculate colors and opaci-
ties from input data, setup for visibility sorting of primitives,
and creation of plane equations used for determining the class
a tetrahedra belongs to for a viewpoint. Cells are visibility
sorted (step II) for proper compositing for each viewpoint [9].
Figure 3 shows that new vertices are introduced during steps
III and IV. The new vertex requires a color and opacity to be
calculated in step V. Then the triangles are drawn and scan
converted in step VI. Figure 2 shows the output of my renderer
for the Phoenix, NASA Langley Fighter, and F117 datasets.

I. Preprocess dataset

For a new viewpoint:

II. Visibility sort cells

For every cell in sorted back-to-front order:

III. Test plane equations to determine class (1,2,3,4)

IV. Project and split cell unique frontback faces

V. Compute color and opacity for thick vertex

VI. (H) Scanconvert new triangles

Figure 1: Projected tetrahedra pseudo-code

In order to achieve the highest possible performance for in-
teractive rendering of unstructured data, many software opti-
mizations are necessary. In this paper, I explore software opti-
mizations using OpenGL triangle fans, customized quicksort,
memory organization for cache efficiency, display lists, and
tetrahedral culling. The optimizations can vastly improve the
performance of projected tetrahedra rendering to provide inter-
active rendering on datasets of hundreds of thousands of tetra-
hedra. These results are an order of magnitude faster than the
best in the literature for unstructured volume rendering [11, 7].
The sorting is also an order of magnitude faster than the fastest
sorting timing reported for Williams MPVONC [2].

2 OPTIMIZATIONS

Triangle strips. Triangle strips can greatly improve the ef-
ficiency of an application. Creating triangle strips from trian-
gular meshes of data can be done through greedy algorithms.
But, in projected tetrahedra, the split cases illustrated in Figure
3 can directly create triangle fans. Each new vertex given with
glVertexspecifies a new triangle, instead of redundantly pass-
ing vertices. Figure 3 gives triangle strips for the four classes
of projections.

In experiments on the NASA Langley fighter dataset, with
70,125 tetrahedra, there are an average of 3.4 triangles per
tetrahedra (a sum of the percentage of Class 1–60% 3 trian-
gles, 2–40% 4 triangles, 3, and 4). Fewer vertices are trans-
mitted for the same geometry and many fewer procedure calls
are made to OpenGL. Forn tetrahedra there are10:8n pro-
cedure calls with fans versus20:4n procedure calls without
fans, a factor of 2 reduction. Williams also investigated trian-
gle stripping using Iris-GL [8].

Figure 2: Unstructured volume rendering of Phoenix (left), NASA Langley Fighter (middle), and F117 (right).

class 1

class 2

class 3

class 4

4 versus 9
vertices

5 versus 12
vertices

4 versus 6
vertices

same

Figure 3: Number of vertices for fan versus triangles.

Display Lists For Static Geometry. Display lists allow
the graphics drivers to optimize vertices, colors, and triangle
strips for the hardware. I converted all static geometry into dis-
play lists. Figure 4 shows examples of vertices, surfaces, and
a background mesh. The primary impact of these changes is
to eliminate any slowdown when these auxiliary data are also
rendered. Unfortunately, the projected tetrahedra recomputes
the thick vertex for every new viewpoint so that the volume
data cannot be placed in display lists. Also, because the thick
vertex is recalculated for each new view, vertex arrays cannot
be used.

Visibility Sorting—Customized Quicksort. Visibility
sorting of cells is done through Cignoni et al. and Karasick et
al.’s [1, 3] technique of sorting the tangential distances to cir-
cumscribing spheres. I have compared a custom coded quick-

Figure 4: Points (left) surfaces (middle) and mesh (right)

stored in display lists.

sort to the C library utilityqsort()and found an improvement
of 75% to 89%. A generic sorting routine cannot as efficiently
handle the data structures that are to be sorted. Table 1 shows
the custom coded quicksort, derived from [4], andqsort per-
formance. Numbers were captured on an HP J5000 with PA-
RISC 8500 at 440MHz. Both thel2 value (float) and the tetra-
hedral index (unsigned long int) are moved.

Taking advantage of view coherence. The proper
choice of pivots gives an efficient sorting of sorted and nearly
sorted lists. I previously resorted the same input for each view.
But, using the sorted values from the previous view speeds up
the sorting. The program was also modified to use smaller
viewpoint changes, and run times were improved by an addi-
tional 18%. Both sorts are much faster on sorted data. This
property is exploited for view coherence. The rate for the cus-
tom quicksort varies between 600,000 to 2 million cells per
second depending on how sorted the list is. For comparison,
recently reported results for MPVONC [9] are from 185,000
to 266,000 cells per second [2]. In my earlier work, I showed
that quicksort achieved 109,570 cells/second on a PA RISC
7200 (120 MHz) [10], without the the view coherence and data
structure optimizations discussed here.

2

routine input 10,000 100,000 1 mil. 10 mil. 100 mil.

qsort random 0.04 0.48 5.71 66.03 755.56

qsort sorted 0.02 0.24 2.89 35.46 443.94

quicksort random 0.01 0.13 1.47 16.26 165.82

quicksort sorted 0.01 0.05 0.58 6.07 48.96

improvement random 75% 73% 74% 75% 78%

improvement sorted 50% 79% 80% 83% 89%

Table 1: Sorting times in seconds and percent improvement of custom routine (mil. = million).

Cache coherency. Because the tetrahedral data structures
are randomly accessed, a high percentage of time is spent in
the first fetch of each tetrahedra’s data. Tetrahedra are ac-
cessed by their view and not memory storage order. Reorder-
ing the tetrahedra when performing the view sort eliminated
cache stalls when rendering data, but the sorting routine was
slowed down by moving more data. There was an overall
slowdown, so future work is needed to find effective caching
strategies.

Culling. Tetrahedra whose opacity are zero are removed
from sorting and rendering. This is classification dependent,
but yields 20% and 36% reduction in tetrahedra for the Lang-
ley Fighter and F117 datasets. The runtime decreases accord-
ingly.

3 RESULTS

Recently HP released the J5000 HP-UX workstation. Perfor-
mance measurements were made on a J5000 with an fx-6 Pro
OpenGL graphics accelerator. Table 2 shows the seconds to
render a frame and the frame/second for five datasets. The
J5000 renders the NASA Langley dataset of 70,125 tetrahe-
dra at 3.0 frames/second. The Kayak XW, PIII 300 MHz/fx-4
renders at 1.1 frames/second, the HP C240/fx-6 renders at 1.5
frames/second, and the HP Visualize X Class, PIII Xeon 550
MHz/fx-6+ renders at 2.2 frames/second. The HP Visualize
Center is a three screen projection system driven using three
workstations. The number of pixels rasterized is tripled, which
enables much more data to be seen. Performance measure-
ments were made on a Visualize Center—three J5000s each
with an fx-6 Pro accelerator— and a Visualize Workgroup—a
single J5000 with 2 fx-6 Pro accelerators. Table 3 provides
the performance in megapixels/second for four datasets, and
three resolutions 1280x1024 (J5000), 3840x1024 (Visualize
Center), and 2560x1024 (WorkGroup).

In a comparison to related work, the tetrahedra/second ren-
dering rate is more than an order of magnitude faster than those
in the literature. The fastest numbers found are those I es-
timated to be possible on the complete PixelFlow configura-
tion, a 9.9 million tetrahedra/second[10]. The rates in this pa-
per are 199,015 tetrahedra/second on Phoenix, 210,586 tetra-
hedra/second on Langley Fighter, 248,316 tetrahedra/second

on F117, and 123,370-147,026 tetrahedra/second on head and
torso. The fastest numbers in the literature for rendering are
25,000 tetrahedra/second by Yagel et al. [11] and Van Gelder
et al. [7] who achieve those rates through either coarse cutting
of only 50 planes of slices, or by 95% culling of tetrahedra
from the dataset. My algorithm averages 7 times better per-
formance, while rendering all cells. Further work is needed
to determine a fair comparison amongst the wide number of
platforms and implementations used.

data set culled tetrahedra sec frame/sec

phoenix 0% 12,936 0.065 15.3

langley 20% 70,125 0.333 3.0

f117 36% 240,122 0.967 1.03

torso 0% 1,293,238 8.796 0.11

head 0% 2,443,013 19.801 0.05

Table 2: Rendering performance in seconds and Hz.

data set J5000 VisCenter WorkGroup

phoenix 20.16 42.74 29.79

langley 3.94 7.28 4.86

torso 0.15 0.36 0.24

head 0.07 0.16 0.11

Table 3: Performance megapixels per second.

4 CONCLUSIONS

I have shown several optimizations used to achieve interac-
tive rendering of unstructured volume data with the projected
tetrahedra algorithm. The principal speedup results from us-
ing hardware triangle rasterization, and the use of fast depth
sorting. The sorting method was explored by Cignoni et al.

3

[1] and Karasick et al. [3] and proves to be much faster than
other sorting approaches, even though its asymptotic run time
complexity is apparently higher (O(n log n) versusO(n)).
The tangential distance sort is only correct for Delaunay tri-
angulations. For datasets that are not Delaunay triangulations,
a new triangulation can be recalculated to use the fast sort-
ing presented. For constrained Delaunay, vertices may be
added so that the constrained is a subset of a Delaunay trian-
gulation. Other optimizations included using OpenGL as ef-
ficiently as possible—such as triangle fans—, culling of zero
opacity tetrahedra, and caching efficiency. The results show
that rendering of large unstructured datasets with projected
tetrahedra is truly interactive. Rendering the NASA Langley
fighter dataset is interactive on a variety of platforms, where
previously published results were 10’s of seconds [6, 11, 7]
to render similar datasets. Smaller datasets, such as the Super
Phoenix nuclear reactor, are rendered at truly interactive rates,
15 frames/second, versus 3.5 seconds per frame for just the
sorting in [6]. Additional results are the demonstration of in-
teractive unstructured rendering at very high resolution, such
as the 3840x1024 display of the HP Visualize Center. Many
software renderers are limited to reduced resolutions such as
500x500 [7].

ACKNOWLEDGEMENTS

Data sets are thankfully acknowledged: for the NASA Langley
Fighter, Neely and Batina; for the Super Phoenix Nuclear reac-
tor, Bruno Nitrosso, Electricite de France; for the F117, Robert
Haimes, MIT; and for the head and torso datasets, the Center
for Scientific Computing and Imaging, University of Utah. I
also thank Dean Brederson, Claudio Silva, Vivek Verma, and
Peter Williams for help in getting data and classifications.

References

[1] P. Cignoni, C. Montani, D. Sarti, and R. Scopigno. On
the optimization of projective volume rendering. In
R. Scaneni, J. van Wijk, and P. Zanarini, editors,Pro-
ceedings of the Eurographics Workshop, Visualization in
Scientific Computing’95, pages 59–71, Chia, Italy, May
1995.

[2] J. Comba, J. T. Klosowski, N. Max, J. S. Mitchell, C. T.
Silva, and P. L. Williams. Fast polyhedral cell sorting for
interactive rendering of unstructured grids. InProceed-
ings of Eurographics’99, Milan, Italy, Sept. 1999.

[3] M. Karasick, D. Lieber, L. Nackman, and V. Rajan. Vi-
sualization of three-dimensional delaunay meshes.Algo-
rithmica, 19(1-2):114–128, Sept.-Oct. 1997.

[4] A. Kelley and I. Pohl.An Introduction to Programming
in C. Benjamin Cummings, Menlo Park, CA, 1984.

[5] P. Shirley and A. Tuchman. A polygonal approximation
to direct scalar volume rendering. In1990 Workshop on
Volume Visualization, pages 63–70, San Diego, CA, Dec.
1990.

[6] C. T. Silva, J. S. Mitchell, and P. L. Williams. An exact
interactive time visibility ordering algorithm for polyhe-
dral cell complexes. InACM/IEEE Symposium on Vol-
ume Visualization, pages 87–94, Research Triangle Park,
NC, October 1998.

[7] A. Van Gelder, V. Verma, and J. Wilhelms. Volume dec-
imation of irregular tetrahedral grids. InProceedings of
Computer Graphics International, pages 222–230,247,
Canmore, Alta., Canada, June 1999.

[8] P. L. Williams. Interactive Direct Volume Rendering of
Curvilinear and Unstructured Data. PhD thesis, Univer-
sity of Illinois at Urbana-Champaign, 1992.

[9] P. L. Williams. Visibility ordering meshed polyhedra.
ACM Transactions on Graphics, 11(2):103–126, 1992.

[10] C. M. Wittenbrink. Irregular grid volume rendering with
composition networks. InProceedings of IS&T/SPIE
Visual Data Exploration and Analysis V, volume 3298,
pages 250–260, San Jose, CA, Jan. 1998. SPIE. Avail-
able as Hewlett-Packard Laboratories Technical Report,
HPL-97-51-R1.

[11] R. Yagel, D. M. Reed, A. Law, P.-W. Shih, and N. Sha-
reef. Hardware assisted volume rendering of unstruc-
tured grids by incremental slicing. InACM/IEEE Sym-
posium on Volume Visualization, pages 55–62, San Fran-
cisco, CA, October 1996.

4

