
Towards Generic Application
Auto-discovery

Vijay Machiraju, Mohamed Dekhil, Klaus Wurster,
Jerremy Holland, Martin Griss, Pankaj Garg
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-1999-80
July, 1999

E-mail: {vijaym,dekhil}@hpl.hp.com

application
management,
auto-discovery,
modeling,
model-based
discovery,
software agents

The increasing complexity of enterprise applications,
the expanding number of networked machines, and the
rapid deployment of Internet-based business
applications (e-commerce), emphasize the importance
and value of application management. One of the main
problems in current application management products is
the amount of time and effort needed to install and
customize them. Application auto-discovery is a key
technology for solving this problem. In this report, we
present a generic approach to application auto-discovery
along with some examples. Our approach is to create a
model-based discovery engine that is driven by an
application template model. While the application
template model captures the variation from one
application to another, the auto-discovery engine uses
sophisticated mechanisms such as scoping to execute an
invariant auto-discovery process.

 Copyright Hewlett-Packard Company 1999

Internal Accession Date Only

1

Towards Generic Application
Auto-discovery

V. Machiraju, M. Dekhil, K. Wurster, P. Garg, M. Griss, and J. Holland
Hewlett-Packard Laboratories
1501 Page Mill Rd MS 1U-14
Palo Alto, CA 94304
USA
{vijaym,dekhil}@hpl.hp.com

Abstract
The increasing complexity of enterprise applications, the expanding number of net-
worked machines, and the rapid deployment of Internet-based business applications
(e-commerce), emphasize the importance and value of application management. One
of the main problems in current application management products is the amount of
time and effort needed to install and customize them. Application auto-discovery is a
key technology for solving this problem. In this report, we present a generic approach
to application auto-discovery along with some examples. Our approach is to create a
model-based discovery engine that is driven by an application template model. While
the application template model captures the variation from one application to another,
the auto-discovery engine uses sophisticated mechanisms such as scoping to execute
an invariant auto-discovery process.

Keywords
Application management, auto-discovery, modeling, model-based discovery, software
agents.

1. Introduction

Many enterprises use complex applications for their day-to-day operations. Almost all
businesses use Email and Internet access as a means of communicating within and
outside their enterprise. Internet service providers (ISPs) run email and web servers to
provide email and Internet services to their customers. Payroll and other human
resource systems are used to track employees and their records. Database systems are
used to store enterprise data. Financial applications are used to keep track of revenues
and profits of companies. Many businesses allow some of their transactions to be con-
ducted online. For some businesses, online transactions or electronic commerce is the
main source of revenue. All of these applications are distributed in nature, variable in
size, customizable, and dynamic.

2

While all these aspects make modern distributed applications more powerful,
they make them complex to manage at the same time. Application management is
defined by Sturn and Winston [13] as "the process of directing, administering, or con-
trolling the use of application systems, features, and elements." Application manage-
ment consists of two main activities: monitoring the behavior of the system, and
controlling that behavior by executing certain actions on the managed system.

Today, there are several commercially available application management sys-
tems. However, existing products lag behind the expectations of the industry. Accord-
ing to a survey [5], nearly 80% of all the management solutions are not fully
implemented or customized to the requirements after 2 years of effort. It takes a large
amount of resource to install, customize, and deploy a management system before it
can be used to obtain useful metrics about application behavior.

Application auto-discovery is a technology that enables the creation of out-of-
the-box management solutions. Existing approaches to application discovery fall into
two classifications: (1) manual techniques and (2) application-specific auto-discovery
techniques. While manual techniques have the limitation of being extremely time-
consuming and laborious, application-specific auto-discovery techniques are not reus-
able across the discovery of multiple types of applications. In this paper, we introduce
generic application auto-discovery, whereby a single generic auto-discovery engine
can be used to discover multiple application types.

The rest of the paper is organized as follows: Section 2 defines application auto-
discovery and provides more insight into existing manual and idiosyncratic auto-dis-
covery techniques along with their drawbacks. Section 3 introduces generic applica-
tion auto-discovery. In order to create a generic solution we adopt a model-driven
approach by defining application variants in an application template model. In section
4, we describe the application template model in greater detail. Section 5 briefly
describes our implementation of the model-driven auto-discovery engine and some of
our experiments in discovering e-commerce and SAP applications. We summarize
our conclusions in section 6.

2. Application Auto-discovery

Understanding the application to be managed is central to the whole issue of simplify-
ing the installation, customization, and deployment of management systems. If man-
agement systems could automate the process of capturing the necessary information
about an application as a first step before using that information to deploy manage-
ment policies, we have accomplished the goal of creating ready-to-use management
solutions.

Application auto-discovery is the process of automatically capturing the neces-
sary information about the application and representing that information in a format
that can be used by other management solutions. Capturing application information
automatically means that there should be a systematic algorithm, which can be exe-
cuted to discover pieces of information about the application and to put all the pieces
together into a consistent representation of the entire application.

3

2.1 Manual Discovery

Discovery has always been a part of network, system, and application management.
Most of the application-level discovery, however, is performed as a manual process
and is often ignored as a distinct knowledge-gathering step that could be automated.
Required information about specific aspects of the application is either formally listed
and stored at the time the application is installed or created, or is informally grasped
only in the minds of the installers. Some times, it is determined on a case-by-case
basis by following some idiosyncratic techniques or by executing custom scripts.

Manual approaches to discovering applications have several disadvantages, par-
ticularly in the context of application management:
• Time consuming: Discovering all components of an application, determining

their configuration parameters, and understanding the relationships between
these components is a time consuming and laborious process.

• Distributed intelligence: The knowledge and expertise about enterprise applica-
tions is often distributed in the minds of several individuals in the enterprise.

• Inconsistency: Information about components that participate in multiple applica-
tions should be consistent with respect to those applications.

• Lack of reuse: Time is spent in repeating similar or identical manual processes
over and over.

2.2 Application-specific Auto-discovery

There has been extensive work in auto-discovery targeted at networks and physical
systems on a network. Network Node Manager from HP OpenView [14] has special-
ized in automatically discovering network elements and topology. Recent efforts have
extended these techniques into non-SNMP based networks [12], ATM networks [8],
and mobile networks [10]. Surprisingly, there has been very little work on auto-dis-
covering application components, their roles and relationships. There has been some
research on discovering behavioral aspects of applications using event-data analysis
[3] and data-mining techniques [7]. A template-driven approach for discovering cer-
tain application components was developed earlier at HP Labs [11]. This approach
was based on automating a few discovery mechanisms (e.g., DNS) targeting compo-
nents of an ISP farm. The discovery mechanism in each of these cases is only applica-
ble to addressing the problems associated with the discovery of certain type of
applications. Having multiple auto-discovery mechanisms for different applications
has disadvantages in some cases:
• Multi-application management tools: General-purpose management tools such as

HP OpenView cannot take full advantage of these point products since the dis-
covery mechanism has to be reinvented for every class of applications.

• Reuse across applications: The problem of reuse explained earlier with the man-
ual approaches still exists largely in idiosyncratic auto-discovery approaches.
The representations and methods in each of these approaches may be reused
within the approach but not across the discovery of multiple applications.

4

3. Generic Auto-discovery

There are two essential pieces of information that are required as input to auto-discov-
ery. The first is a description of “what to discover.” The second is “how to discover.”
The auto-discovery mechanisms discussed so far have pre-canned discovery algo-
rithms that are tuned to the discovery of particular applications. In other words, the
information about what and how to discover are embedded into the discovery algo-
rithms. In order to create generic auto-discovery that can be used to discover
instances of any application, we should factor both the "what-to-discover" and "how-
to-discover" aspects (variants that change from one application to another) and use
that as the input to a generic auto-discovery engine. The generic auto-discovery
engine implements the invariants that are common to the discovery of all applica-
tions. Examples of these invariants are interpreting the variants, scoping where the
discovery process should be executed, executing the discovery process, and storing
the discovered instances in a standard format. The engine should be robust enough to
handle complexities of dynamic distributed environments that enterprise applications
typically run into.

Figure 1: Generic auto-discovery

The variants should be represented in a standard format that can be understood
by the auto-discovery engine. It should be easy to create, edit, or modify these vari-
ants as applications evolve. Object-oriented modeling offers a standard technique for
representing application variants.

Modeling is a proven and well-accepted engineering technique to better under-
stand a complex system [1]. Models provide a set of ground rules to work with while
specifying such complex systems. They help in simplifying reality by offering struc-
tured mechanisms to represent the structure and behavior of these applications. By
making the entities and relationships in applications explicit, they drive the generic
auto-discovery process. They also help us visualize the systems, or enterprise applica-
tions in our case, by breaking them into comprehensible pieces that can be visualized
at different levels of abstraction. Modeling also provides a unified representation of
the application characteristics that can be used by different management systems, thus
allowing reusability and generality of solutions.

One of the main factors promoting model-based solutions is the adoption of
UML (Unified Modeling Language) by the industry and by standards organizations.
More information about UML and its development history can be found in [1]. The
Desktop Management Task Force organization (DMTF) introduced a standard infor-
mation model for describing management of computer systems, using UML concepts,

*HQHULF
DXWR�GLVFRYHU\
�LQYDULDQWV�

$SSOLFDWLRQ
LQVWDQFHV

$SSOLFDWLRQ
YDULDQWV

5

called CIM (Common Information Model) [9]. CIM is defined by DMTF as "a con-
ceptual information model for describing management that is not bound to a particu-
lar implementation. This allows for the interchange of management information
between management systems and applications." They also developed syntax for
defining the managed objects called Managed Object Format (MOF). Following this,
Microsoft provided an implementation of CIM on Windows platforms called WMI
(Windows Management Initiative) [9]. They developed a CIM Object Manager
(CIMOM) which can be viewed as a repository of management information. The
introduction of CIM and WBEM opened the door for building generic, model-based
management solutions, with the ability to interchange information about the managed
objects through a standard representation and format.

Figure 2: CIMOM acts as a repository for multiple application models

Our approach to generalized auto-discovery is to use models to represent applica-
tion variants and the discovered application instances (Figure 3). The former model
will be called application template model and the latter will be termed application
instance model.

Figure 3: Model-based auto-discovery

4. Application Template Models

Application template models provide a standard format for representing applica-
tion specific information. This includes information about the structure of the applica-
tion and about the discovery techniques that should be used to discover instances of
the application.

Models

CIMOM

Application 1 Application 2 Application 3

*HQHULF
DXWR�GLVFRYHU\

HQJLQH

Application
Instance
Models

$SSOLFDWLRQ
7HPSODWH
0RGHO

6

4.1 Modeling Application Structure

The model for representing application templates consists of an application tem-
plate class and multiple application template objects. The application template
class defines the standard format that should be followed by every application tem-
plate. Each application instantiates the application template class to define specific
application template objects. Application template class and application template
objects bear the same relationship as a class to its instances in traditional object-ori-
ented programming systems. The UML representation for the application template
class is shown in Figure 4.

As an example, an E-commerce system is modeled as a hierarchical set of ser-
vices, where the root represents a logical view of the whole electronic commerce sys-
tem and each node represents a component of the electronic commerce service. Figure
5 shows the E-commerce template model. Each of the nodes represents a component
(logical or physical) that should be discovered. Arcs between nodes represent contain-
ment relationships between components. Each of the containment relationships has a
cardinality requirement. For example, the E-commerce service in the figure consists
of one or more Microsoft Internet Information Servers (IIS) and one or more
Microsoft SQL servers.

Figure 4: Application template class

An application template object specifies the set of all attributes that have to be
discovered in order to identify and manage instances of that application. The Applica-
tionComponent association class in the application template class is used to model the
composition relationships between components of an application and the cardinality
constraints (if any) of such relationships. We should be able to traverse these relation-
ships in both directions (from children to parent and from parent to children) and are
hence modeled in UML as a bi-directional association.

The application instance model consists of an application instance class and
multiple application instance objects. The application instance class defines the
standard format for representing the discovered instances of any application. We can
think of the discovery engine as a function that maps application template objects to
application instance objects. The UML representation for the application instance
class is shown in Figure 6

-Name
-Description
-DiscoveryTechniques
-other ...

ApplicationTemplate

ApplicationComposition

7

Figure 5: Template model of Microsoft e-commerce

Figure 6: Application instance class

Application template models can be implemented in several ways using existing
standards and model repositories. For our implementation, the models are stored in
Microsoft’s model repository called CIMOM, which is an object manager for the CIM
(Common Information Model) standard. In this case, the template models are
expressed in the Managed Object Format (MOF) and compiled using the MOF com-
piler, which parses the models and stores them into CIMOM. The discovery engine
can then interface to CIMOM to read the models before or while executing the dis-
covery process. Another option would be represent the models in XML (Extended
Modeling Language) and store them in files on a web server. In this case, the discov-
ery engine could connect to the appropriate URL on the web server and read the tem-
plate models.

4.2 Application Discovery Techniques

At the high level, there are two ways of discovering information about an appli-
cation: (1) by querying the application directly, or (2) by getting the required informa-

Name = "ECommerce"
Description = "ECommerce"
DiscoveryTechniques = {"Script"}
other ...

ECommerce : ApplicationTemplate

Name = "IIS"
Description = "IIS"
DiscoveryTechniques = {"Process"}
other ...

IIS : ApplicationTemplate

Name = "SQL"
Description = "SQL"
DiscoveryTechniques = {"Process"}
other ...

SQL : ApplicationTemplate

-Name
-AttributeNames
-AttributeValues

ApplicationInstance

8

tion indirectly from other sources. The APIs provided by the application could be
used to query the application for information about its attributes and relationships to
other components. On the other hand, other applications including the operating sys-
tems and middleware provide useful information about the applications that run on
them. Some common discovery techniques include:
• Operating Systems: Various operating systems’ interfaces are used to detect the

existence of some applications and to determine their attributes. Although these
techniques are usually operating systems specific, some are applicable to multi-
ple operating systems. These techniques include:
1. Process-based discovery: look for a running process by name or process ID.
2. File-based discovery: search for a certain file.
3. Service-based discovery: determine if certain services are installed or active.
4. Registry-based discovery: look for entries in the MS Windows registry.
5. Network services: utilize pre-collected information about the network to

search for specific services and applications on the network. Examples
include the Windows Browser Service on Windows NT and Domain Name
Service (DNS) and SNMP on the Internet.

• Application APIs: using the APIs provided by the application to determine cer-
tain configuration and management attributes. These techniques include:
1. Scripting: executing pre-defined or customized scripts, which invoke appli-

cation APIs, to get the required information.
2. Custom-built executables: using application-specific APIs (e.g., in C,C++)

to discover application attributes.

Most discovery techniques can be classified under one of the above categories.
Some techniques, however, might be a combination of two or more of the ones men-
tioned above. The main idea is to have a generic way of representing and executing
these techniques, which can be captured in the application template model to drive the
discovery. The application template model shown in Figure 8 has an attribute called
DiscoveryTechniques which is used to model the exact set of techniques used in dis-
covering instances of that application component.

5. Auto-discovery Engine Prototype and Experiments

In this section, we describe a discovery prototype that was built using the con-
cepts described in this report, and discuss the results of two experiments for discover-
ing an e-commerce application and a SAP installation. The prototype is implemented
on the Windows NT platform using several programming languages including C++,
Java, and VBScript. It implements a model-driven auto-discovery engine that consists
of the following main components:
• Discovery console: which is used to initiate the discovery process and displays

the discovery progress and the discovered instances in real-time (see Figure 7).

9

• Discovery policies: are rules composed of application templates and discovery
techniques to be used to locate and identify instances of the required application.
These policies are represented in CIM (Common Information Model) and stored
in the CIMOM (CIM Object manager).

• Discovery agents: are responsible for executing discovery policies and storing
the discovered instances in the CIMOM.

• Publish/subscribe bus: is the communication protocol between agents. All mes-
sages are sent (published) on the bus and participants can listen (subscribe) to the
bus and receive only the messages that match their subscription (See [2] for more
information about communication middleware alternatives).

Figure 7: The discovery console showing several application template models

The discovery process starts by issuing a request from the console to discover a
certain application (by selecting the corresponding template from a template tree).
The request is sent to all the machines participating in the discovery. Agents on each
machine respond to the published request, read the required model from the CIMOM,
and execute the corresponding discovery policies. Next, the agents write the discov-
ered instances and their relations in the CIMOM. During the whole process, the dis-
covery console listens to progress messages sent by the agents and provides a real-
time visual progress report. As instances of application components are discovered,
the results could be used to further scope or narrow the search for other components.
The initial scope for the application could be specified as a set of machines or could
be modeled as yet another discovery policy.

10

To validate the applicability and flexibility of our approach, this prototype was
used to discover different types of distributed applications. In the following subsec-
tions, we describe two of these experiments, an e-commerce application using
Microsoft Commerce Server, and a SAP R/3 installation.

5.1 Discovering E-Commerce Application

In general, an e-commerce application consists of one or more web servers con-
nected to one or more database servers. The web server executes the web pages (ASP,
HTML, or CGI) containing the business logic. The database server, on the other hand,
represents the back-end of the application, where the data needed by the application is
stored.

In this example, we used a simple configuration consisting of one web server
running Microsoft Internet Information Service (IIS) and one Microsoft SQL Server.
The template model used for discovery is shown in Figure 5. The model is repre-
sented in MOF and is compiled into a model repository (CIMOM). Part of the MOF
file is shown in Figure 8. The discovery process starts by issuing a discovery request
from the discovery console, stating the appropriate application template model, as
shown in Figure 7.

Figure 8: Part of a MOF file showing the application template model of IIS.

This request is published on the bus to be received by the agents on the partici-
pating machines. The agent at each machine starts by looking for an IIS server run-
ning on that machine using the process-discovery technique. If an IIS is found an
instance of an e-commerce node is created and is connected to an instance of IIS. The
next step is to find the SQL Servers related to this instance of the application. Finally,
the discovered instances and their relationships are stored in a designated CIMOM for
later use by the management system.

5.2 Discovering SAP R/3 System

SAP is a different type of distributed application, which consists of several func-
tional modules that could be deployed on multiple machines [6]. SAP is modeled as a
hierarchical set of services, where the root represents a logical view of the whole SAP
system and each node represents a SAP service. The template model we used to rep-
resent a generic SAP system is shown in Figure 9.

The process starts the same way as the previous example. In this case, the user
would select the SAP template model from the discovery console to issue a discover

instance of ApplicationTemplate as $IIS
{

Name = “ I I S ” ;
Desc r ip t i o n = “M ic ro so f t I n te r ne t Serve r ” ;
D iscoveryT echn iques = “p rocess ” ;
D iscoveryP aramete rs = “ i ne t in f o .exe” ;
/ / o the r . . .

} ;

11

request. The only difference between this example and the previous one is the tem-
plate model used to represent the application and to specify the discovery techniques
required for each node. The same discovery engine used without any change. Based
on the SAP template model, the discovery process starts by looking for an SAP instal-
lation on each machine (registry discovery). Once an installation is found, an API-
based technique (wrapped in a script) is used to discover certain parameters of the
SAP installation and the result are sent back to the agent.

Figure 9: SAP template model

6. Conclusion

In this report, we presented a generic model-based approach to application auto-
discovery that can be used to discover different types of distributed applications.
Application template models are used to represent the structure and attributes of the
application to be discovered and the discovery techniques needed to perform the dis-
covery. The discovery is carried out by discovery agents that execute the appropriate
discovery techniques in a certain order specified in the model. A discovery prototype
based on the proposed approach was implemented and used to discover several dis-
tributed applications. The flexibility and generality of the proposed approach were
demonstrated by applying it to discover diverse types of distributed applications
including Microsoft e-commerce application and SAP R/3 system. We believe that
this approach provides an extensible scheme for developing extensible auto-discovery
solutions while reducing development time and effort, and promoting software reuse.

SAP R/3SAP R/3

SAP GUISAP GUI Application
Server

Application
Server

Message
Server

Message
Server

Update
Server

Update
Server GatewayGateway

1..n 1..n 1..1 1..1 1..n

SQL
Server
SQL

ServerDispatcherDispatcher Work
Processes

Work
Processes

EngineEngine SpoolSpool BackupBackup DialogDialog

1..1

1..1

1..n

1..n 1..n 1..n

1..n

12

Acknowledgment

We would like to express our thanks and appreciation to Jim Beninga, John
Green, John T. Lee, Jim Pruyne, Troy Shahoumian, and Joe Sventek for their valuable
input and productive discussions.

References

[1]. G. Booch, J. Rumbaugh, and I. Jacobson, "The unified modeling language user
guide", Addison Wesley, 1998.

[2]. J. Colonna-Romano and P. Srite “The middleware source book”, Digital Press,
Butterworth-Heinemann.1995

[3]. J. E. Cook and A. L. Wolf, “Automating process discovery through event-data
analysis.” ICSE ‘95, pp. 73-82, Seattle, WA 1995.

[4]. Desktop Management Task Force (DMTF), Common Information Model (CIM),
http://www.dmtf.org/spec/cims.html, February 1999.

[5]. C Gillooly “Disillusionment in enterprise management”, Information Week, Feb
1998.

[6]. J. A. Hernandez “The SAP R/3 handbook”. McGraw-Hill 1997.

[7]. T. Imielinski and H. Mannila, “A database perspective on knowledge discovery.”
Communications of the ACM. Vol. 39 No. 11, pp. 58-64, November 1996.

[8]. H. C. Lin, C. S. Ye, and C. C. Lin, “Automatic topology discovery and virtual
connection trace for ATM networks using SNMP.” Proceedings of the Sixth IFIP/
IEEE International Symposium on Integrated Network Management, pp. 939-
940, Boston, MA. April 1999.

[9]. Microsoft Developer Network, CIM Object Manager (CIMOM) guide, 1999.

[10]. C. E. Perkins and H. Harjono, “Resource discovery protocol for mobile com-
puting.” Mobile Networks and Applications. Vol. 1, pp. 447-455. 1996

[11]. S. Ramanathan, D. Caswell, and S. Neal. Personal communication, HP Labs,
Palo Alto, CA. 1997

[12]. R. Siamwalla, R. Sharma, and S. Keshav, “Discovering Internet topology”,
Technical report, Cornell University. July 1998.

[13]. R. Sturn and W. Winston, "Foundations of application management", John
Wiley & Sons, Inc. 1999.

[14]. J. C. Wu “Automatic discovery of network elements,” U.S. Patent No. 5185860,
Hewlett-Packard Company. May 1990.

