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1 INTRODUCTION

In this letter we attempt to calculate values of important quantities in nonlinear

control theory from input-output time series data. A fundamental concept in

nonlinear control theory is the notion of relative degree. The text by Isidori

(Nonlinear Control Systems, 3rd Edition, Springer) is a good introduction to

\state-of-the-art" nonlinear control theory.

The nonlinear single input { single output (SISO) system

_x = f(x) + g(x)u

y = h(x)

has relative degree r at a point x0 if

(i) LgL
k�1

f
= 0 for all x in a neighbourhood of x0 and all k < r � 1

(ii) LgL
r�1

f
6= 0.

(Lab is the Lie derivative of the vector �eld b along the vector �eld a.)

The relative degree is the amount of times the output function must be

di�erentiated before the input explicitly appears. (This must also be related to

the number of past outputs required before the input a�ects the output.)

The relative degree is important since it \induces"a coordinate transfor-

mation which converts the SISO system into a so-called normal form. The is

normal form is easier to analyse than the original representation. In addition

the normal form can be used to separate the internal (or zero) dynamics from

the external dynamics.

An additional property of the relative degree is that for a given output

function the relative degree is invariant under coordinate transformations.
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For linear systems

_x = Ax+Bu

y = Cx

the relative degree is such that

(i) CA
k
B = 0, k < r � 1

(ii) CA
r�1

B 6= 0.

2 APPROXIMATING RELATIVE DEGREE

The relative degree is an important concept in the theory of SISO systems. We

would like to design a diagnostic which can estimate relative degree from input-

output data. An approach which immediately comes to mind is the following:

Given input-output data u(t) and y(t) we construct and extended phase

space of vectors

z(t) = (x(t); u(t))

= (y(t); y(t � s); . . . ; y(t� (d� 1)s); u(t)):

For z = (x; u) we reconstruct a local linear model

F (z) = [AB][xu]0

= Ax+ Bu;

and observe w = Cx. We calculate the condition for relative degree using the

approximated C, A and B. If we choose Nr random z's from the extended

reconstructed space then we can calculate an average relative degree �r.

If we can determine �r reliably then we are in a position to \dictate" the form

of our reconstructed model by listenening to what Isidori tells us.

EXAMPLE

Consider Du�ng's di�erential equation. This equation is given by

_u = v

_v = u� u
3
� �v +  cos(!t):

We use parameter values which generate chaotic solutions, i.e., � = 0:25,  =

0:3 and ! = 1:0. We consider the system as a driven system with the input

g(t) = cos(!t). If we observe the u-coordinate then the system has relative

degree r = 2.
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We generate a 10; 000 point output time series by integrating the di�erential

equations and outputing the u component every 0:05 time units. The input

time series is obtained by evaluating g(t) every 0:05 time unit.

In Figure 1 we show the results of applying our diagnostic to the \Du�ng

data". We have chosen a lag of s = 26 by choosing the �rst minimum of the

average mutual information function. The parameters used in the diagnostic

were k = 10 (number of neighbours for local model), Nr = 100, and the de-

correlation interval was 10. (This is necessary to avoid temporal correlation of

the neighbours chosen to approximate the local models.) The input and output

time series were normalised to have an equal variance of 2.
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Figure 1: The calculation should give zero for k�1 less that relative degree and

non-zero for k� 1 greater than the relative degree. Obviously we have non-zero

all the time so must look for a distinguaished kink. None is apparant but the

�gure suggests r = 2 as expected. We note that the increase in the curves is

most probably due to A
k rather than the extraction of relative degree.

The second example time series we use to illustrate our method is obtained

by integrating the circuit equations of a model circuit for a (FET) oscillator.

The circuit diagram for the oscillator is shown in Figure 2. We generate a
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10; 000 point input-output time series. The circuit equations can be derived

using Kircho�'s laws. We integrate the circuit equations and output the state

every 0:01 time units. The voltage measured at node 2 is considered the output

time series and the voltage measured at node 4 is considered the input time

series.

G

dsI

dsC

gd

L

1L

gdC

3

21

2

S
v

SOURCE
AC

ν

gsG

4 5

ac

gs

v

AL

AR

D

C

3

GATE
6

DRAIN

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

Figure 2: A circuit diagram of a nonlinear circuit model.

The results obtained by applying our method to the input-output time series

data are shown in Figure 3. We used a lag of s = 44 and the parameters for

the diagnostic were k = 10, Nr = 100 with a de-correlation interval of 10. We

normalised the data sets to all have variance equal to 4.

3 USINGNORMAL FORM STRUCTURETO

DETERMINE EMBEDDING DIMENSION

There is one striking di�culty with the above argument (other then the results

are terrible). We know from Takens' results that for autonomous systems the

reconstrcuted phase space should have dimension d � 2n + 1. Since r � n

(always) ... (elaborate)

This is not as tragic as it might appear. We can dictate r � 1 of the models

components but must �t d� r + 1 components the hard way.

A question which arises is \Can we reconstruct the dynamics is a dimension

d under the assumption that the relative degree r = d?"
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Figure 3:

Example: For a linear model with d = 3 we would have

A =

2
4

0 1 0

0 0 1

a1 a2 a3

3
5 ; B =

2
4

0

0

b1

3
5 ; C = [1 0 0]:

This system has relative degree equal to 3.

It is clear that we can reconstruct the dynamics in the form of the above for

any dimension d � 2. This suggests a procedure for �nding a \best" d.

1. Reconstruct the vectors in dimension d.

2. Choose Nr random \centres" from the reconstructed vectors.

3. For each centre estimate a local linear model in normal form.

4. Calculate the modelling errors.

5. Calculate the average error over the Nr centres.
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6. Choose the embedding dimension as d which minimises the average local

errors.

In Figures 4 and 5 we show the results of the above technique to the Du�ng

anf FET circuit data.
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Figure 4: A plot of the average errors of normal form local linear models for

increasing dimension.

4 CONCLUSION

The above report has suggested two methods to aid in the reconstruction of

nonlinear dynamics from input-output time series. The �rst method introduced

a method for the possible estimation of relative degree. The relative degree is an

important concept in the theory of nonlinear control theory and being able to

estimate its value from input-output data would be an advantage. The second

method suggested a means to �nd an embedding dimension where \normal form

models" could be reconstructed with accurate prediction performance.

We note that both suggestions failed.
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Figure 5: A plot of the average errors of normal form local linear models for

increasing dimension.

7


