
Enterprise Workflow Resource
Management

Weimin Du, Jim Davis, Yan-nong Huang, Ming-Chien Shan
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-1999-8
January, 1999

workflow,
resource
management,
resource model

Resource management is a key issue in providing
resource independence and efficient use of workflow
resources. The paper has outlined a design of such a
resource management system for enterprise workflow
environments. It is capable of handling a large number
of workflow resources that are independently managed
by pre-existing resource systems. It integrates these
external resource systems at schema level without
duplicating individual resource information. Resource
specification is greatly simplified by providing process
designers with integrated views of enterprise workflow
resources at different levels based on a unified
resource model. Dynamic behaviors of workflow
resources are supported through powerful resource
policies.

 Copyright Hewlett-Packard Company 1999

Internal Accession Date Only

Enterprise Workflow Resource Management
Weimin Du, Jim Davis, Yan-nong Huang and Ming-Chien Shan

Hewlett-Packard Laboratories
1501 Page Mill Rd

Palo Alto, CA 94304

1 Introduction

Workflow is a technology that provides the ability to define and automate the flow of
work through an organization to accomplish business tasks. A workflow process
involves the coordinated execution of tasks performed by workflow resources (e.g., a
person, a computer-based application, or a piece of equipment). One of the important
features of modern workflow technology is the dynamic resource allocation, which
provides resource independence to business processes. Thus, a business process does not
need to be modified when underlying workflow resources change. It also allows more
efficient utilization of available resources.

A resource manager is a component of a workflow system that allows run time resource
allocation. A resource manager provides a resource model to process designers for
resource specification at process definition time. The model provides an abstraction of
the physical resources and shields the process designers from the detailed specification
of the resource required. A resource manager also manages workflow resources (e.g.,
keeps track of status of workflow resources) and assigns workflow resources to business
steps (or workflow activities) when requested by the workflow execution engine.
Resource management is an important and complicated task, especially in enterprise
workflow environments.

An enterprise workflow system (such as HP Changengine [4]) is a workflow system that
is capable of supporting large number business critical processes in an efficient, reliable
and secure way. Resource management in an enterprise workflow system has the
following characteristics.

• The number of workflow resources can be very large. For example, the employee
expense reimbursement processes in HP involve (>100,000) HP employees as
workflow resources.

• Workflow resources at different organizations and locations are often managed by
different systems independently. These external resource systems can be
heterogeneous with respect to resource models, query languages and communication
protocols.

• Process designers need different views of workflow resources at different levels.
Most business processes only involve local resources. There are also cases where an
enterprise-wide view of all workflow resources is needed.

• A company or an organization may need to enforce certain rules regarding resource
usage. For example, the 2nd line manager approval is required for all expenses over
$500. The rules may change from time to time according to business conditions.

Resource managers of most existing workflow products do not meet the above
requirements. For example, the resource management component of IBM FlowMark [5]
requires explicit registration of all workflow resources. This not only makes it practically
impossible to handle large number of resources, but also causes potential inconsistency
between the external resource systems and the internal workflow resource system.

This paper describes the design of a Resource Manager for enterprise workflow
management systems. The described resource manager allows integration of existing
resource sources and external resource monitoring components. The resource manager
also includes a policy engine (and an accompanying policy definition language) to allow
flexible resource management [3]. The paper describes the architecture that facilitates
integration of external resources. It also describes a unified resource model and a
resource definition/query language to allow easy resource specification at process
definition time.

2 Architecture

2.1 Overall Hierarchy

Workflow resources at different organizations and locations are often managed by
different systems independently (e.g., a database or a corporate directory). These systems
were built by different organizations for different purposes and used different resource
models and technologies. It is thus useful to present unified and integrated views of all
workflow resource to process designers for processes involving multiple external
resource systems. We distinguish between Local Resource Managers (or LRMs) that pre-
exist and have their own resource models and communication protocols and Global
Resource Managers (GRMs) that represent integrated views of part or all of the
underlying LRMs. GRMs have the same resource model and communication protocol.

Since enterprise workflow resources can be widely distributed across organizational and
physical boundaries, resource management is distributed. To support different views of
enterprise workflow resources, GRMs are further subdivided into Enterprise GRMs (or
ERMs) and Site GRMs (or SRMs). ERMs represent the enterprise-wide view of
workflow resources and interface with underlying SRMs, which represent partial views
of workflow resources within an organization or a physical boundary. There can be more
than one level of SRMs representing different levels of views, forming a tree hierarchy
with ERMs as roots. There can also be more than one ERM, all representing the same
view of the enterprise workflow resource, to provide fault tolerance. SRMs at the same
level represent views in different organization or physical boundaries, and are also the
integrated views of their subordinate SRMs. The lowest level SRMs represent imported
and possibly integrated views of one or more external LRMs.

A three level hierarchy of resource managers is outlined in Figure 1.

 ERM1 ERM2

 SRM1 SRM2

 ERMn

 SRM3 SRMm

LOCAL RESOURCE MANAGERS

Figure 1: Hierarchy of Resource Managers

2.2 System Architecture

All the SRMs and the ERMs have the same following architecture, which is shown in
Figure 2. The GRM has four different layers: the interface layer, the policy manager and
resource model layer, the request processing engine layer, and finally the integration
layer.

2.2.1 Interface Layer

This layer allows other components like the workflow engine to send requests to the
resource manager. The requests are written in RQL (Resource Query Language)1. This
layer allows tools speaking RPL (Resource Policy Language) and RDL (Resource
Design Language) to manipulate the policies and the underlying resource model. The
layer is also used for communication between other GRMs. Finally, this layer defines the
administrative APIs and uses the underlying security mechanisms.

2.2.2 Policy Manager and Resource Model

This layer implements the policy rules and the resource model (that provides the
enterprise view of resources). This layer also provides a database (RM Catalog) with an

1 See Section 4 for brief descriptions on RQL, RPL and RDL.

extensible schema that is used to store model and historical information and may be used
to store other information needed for resource management (i.e. load information for
load balancing, etc.).

2.2.3 Request Processing Engine

The Request Processing Engine takes the actual request (after it has been processed by
the policy engine) and routes them to the appropriate information source. It also
assembles all the results that are returned by the information sources.

2.2.4 Integration Layer

The integration layer manages all the different protocols spoken by local information
sources (i.e., LRMs). It allows for the LRMs to be advertised. It handles the request and
any result translations required. It also manages the wrappers that need to go around each
LRM.

Interface Layer

Policy Manager and Resource Model

Request Processing Engine

Integration Layer

Resource Policy Language Resource Design Language Resource Query Language

Policy Base Organizational Resource Model RM Catalog

Query Routing Query Execution Planner Query Result

Advertising
Mechanisms Wrapper Manager Subquery Translation

Subquery Result
Packaging

RM-RM
protocol

Admin
APIs

Security
APIs

Figure 2: GRM Architecture

2.3 Component Interactions

The interaction diagram for the GRM is shown below in Figure 3. The languages are
described in Sections 4. There are three main components to the GRM. The first is the
resource manager language interface. It contains the parsers for the resource manager
languages as well as a control engine, which controls the process of resolving a resource
request. The other two components are the policy engine and the resource engine.

Events

Resource Manager Language(s)

Resource Policy
Language

Resource Design
Language

Resource Query
Language

RM-RM
Interface

Common Advertising

Policy
Policy &
Resource
Schema

Query Translation
Result

Query Translation
Result

SQL LDAP

RQL

Security &
Admin

RQL
Parser

RDL
Parser

RPL
Parser

Control

Resource
Discover

Model
Query

Processor

Policy
Processor

RQL
Rewriter

SLP

Figure 3: Interaction Diagram

When a resource request comes in to the resource manager, it is first parsed by one of the
three language parsers. A resource request is forwarded to the control engine, which
performs the following five-step process:

• If the request cannot be handled by this particular GRM (or it is not authoritative),
then the control engine uses the RM-RM protocol (described later) to pass the request
on to another resource manager.

• If request can be handled then the control engine passes the request to the policy
engine component for query rewrite2.

• After the policy enforcement, the request is forwarded to the resource engine. If a
particular resource is found to satisfy the request, the control engine component
returns the result as appropriate.

2 Readers are referred to [3] for detail of query rewrite by policy manager.

• If the resource engine returns NULL, then the request is sent to the policy engine,
where substitution policies are applied.

• The request is again sent to the resource engine. If a resource is found, then the result
is returned. If the request is still not satisfied and the resource manager has authority
over the resource type, then a NULL is returned.

A resource engine has a resource model associated with it, which contains a hierarchical
collection (based on capabilities) of concepts representing resource types. A resource
model defines static behaviors of resource types (e.g., things they can do) and the
relationships among them. Dynamic behaviors and relationships (e.g., a resource is only
allowed to do a task under certain changing condition) are specified using policies. For
each type of resources, the resource model maintains knowledge of “where” to get
instances of that type.

The discovery model component “discovers” local resource managers and the types of
resources that they can handle. The query processor in the resource engine makes use of
the discovery model to generate sub-queries (possibly multiple) for the LRMs. These
sub-queries are then dispatched to the LRMs where the wrappers convert the request (in
RQL) into something that is understood by the LRM. A client can talk directly to the
resource engine to modify the resource model using RDL. The resource schema is stored
in a database, which is shared with the policy engine.

The policy engine takes queries from the control engine and rewrites the request based
on applicable policies. The policy engine also manages the collection of policies, which
are stored in a database shared with the resource engine. Policies can be added or
updated by using the Resource Policy Language.

3 Resource Model

The resource model is a hierarchical collection of resource types. A resource type is
intended to denote a set of resource instances with the same capabilities. The resource
hierarchy shows resources organized into types. Figure 4 shows a possible resource
hierarchy. Each of the types in the hierarchy has a list of capability attributes, which
represent its capabilities. Furthermore, a resource type inherits these capabilities
(attributes) from its parents. For example, in Figure 4, a Programmer inherits all of the
capabilities of the Engineer. In fact, a Programmer is an Engineer with some special
capabilities.

Each type (for example Engineer) in the model also has the following four fields:

1. DO_ADDR (Address): If the resource manager can satisfy requests for Engineer then
this variable contains addresse(s) of the LRM(s) that can handle the request. If this
list is empty then the resource manager uses the following variables and the RM-RM
protocol to send the request to another resource manager.

2. DELEGATE_ADDR (Address): A resource manager that can satisfy Engineer
requests and is lower in the RM hierarchy (thus the request can be Delegated to
them).

3. REFER_ADDR (Address): A cache representing a resource manager that has been
discovered (using information returned with the Report message) that can satisfy
Engineer requests. These are GRMs that are located horizontally in the RM hierarchy
(requests can be Referred to them). Note: there is no guarantee that this cache is
consistent. Consistency is achieved when the resource manager uses this cache.

4. PLEAD_ADDR (Address): A resource manager that can satisfy Engineer requests
and is higher in the RM hierarchy (the requests can be Plead to them).

Under the simplifying assumption of three levels of resource managers, we can
implement the above as follows:

• SRMs cannot Delegate, therefore, the DELEGATE_ADDR can be left out.

• SRMs can only Plead up to an ERM. So the PLEAD_ADDR can be maintained for an
SRM. It need not be maintained for each individual type in the model.

• ERMs cannot Plead and thus the PLEAD_ADDR can be left out.

• ERMs cannot Refer, so there is no need for a REFER_ADDR for the ERMs.

The hierarchy of resources is built using the capability attributes. These attributes
represent capabilities or states of resource types that are inherited lower in the hierarchy.
A resource type may also contain attributes that are applicable only to it. Resources
lower in the hierarchy do not inherit these non-capability attributes.

The resource types can be created using a subset of UML. Using UML as a modeling
language allows us to make use of existing UML tools in the market today. The UML
representation can then be turned into code (again using existing tools) for better
performance. The codified resource type can be compiled directly with the codified
protocol above to get optimal performance.

Resource

Employee Hardware

Engineer Adm Computer Peripheral

Programmer Manager Secretary

SoftwareUnit

Analyst

Figure 4: Resource Hierarchy

To allow flexible resource specification in process definition, the GRM also contains
knowledge of roles as well as resource types. Roles are logical representations of
resource requirement for workflow activities in terms of capabilities. Roles are used by
activity definers (when creating new activities) to map activities into resources. Roles are

a boolean expression specifying the resource types needed for the activity. Given this
information, the resource manager automatically generates virtual nodes (shaded nodes
in Figure 5 below). For example, assume that the activity definer defines two roles R1
and R2 for activities A1 and A2 as follows:

• A1: {Role: R1 = {Peripheral and Software}}

• A2: {Role: R2 = (Programmer and Analyst) and (Computer or Secretary)}}

Figure 5 shows how the above roles would be incorporated into the resource model. R1

can be modeled very simply as inheriting from both Peripheral and Software. R2 requires
the definition of two “virtual” resources R2a and R2b. R2a represents a set of resources
that are either Computers or Secretaries. R2b represents resources that are both
Programmers and Analysts. Finally, R2 represents an “and-ing” of R2a and R2b. This
method allows for complex boolean expressions of resource types to be expressed in the
resource model. The virtual nodes can themselves have additional attributes that can be
used during the search process.

The connections between virtual nodes and resource types are labelled to enable the late
and early binding of resources. For example, in the example of Role R1, the link between
R1 and Peripheral might be labelled for late binding. When a request for Role R1 comes
to the resource manager, the request would get rewritten by the appropriate policies. The
request would not be sent to the LRMs, though.

The virtual nodes (roles) also consist of rules that are used to determine the relationships
between the resource types that they represent. Consider a virtual node called
SecureContact which represents a Manager resource type and a secure
WorkListHandler. In other words, if one needed to send secure work to a Manager, they
would use the SecureContact role. But the resource manager would need rules to
determine how to get (and in which order) the WorkListHandler etc. These rules are only
stored in the virtual nodes and thus are only associated with Roles (not resource types).

Role definitions would also need to be merged into the resource model. This should be
possible, again using UML. Once role knowledge is represented in the model, one can
query GRMs based solely on roles.

Resource

Employee Hardware

Engineer Adm Computer Peripheral

Programmer Manager Secretary

SoftwareUnit

Analyst

R2

R1

R2a

R2b

 and

or

Figure 5: Resource Hierarchy Extended with Roles

4 Design

4.1 Languages and Interfaces

The following simple languages have been defined for resource definition, query and
manipulation:

1. Resource query language (RQL) – RQL is an SQL like language. Users can use the
language to submit resource requests to the resource manager. The language is
composed of SQL select statements augmented with optional activity specifications
(for clauses).

select R2b
from SRMn

where Location = ‘PA’
for Programming
with NumberOfLines = 35000 And Location = ‘Mexico’;

Figure 6: Initial RQL Request

The query in Figure 6 requests resources of role R2b from the SRMn with additional
condition that resources should be located at ‘PA’. The resources are for activity
Programming of 35,000 lines of code and of Location ‘Mexico’. Note that the select
clause may contain either a resource type (e.g., Programmer) for simple workflow
activities that only require a single resource, or a role specification (e.g., R2b) for
complex activities that require multiple resources. For resource specification in a
workflow activity, only select clause is mandatory (from the system-wide or the process-
wide default resource managers).

2. Resource Policy language (RPL) – RPL allows managers/supervisors to define
resource policies. There are two types of polices: requirement policies and
substitution policies. A requirement policy defines additional conditions a resource
must satisfy in order to perform a given workflow activity, while a substitution policy
specifies possible substituting resources for a given workflow activity in case the
originally specified primary resource is not available. They are discussed in more
detail in [3].

3. Resource definition language (RDL) – RDL allows for graphical modeling and
manipulation of resource groups.

There are three additional interfaces for resource management:

• Security interface – interface which allows each GRM to use the given security
architecture.

• Administration API – an API which allows the administration and configuration of
the GRM.

• RM-RM protocol – a set of messages that allows one GRM to contact another
GRM. This interface can allow for decentralized resource management and may
allow for the use of a foreign router by putting an appropriate wrapper around it.

4.2 RM-RM Protocol

There are four types of message that a GRM can send to another GRM: Plead, Delegate,
Refer, and Report. These messages are shown in the Figure 7 below. Note: Do is not
really part of the RM-RM protocol, since an SRM by definition can access LRMs.

• Plead: Used by a GRM to send a request up to a higher level GRM.

• Delegate: Used by a GRM to send a request down to a lower level GRM.

• Refer: A GRM can cache information about other GRMs that are horizontally
positioned. As we will see, the cache does not have to be consistent.

• Report: A response sent back to the original GRM where the request originated. Used
to create and update cache entries at the original GRM.

2 3

4 5 6

L1 L2 L3 L4 L5

Delegate

Do

Plead

Report

1

Refer

Figure 7: RM-RM Protocol

This protocol can be simplified for three levels of resource management. With three
levels of resource management, the top level ERMs can either Delegate or they can
Do (satisfy) the request. The second level of SRMs can Plead, Refer or Do (satisfy) a
request. This is shown in Figure 8, where a request comes in to SRM2. In the simplest
case (shown in red), SRM2 can satisfy the request and does so by using LRM1

In the second case (shown in blue), SRM2 does not know how to satisfy the request so
it pleads up to ERM1. ERM1 maintains high level information about which SRMs can
satisfy what. ERM1 delegates the request to SRM3. SRM3 uses LRM2 to satisfy the
original request and replies directly back to SRM2 using the Report message. SRM2

can create a cache entry to send all requests of this type directly to SRM3.

In the third case (shown in green), SRM2 receives a request and uses its cached entry
to send the request to SRM3 using the Refer method. But SRM3 cannot handle the
request (i.e., invalid cache entry). SRM3 might also have a cache entry for the request,
but because it was called using a Refer, it Pleads the request up to ERM1. Note, if
SRM3 were to use its cached entry on a Refer call this could lead to messy loops with
inconsistent caches; therefore, SRM3 pleads the request. An additional consequence of
this is that we do not have to implement any cache consistency protocols. ERM1

delegates the request to SRM4 which satisfies the request and Reports directly back to
SRM2. At this point, SRM2 can updates its cached entry.

The ordering of how these messages are called can be quite important. The following
ordering results in optimal performance.

1. A resource manager first attempts to Do or satisfy the request.

2. If this fails, the GRM attempts to Delegate the request to another GRM (in a three
level design, only ERMs can delegate).

3. The GRM attempts to use its cached entries and tries to Refer the request to
another GRM.

4. Finally, it Pleads the request up one level (in a three level design, only SRMs may
Plead requests).

LRM1

Request

Reply

ERM1

plead delegate plead

delegate

do

refer

report

report
do

do

SRM2 SRM3 SRM4

LRM2 LRM3

Figure 8: Use of RM-RM Protocol

The following are some rules that need to be followed for each of the messages to
guarantee that no loops occur while traversing the hierarchy of resource managers. This
simplifies the implementation of the RM-RM protocol and requires little external
coordination (i.e.: we do not need to store all the resource managers we have visited).

• Request

If can_Do then {DO; Reply}

Else if can_Delegate then {Delegate}

Else if can _Refer then {Refer}

Else if can_Plead {Plead}

Else {Report error}

• Reply

Return result to initiator of Request

• Do (outlined in control engine section above)

Ask policy engine for initial query rewrite

Ask resource engine for result.

If any result then return result

Else ask policy engine for substitute rewrite

Ask resource engine for result and return

• Delegate

If can_Do then {DO; Report result}

Else if can_Delegate then {Delegate}

Else {Report error}

• Plead

If can_Do then {DO; Report}

Else if can_Delegate then {Delegate}

Else if can_Plead {Plead}

Else {Report error}

• Refer

If can_DO then {DO; Report}

Else if can_Delegate then {Delegate}

Else if can_Plead then {Plead}

Else {Report error}

• Report

Update refer table and Reply result

The can_DO functionality was described above (involves looking at the resource model).
The other test cases (can_Refer, can_Delegate, etc.) can also be determined by using the
parameters of the resource model described below.

Note that there are popular protocols used by LRMs. The integration layer (mentioned in
Figure 2) manages the interfaces to the LRMs. Some of the more common interfaces
might be SQL, LDAP [6], and CORBA Trader [7].

4.3 Consistency Issue

The resource model is loosely consistent among all the resource managers. This means
that at any given instant in time, there might be GRMs that do not have the same model
as some other GRMs. But over time, all GRMs will have the same resource model. This
can be accomplished through the use of protocols such as SLP [8].

One exception to the above statement of loose consistency is the consistency of the model
between the SRM and the ERM. If the model is changed in one of the SRMs, then the
ERM(s) are immediately notified. The models in the other SRMs can be updated over
time. This is required because other SRMs will be pleading requests up to ERMs and they
need to have a complete, consistent knowledge of the world.

The SRM models can be subsets of the ERM models. For example assume there are two
SRMs (SRM1 and SRM2) and they both plead up to ERM1. Using the model in Figure 4,
assume that SRM1 can satisfy requests of type Hardware but does not have any
knowledge of any other resource types. If asked for any resource type other than
Hardware, SRM1 pleads the request up to ERM1. Further assume that SRM2 can satisfy
requests of Employee type (and all its subtypes). It would be acceptable for SRM1 to have
the following sub-model:

Resource

Employee Hardware

Computer Peripheral

SoftwareUnit

Figure 9: Sub-Model in an SRM

If a request for an Engineer came to SRM1, it would plead the request up to ERM1. ERM1

(since it contains the complete consistent resource model) would know how to handle
Engineer resources and delegate the request to SRM2. SRM2 would then report the result
directly back to SRM1. SRM1 could update its model and cache when it received the
result from SRM2. In this way the model in SRM2 could be built up over time. In
summary, the SRM models are loosely consistent and are built up over time whereas the
ERM model is complete and consistent.

5 Conclusions

Resource management is a key issue in providing resource independence and efficient
use of workflow resources. The paper has outlined a design of such a resource
management system for enterprise workflow environments. It is capable of handling a
large number of workflow resources that are independently managed by pre-existing
resource systems. It integrates these external resource systems at schema level without
duplicating individual resource information. Resource specification is greatly simplified
by providing process designers integrated views of enterprise workflow resources at
different level based on a unified resource model. Dynamic behaviors of workflow
resources are supported through powerful resource policies.

This work is done in the context of OpenPM [1], a workflow research project at HP Labs
that results in Changengine [4], the HP’s current generation of workflow product.

6 References

1. J. Davis, W. Du, and M. Shan. OpenPM: An Enterprise Process Management System,
IEEE Data Engineering Bulletin, 1995.

2. W. Du, G. Eddy, M. Shan, and J. Davis. Distributed Resource Management in
Workflow Environment, Proc. of the 5th Int. Conf. on Database Systems for Advanced
Applications, Melbourne, Australia, April 1997.

3. Yan-Nong Huang and Ming-Chien Shan. Policies in a Resource Manager of
Workflow Systems: Modeling, Enforcement and Management, Technical Report
HPL-98-156, Sept. 1998.

4. HP. Intrudtuction to HP Changengine, HP Product Document,
http://www.hp.com/go/changengine.

5. IBM. Modeling Workflow: Version 2 Release 3, IBM FlowMark Document, 1996.

6. LDAP. Understanding LDAP, http://www.redbooks.ibm.com/SG244986/4986fm.htm

7. OMG. Trader Object Services Specification, ftp://www.omg.org/pub/docs/formal/97-
12-23.pdf.

8. SLP. Service Location Protocol White Paper,
http://playground.sun.com/srvloc/slp_white_paper.html.

