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A CRYPTOGRAPHIC APPLICATION OF WEIL DESCENT

S.D. GALBRAITH AND N.P. SMART

Abstract. This paper gives some details about how Weil descent can be used

to solve the discrete logarithm problem on elliptic curves which are de�ned over

�nite �elds of small characteristic. The original ideas were �rst introduced into

cryptography by Frey. We discuss whether these ideas are a threat to existing

public key systems based on elliptic curves.

1. Introduction

Frey [4] introduced the cryptographic community to the notion of \Weil descent",

which applies to elliptic curves de�ned over �nite �elds of the form Fqn with n > 1.

This paper gives further details on how these ideas might be applied to give an

attack on the elliptic curve discrete logarithm problem. We also discuss which

curves are most likely to be vulnerable to such an attack.

The basic strategy consists of the following four stages (which will be explained

in detail in the remainder of the paper).

1. Construct the Weil restriction of scalars, A, of E(Fqn ).

2. Find a curve, C, de�ned over Fq which lies on A.

3. Pull the discrete logarithm problem back from E(Fqn ) to Jac(C)(Fq ).

4. Solve the discrete logarithm problem on Jac(C)(Fq ) using an index calculus

method, based on the Hafner-McCurley algorithm.

We must emphasize that this paper does not represent a fully developed attack

on the elliptic curve discrete logarithm problem. In fact the method described here

is rather akin to the Xedni calculus explained by Silverman, see [18] and [10], for

curves over large prime �elds of odd characteristic, since although the method is

available in theory in practice it is unlikely to ever be made to work, in the authors

opinion, for curves of cryptographic interest.

In the �rst sections we give some details about abelian varieties, curves and the

\Weil restriction" (which is an abelian variety). We also provide more details about

the �rst 3 stages above. The ideas in these sections are well-known in algebraic

geometry, but they are not well understood among the cryptographic community.

In Sections 4 we describe solutions to some of the underlying problems that

the method presents. In Section 5 we give a down to earth explanation of the

whole approach with a very simple example. In this example we construct the Weil

restriction over F2n1 of an elliptic curve E over F24n1 .

In Section 6 we describe how the discrete logarithm problem in the divisor class

group of a curve can be solved in heuristic sub-exponential time relative to the

genus of the curve.
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In the �nal section we discuss some open problems and give an argument of why

we do not expect most elliptic curves to be vulnerable to a Weil descent attack.

In particular we will explain why we believe composite values of n may be weaker

than prime values, thus possibly explaining the choice of some standards bodies in

precluding composite values of n.

2. Curves, Divisor Class Groups and Jacobians

We gather a few relevant facts from algebraic geometry. The main references we

use are Hartshorne [7], Mumford [15] and Milne [12].

A curve C over a �eld k is a complete, non-singular variety of dimension 1 over

k. We often deal with curves which are given as a speci�c a�ne model, which can

cause problems. For instance in this setting the curves are often singular, but we will

nevertheless still call them curves. The usual approach for handling singularities

on a curve, C=k, is to take a sequence of blow-ups, to produce a non-singular curve.

This process may involve enlarging the ground �eld k. Nevertheless, for any C there

is a non-singular curve, C 0, called the normalisation (see [7], Ex. II.3.8), which is

de�ned over the same �eld k, and a degree one rational map C 0 ! C.

The genus g of a non-singular curve is an important invariant of the curve. For

a singular curve one may de�ne the geometric genus (see [7], Section II.8), which is

a birational invariant, as the genus of the normalisation of the curve.

The Jacobian variety Jac(C) of a non-singular curve C of genus g, over a �eld

k, is an abelian variety over k of dimension g. One construction of the Jacobian is

as a subset of the gth symmetric power, C(g), of the curve (see [12]). We gather

two important facts about the Jacobian of a curve.

Proposition 1. Suppose C is a non-singular curve over a �eld k with a point P

de�ned over k. The following properties hold.

1. (Canonical map from C into Jac(C)) There is a canonical map fP : C !
Jac(C) which takes the point P to the identity element of Jac(C).

2. (Universal property) Suppose A is an abelian variety over k and suppose there

is some mapping of varieties � : C ! A such that �(P ) = 0A, then there is a

unique homomorphism  : Jac(C)! A such that � =  � fP .
The divisor class group Pic0k(C) of a curve is the group of degree zero divisors

on C, which are de�ned over k, modulo principal divisors. If C is a non-singular

curve over k with a k-point, P , then Jac(C) and Pic0k(C) are isomorphic as abelian

varieties (see [12], Theorem 7.6). It is convenient to view prime divisors on the

normalisation as places of the function �eld. Since the function �eld of a singular

curve is isomorphic to the function �eld of its normalisation it follows that we can

de�ne the divisor class group of a singular curve C and that it will be isomorphic

to the divisor class group of its normalisation.

An abelian variety A over k is simple if it has no proper abelian sub-varieties

de�ned over k. An abelian variety is absolutely simple if, even when considered over

the algebraic closure �k, it is simple. An isogeny is a mapping of abelian varieties

and so is, in particular, a group homomorphism with �nite kernel.

We require the following result.

Proposition 2 (see [15], page 173, Theorem 1). Let A be an abelian variety over

a �eld k and let B be an abelian subvariety of A. Then there is an abelian subvariety

C of A such that A is isogenous to the product B � C.
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A corollary of this statement is the fact that every abelian variety is isogenous

to a product of simple abelian varieties in a unique way (up to ordering).

We now give an application of this property (also see [12], p. 199). Suppose that

A is a simple abelian variety of dimension d and that we are given a curve C and a

map � : C ! A (in this paper the maps maps � we will consider will usually have

degree one and we will use the phrase \C lies on A" to represent this situation).

Since the image of the map  : Jac(C)! A is an abelian subvariety of A it follows

from the fact that A is simple that the map  is surjective and that A is an abelian

subvariety of Jac(C). In other words, one has the following result.

Corollary 3. Let A be a simple abelian variety of dimension d over �eld k. Sup-

pose we have a map � : C ! A from a non-singular curve C to A. Then the genus

of C is at least d. Furthermore, g(C) = d if and only if A is isogenous to the

Jacobian of C.

3. Weil Descent

Let k denote a �nite �eld and K denote a Galois extension of degree n. For

example, we could have k = F2 and K = F2n or k = F2n1 and K = F2m with

m = n1n, which are the two most important cases for the applications. Let E(K)

denote some elliptic curve over K, we assume we wish to solve a discrete logarithm

problem in E(K) given by

P2 = [�]P1; with P1; P2 2 E(K):

We include the case where E is de�ned over k in our discussion, this is the case of

Koblitz curves. Koblitz curves are used in real life situations since they produce

e�cient cryptographic systems.

The \Weil restriction of scalars" of E over K is an abelian variety WK=k(E) of

dimension n over the smaller �eld k.

The proof that such an object exists is fairly deep. Nevertheless, we can easily

show how WK=k(E) can be constructed in our case (a speci�c example will be

given later). First take a basis of K over k and expand the coordinate functions

on the a�ne curve E(K) in terms of the new basis, thus using 2n variables over k.

Expanding out the formulae for the elliptic curve E(K) and equating coe�cients of

the basis of K over k, we obtain n equations linking our 2n variables. This a�ne

variety de�nes WK=k(E) and the group law is induced from the group law on the

elliptic curve.

The following result is stated in [4];

Lemma 4. If E is de�ned over k then

WK=k(E) �= E(k)� V

where V is an abelian variety of dimension n � 1. If n is coprime to #E(k) then

we have,

V = fP 2 WK=k(E) : TrK=k(P ) = Og
where the trace is computed using the mapping from WK=k(E) to E(K).

Proof. If E is de�ned over k then it is clearly an abelian subvariety of WK=k(E).

By Proposition 2 it follows that there is an abelian subvariety B over k such that

WK=k(E) is isogenous to E �B.
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The construction of the Weil restriction implies that a generic point of WK=k(E)

is (�; �(�); : : : ; �n�1(�)) where � is a generic point of E=K. It follows that the

subvariety V of WK=k(E) has codimension 1.

Finally, one sees that V is an abelian subvariety of WK=k(E) and, since n is co-

prime to #E(k), the subvariety V (k) has trivial intersection with E(k). Therefore,

V is isogenous to B.

We let A denote the `interesting' abelian variety, de�ned over k, on which the

discrete logarithm problem on E(K) actually lies. In other words

De�nition 1. De�ne A by

� If E is not de�ned over k, then set A =WK=k(E). Hence dimA = n.

� If E is de�ned over k, then set A = V , from Lemma 4. Hence dimA = n�1.

In general we expect the abelian variety A to be simple. Indeed, since the original

elliptic curve will have order divisible by a large prime, it is clear by considering

the number of points on A that there must be a large simple abelian subvariety of

A.

We may now give a sketch of the \Weil descent" attack on the elliptic curve

discrete logarithm problem: Given an elliptic curve E over K construct the abelian

variety A over k as above. Next �nd a (possibly singular) curve C de�ned over

k lying on A such that C has a k-point P0 at the point at in�nity of A. By

the universal property of Jacobians there is a mapping of abelian varieties  :

Jac(C 0)! A, where C 0 is the normalisation of C.

The points P1 and P2 of the discrete logarithm problem in E(K) correspond to

points on A(k) in an obvious way, and these points may be pulled-back under  to

obtain divisorsD1 and D2 in Pic
0
k(C)(k) (whose support is only on the non-singular

points of C) such that  (Di) = Pi. Finally, the discrete logarithm problem of D2

with respect to D1 on Pic
0
k(C) can be solved using an index calculus method.

There are three main problems which must be overcome in order to apply this

method.

1. It is necessary to �nd curves of small genus on A.

2. It is necessary to pull back points on A to divisors on C.

3. It is necessary to have an index calculus method for general divisor class

groups.

The main contribution of this paper is to provide solutions to the latter two of these

problems. The �rst problem is the very signi�cant and we discuss it further at the

end of the paper.

4. Pulling Back Along  

We shall need to describe the mapping  more explicitly. Let C be a curve of

genus g over k and let � : C ! A be the mapping of C into the abelian variety

A. Suppose P0 is the k-point on C (which we shall assume lies at in�nity) which

maps under f = fP0 to the identity element of A. Recall that elements of Pic0k(C)

may be represented in the form D = E�d(P0) where E =
Pd

i=1(Qi) is an e�ective

divisor of degree d and where the Qi are points on C(�k) such that, as a divisor, E

is de�ned over k. Note that one usually restricts to d � g but the process described

below works for arbitrary values of d.
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Proposition 5. The map  : Pic0k(C)! A(k) is given by

 (E � d(P0)) =

dX
i=1

�(Qi)

where the addition on the right hand side is addition on the abelian variety A (which

can be e�ciently computed via the addition law on E(K)).

Proof. The divisor E � d(P0) is equal to the sum (on Pic0k(C)) of the divisors

(Qi)�(P0). The canonical map f : C(�k)! Pic0�k(C) has the property that f(Qi) =

(Qi)�(P0). The mapping  : Pic0k(C)! A has the universal property that � =  �f
and so  ((Qi) � (P0)) = �(Qi) 2 A(k). Since  is a group homomorphism which

preserves the action of the Galois group Gal(�k=k) the result follows.

In practice we will be using a singular equation for the curve C. The mapping

above still gives a complete description of the map from Pic0k(C) to A for the

divisors whose support lies on the non-singular points of C.

To invert the map  we have to �nd a divisor which maps under  to a given

point, P , of A. We now describe how to �nd such a divisor.

We will �nd p non-singular points on C(k), where p is to be determined later.

Call these fP1; : : : ; Ppg and map them to the variety A via the map �, to obtain

Qi = �(Pi); i = 1; : : : ; p:

Thinking of the coordinates of the points as variables, we see that we obtain p

equations in 2p unknowns. Formally using the group law on A applied to these

points Qi we determine the equations for the coordinates of the sum

pX
i=1

Qi

and then equate this to the given element P . Since A has dimension n this gives

us, roughly, another n equations.

Hence in total we have p+ n equations in 2p unknowns, which de�nes a variety

V . So as soon as p > n we expect that this de�nes a variety of dimension at

least p � n. For example, a curve when p = n + 1 and a surface when p = n + 2.

Finding a point on this variety will produce the points Pi and in general these will

be non-singular points on C.

Finding points on varieties in high-dimensional spaces is not a computationally

trivial matter. There may also be computational issues which arise when con-

structing this variety. Nevertheless, we do not think that these would be the main

obstacle to the success of our method, since �nding a suitable curve, C, on A is

more likely to provide an obstacle to the practicality of our method.

We construct the divisors Di = (Qi)� (P0), in Pic
0
k(C), and then

 (

pX
i=1

Di) = P;

as required. A di�erent point on the variety V will give rise to di�erent divisors

Di.

Suppose now that we have found two divisors, D0

1 and D
0

2, in Pic0k(C) such that

 (D0

1) = P1 and  (D
0

2) = P2 Let g denote the genus of C and let q denote the size
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of the �eld k. We let h = #Pic0k(C) then by the Weil conjectures we know that

(1�pq)2g � h =

�����
2gY
i=1

(1� !i)

����� � (1 +
p
q)2g :

For the moment suppose we have determined h. This number can be computed in

polynomial time using the algorithm due to Pila [17] (also see [2] and [9]). The fact

that we know that h is divisible by #E(K) gives us some extra information about

h. In any case the value of h will come out in the wash of the method described

in Section 6. We shall make the reasonable assumption that (#E(K))2 does not

divide h.

We compute Di = [h=#E(K)]D0

i in Pic0k(C), and attempt to solve the discrete

logarithm problem

D2 = [�]D1

for the unknown discrete logarithm �, in the group Pic0k(C). This is then the

solution to the original discrete logarithm problem on E(K).

5. An Example

We give an example to illustrate some of the ideas described above. Let k = F2n1

and let K be such that K has a Type-1 Optimal Normal Basis over k. This means

that n + 1 should be a prime and that 2n1 should be primitive in the �nite �eld

Fn+1 . Then the n roots of

(xn+1 � 1)=(x� 1) = xn + xn�1 + � � �+ x+ 1

form an Optimal Normal Basis of K over k.

As an example we take a �eld with n = 4, for simplicity. Let f�; �2; �4; �8g denote
the Optimal Normal Basis of K over k, so we have �4+ �3+ �2+ �+1 = 0 and the

element 1 2 K is given, in terms of the basis, by 1 = �+ �2+ �4+ �8. Consider the

following elliptic curve de�ned over K,

Y 2 +XY = X3 + b (1)

where b 6= 0 and b is given by

b = b0� + b1�
2 + b2�

4 + b3�
8:

By setting

X = x0� + x1�
2 + x2�

4 + x3�
8;

Y = y0� + y1�
2 + y2�

4 + y3�
8;

where xi; yi 2 k, substituting into (1) and equating powers of � we obtain four

equations in the eight unknowns, fx0; : : : ; x3; y0; : : : ; y3g. This de�nes the abelian
variety A as a 4-dimensional variety in 8-dimensional a�ne space. Note that if one

tries to construct a projective equation for A in the obvious manner then there are

too many points at in�nity. For the application we must remember that there is

some projective equation for A which only has one point which does not lie on our

a�ne equation.

The group law on A can be evaluated by translating a point

(x0; x1; x2; x3; y0; y1; y2; y3) 2 A(k)
back to the point

(x0� + x1�
2 + x2�

4 + x3�
8; y0� + y1�

2 + y2�
4 + y3�

8) 2 E(K)
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and then using the addition formulae on the elliptic curve.

If we intersect A with (dimA)�1 hyperplanes, in general position, which all pass

through the zero element of A, then we should end up with a variety of dimension

one. By using elimination theory we can then write down the equation of this

variety.

In our example we have dimA = 4, and the obvious hyperplanes to choose, given

that we want the degree of the resulting curve to be small, are

x0 = x1 = x2 = x3:

Intersecting these with our variety A, we obtain the variety

V :

8>>>>><
>>>>>:

y23 + y0x0 + x30 + b0 = 0;

y20 + y1x0 + x30 + b1 = 0;

y21 + y2x0 + x30 + b2 = 0;

y22 + y3x0 + x30 + b3 = 0:

If we then eliminate y3 by taking the resultant of the �rst and fourth of these

equations, and eliminate y1 by taking the resultant of the second and third, then

we obtain the variety:

V 0 :

(
y42 + x60 + b23 + y0x

3
0 + x50 + b0x

2
0 = 0;

y40 + x60 + b21 + y2x
3
0 + x50 + b2x

2
0 = 0:

Finally by eliminating y2 from these two equations and setting x = x0 and y = y0
we obtain the a�ne curve

C : y16 + x15y + (x24 + x20 + x18 + x17 + b0x
14 + b23x

12 + b42x
8 + b81):

The only singular point on this a�ne model is the point at (x; y) = (0; 0). There is

also a singularity at the point at in�nity, above which there will be several points

and one of these will correspond to the unique point at in�nity on the variety A.

The other points will correspond to points on the a�ne part of A.

To get a feel for this curve, take k = F2 , this is far too small for real examples

but it allows us to compute some invariants. We computed the genus, g, for this

curve for all the possible values of the bi, using the KANT package [3]. For the

following values of the bi, which represent exactly half of all possible values, we

found that the genus was equal to 8

(b0; b1; b2; b3) =

(
(0; 0; 0; 1); (0; 0; 1; 0); (0; 1; 0; 0); (0; 1; 1; 1);

(1; 0; 0; 0); (1; 0; 1; 1); (1; 1; 0; 1); (1; 1; 1; 0):

In addition the unit rank was always 3 and the rami�cation at in�nity was wild.

The value of (0; 0; 0; 0) is precluded since the original elliptic curve must be non-

singular. The other values of (b0; b1; b2; b3) produce curves which are reducible. As

an example, consider (b0; b1; b2; b3) = (0; 0; 1; 1), in this case we obtain an irreducible

factor given by the curve

C1 : y
8 + x4y4 + x6y2 + x7y + x12 + x9 + x4 = 0:

This curve has genus 4, unit rank two and again the place at in�nity is wildly

rami�ed. Notice that since C1 has genus four and the dimension of A is four, the

Jacobian of the normalisation of C1 must be isogenous to A.
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6. Solving The Discrete Logarithm Problem in the Divisor Class

Group of Certain Curves

Let k be a �nite �eld of q elements and let C(x; y) 2 k[x; y] denote some irre-

ducible multinomial such that

� degy C = N .

� C is monic and separable in y.

� There is a k-rational point, P0, on C at in�nity.

We think of C(x; y) as determining a curve in P2k, which is possibly singular.

We let F = k(x)[y]=(C) denote the function �eld of C(x; y). The place at in�nity,

1, of k(x) decomposes in F in the form

1 =

sY
i=1

1ei
i ;

with 1i having inertia degree fi. For later use we set e = lcm(e1; : : : ; es) and, by

our third assumption above, we have f = gcd(f1; : : : ; fs) = 1.

Let OF denote the integral closure of k[x] in F and let Cl denote the ideal class

group of OF and Ker denote the subgroup of Pic0k(C) generated by the divisor

classes of all the degree zero divisors with support only at in�nity. Since f = 1 we

obtain the isomorphism

Pic0k(C)
�= Cl 
Ker;

where an ideal a 2 Cl corresponds to the degree zero divisor class

Da � (deg a)P0;

where Da is the e�ective divisor associated to a in the obvious manner.

In this section we shall prove

Theorem 6. If D1 and D2 are elements of Pic0k(C) such that D2 = [m]D1 then

we can �nd m, i.e. solve the discrete logarithm problem in Pic0k(C), in heuristic

expected running time

O
�
N � Leg (1=2; 3:54

p
log q)

�
;

as g !1.

Crucial to our algorithm is the following theorem which guarantees that the

factor base we eventually choose will generate the whole of Pic0k(C).

Theorem 7. The group Pic0k(C) is generated, under the isomorphism above, by

the group Ker and the prime ideals B lying above primes p 2 k[x] with

fB deg p � d2 log(4g � 2)

log q
e

where fB is the inertia degree of B and g is the genus of K.

Proof. The proof of the analogous result in [14] extends to our more general situa-

tion.

We set

� = d
�
g log g

2 log q

�1=2
e
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and let Sf denote the set of places (i.e. prime ideals), B, lying above a prime

p 2 k[x] such that

deg p � �:

Since for allB we have fB � 1, we can, for su�ciently large values of g, assume that

the set of such ideals, Sf , along with the group Ker, generate the group Pic0k(C)

under the above isomorphism.

For each irreducible polynomial p 2 k[x] there are at most N �nite places lying

above p. Letting Nq(i) denoting the number of monic irreducible polynomials in

k[x] of degree less than or equal to �, we obtain

#Sf � N

�X
i=0

Nq(i) � N

�X
i=0

qi � q

i
= O

�
N

�
q�
�
:

Let S1 denote the set of places above 1 and set S = Sf [ S1. The set of S-units

of F , i.e. the functions whose support lies solely on S, is denoted by O�S . Setting
t = #S and letting S� = SnfB1g, for some �xed placeB1 2 S1 (e.g., B1 = P0),

we consider the map

� :

� O�S �! Z
t�1

f 7�! (fBvB(f) deg p))B2S� ;

where vB denotes the valuation function at the place B. It is easy to see that the

image of � is a lattice � 2 Zt�1 isomorphic to Pic0k(C) and with determinant

det(�) =
#Pic0k(C)Q
B2S(fB deg p)

:

6.1. Smoothing a divisor. For our purposes a divisor will be called smooth if its

support lies wholly on the set S. In this section let D denote some given divisor of

degree zero which represents some class in Pic0k(C). We wish to construct a divisor

D0 and a function  such that Supp(D0) � S and D0 = D + div().

The basic idea is to add to D a random sum, R, of divisors of degree zero with

support in S, so D1 = D + R. We then `reduce' the resulting divisor to obtain a

divisor, D2, and a function, , such that D2 = D + R + div(). If we are `lucky'

then the support of D2 will lie in S and we will have obtained the required smooth

divisor D2�R � D. If we are not lucky then we need to take another random sum,

R.

To detect whether D2 has support on S we can ignore the in�nite component and

concentrate on the �nite part. Determining the support is then simply a matter of

polynomial factorization over �nite �elds which can be performed in probabilistic

polynomial time.

All that we need now do is explain the method of reduction, and how this e�ects

the degree of the resulting ideal which corresponds to D2.

Under our assumption on the existence of a point P0 at in�nity, the Riemann-

Roch theorem then tells us that every element of Pic0k(C) is represented by a divisor

of the form

E � g(P0);

where E is an e�ective divisor of degree g. Hence, by using an e�cient e�ective

Riemann-Roch algorithm (see for instance, [8] or [19]) the divisor D2 can be made

to have the form D2 = E � g(P0) where degE = g. The divisor D2 is therefore

smooth if the polynomial in k[x] of degree at most g, corresponding to the �nite
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part of E factors into a product of irreducibles all with degree less than or equal to

�.

If q � (g log2 g)1=� and � < g then the probability of obtaining a factorization

over the factor base in one iteration of our smoothing algorithm is given by (see

[11])

Pr�;g =

�
�

g

�(1+o(1))(g=�)
as � !1 and g=� !1. Since this is the probability that a polynomial of degree

g, de�ned over k, has all its factors of degree less than or equal to �.

6.2. Generating the lattice of relations. We shall describe a method of solving

the discrete logarithm problem which is a variant of the Hafner-McCurley method

used in quadratic number (and function) �elds, see [6] and [16]. The analogous

method based on the NFS/FFS can be deduced in an analogous way by extending

the work of [1] and [5]. In practice the NFS/FFS style method may be more e�cient

since one can perform sieving with this method (whilst it is hard to see how to do

this with the Hafner-McCurley based variant). However it is simpler to analyze the

Hafner-McCurley based variant which we shall now describe.

We repeat the following steps until we obtain a lattice of full rank whose deter-

minant does not decrease upon running the following algorithm a few more times.

Indeed at this point we can use any partial information we have from our discus-

sion in Section 3 on the group order of Pic0k(C). This will give us an even stricter

stopping criteria and will determine the size of Pic0k(C) as a by product.

1. We apply our smoothing algorithm to the trivial divisor D = 0 to obtain a

function  and a divisor D such that  = div(D) and Supp(D) � S.

2. Note  2 O�S so we can compute the image of  under � and so obtain

an element of the lattice �. The valuations of  at in�nity can be easily

computed in the case of tame rami�cation at in�nity, i.e when e is coprime

to the characteristic of k, via Puiseux expansions. For the non-tame case

Hamburger-Noether expansions need to be used.

We expect to require just over #S elements of the lattice until we obtain a

lattice of full rank, hence we expect to need to take in total around T random

power products in the smoothing algorithm before we are �nished, where

T =
N � q�
�Pr�;g

=
N

�
q�
�
g

�

�(1+o(1))(g=�)
:

We notice that

g

�
�
�

g

2 log q log g

�1=2
;

and so we deduce that

logT = logN � log� + � log q + (1 + o(1))

�
g

�

�
log

�
g

�

�

� logN +

�
g log g

2 log q

�1=2
+ (1 + o(1))

�
2g log q

log g

�1=2�
1

2
log g

�

� logN + (g log g)1=2
�p

2 log q + o(1)
�
:
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Hence the time needed to compute a full lattice of relations � is

� O
�
N � Leg (1=2;

p
2 log q + o(1))

�
:

We store each computed lattice vector as a column in a matrix A. Hence, at the
end of the algorithm, we hope that we have

� = fAx : x 2 Z
c
g

where c is the column dimension of A.
We need to then compute the Hermite Normal Form of A, to obtain a matrix H

which spans the same lattice as A but which is in upper triangular form. This can
essentially be done in time, [13],

O
�
cr2(r2 + c) log2(rjAj)

�
where jAj = maxi;j jai;j j, and r is the row dimension of A, which we assume to be
also equal to the rank of A. Since we are using the Hafner-McCurley method we
cannot assume that our matrix will be sparse. And as we have

c � r = (#S � 1) � O(
N

�
q�);

the time needed to perform the matrix step is,

O
�
q5�
�
=

 
Leg (1=2; 5

�
log q

2

�1=2

)

!
:

6.3. Computing Individual Logarithms. Given the one-o� cost of computing
the matrix H above we can then solve any discrete logarithm problem in Pic0k(C)

with relative ease. We are given D1; D2 2 Pic0k(C) and we wish to �nd the integer
m such that

D2 = [m]D1:

For i = 1 and 2 we use our smoothing method to obtain a function i such that
Di � div(i) is a divisor with support only on S. Hence in Pic0k(C) we can write

Di �

X
Bj2S

djBj :

We then set di = (dj)Bj2S� and compute the matrix

B =

0
@ �1 0 0t

0 �1 0t

d1 d2 H

1
A

Using an analogue of the Hermite Normal Form algorithm we determine a matrix
C, and hence a unimodular matrix V such that

C = BV =

0
@ z x �

0 y �

0 0 �

1
A :

We then know that D1 has order dividing z in the group Pic
0

k(C). Indeed we expect

that z is the order of D1 in Pic0k(C), and in practice we can assume that z is a large
prime number. We also deduce from the matrix C that

[x]D1 + [y]D2 � 0:
11



But we know D2 = [m]D1 and so

[x+ ym]D1 � 0:

So we obtain the linear congruence for m,

m = �x=y (mod z):

Therefore, we can determine a unique solution for m if gcd(y; z) = 1. Since in
practice we can assume that z is a large prime, we will obtain m unless z divides
y. But this can only happen if either the matrix A of the earlier section does not

generate the full lattice or the group Pick
0
(C) has order divisible by z2.

It is reasonable to assume that neither z2 divides #Pick
0
(C) nor that A generates

a sublattice, hence we conclude that we have determined the unique solution to our
discrete logarithm problem.

6.4. Discussion. We believe that the above algorithm can be proved rigorously
to have sub-exponential behaviour using the standard techniques applied to the
Hafner-McCurley algorithm. We do not do this here since such a result has only
theoretical interest, the existence of a heuristic proof is enough for the purposes of
this article.

7. Open Problems and Conclusion

In this paper we have outlined a strategy for solving the elliptic curve discrete
logarithm problem and have given some details about each of the main steps in this
process. We now address the issue of whether such a strategy is a threat to the
elliptic curve cryptosystems used in practice.

One important observation is that everything in this paper only applies to the
case of elliptic curves over �elds of the form Fpn with n > 1. Elliptic curves over
prime �elds are totally immune to these ideas.

The method can be broken down into 4 main stages (see the Introduction).
Stage 1 (computing an a�ne equation for the Weil restriction) causes no practical
problems.

The actual solution of the discrete logarithm comes from Stage 4, where the index
calculus algorithm described in Section 6 is applied. The motivating problem is to
solve a discrete logarithm problem on an elliptic curve which has approximately qn

points, but we do this by solving a related discrete logarithm problem in a group
of size qg , where g is the genus of the curve C.

If g is very large compared to n then the discrete logarithm problem has been
buried in a much larger group and so the method is not useful. For the Weil
descent to be a danger it is therefore necessary that the genus, g, not grow too
large in relation to the original degree, n. On the other hand, the index calculus
method is subexponential only asymptotically (i.e., when the �eld size is �xed at
q and when the value of g is \su�ciently large"). Therefore, for the Weil descent
attack to work, the values of n and g must strike a balance between these conicting
forces.

For Stage 2 it is necessary to �nd a curve lying on the abelian variety A. As
we have seen, it is important for Stage 4 that the genus g of C be large, but not
too large compared with n. The method used in our example to �nd such a curve
involves eliminating variables. This leads to a curve whose degree is exponential
in n (and so we expect the genus to also be exponential as long as C is not too

12



singular). If the genus of C grows exponentially with n then the complexity of the
Weil descent attack would be subexponential in qg but this is exponential in terms
of the elliptic curve group size qn.

It is not known to the authors what values might be expected for the smallest
possible genus for a curve C on such an A. This question is equivalent to asking
about the expected dimension for a Jacobian with a given abelian variety as a
factor. It is therefore an interesting problem to determine if there is a curve C of
genus O(nd) on any such A for some �xed d. If such curves exist then it would be
very interesting to have a method for obtaining equations for them in terms of the
variables describing the variety A. When n is small there is a higher chance that
there will be small genus curves lying on the abelian variety A (this was seen in our
example, when half the time A was actually a Jacobian). When n is large it seems
to be very unlikely that A have curves on it of genus close to n and so it is unlikely
that the Weil descent method would give a practical attack.

For Stage 3 it is necessary to �nd a point on a large dimensional variety over
a small �nite �eld. When n is small then this problem is not di�cult to solve. It
is not known to the authors how di�cult this is to achieve when n is large. This
question deserves further study.

The Hafner-McCurley style algorithm we described may not be as e�cient as
a function �eld sieve style method. Also, the algorithm we propose requires very
e�cient algorithms to add divisors on arbitrary curves. There is still much research
to be done before these problems have truly e�cient solutions.

In conclusion, there are several problems which require further analysis before
the Weil descent method can be fully assessed. We expect that, for a random
elliptic curve E over a �eld Fqn with n reasonably large, it will be possible to show
that there is a low probability that there are relatively small genus curves on the
Weil restriction of E over Fq . This means that it is unlikely that the method could
ever be used to solve the elliptic curve discrete logarithm problem on the sort of
curves used in practice. Nevertheless, it seems that the Weil descent is most likely
to succeed for elliptic curves de�ned over F2n where the degree n has a small factor
(say of size around 5{15). This may explain why some standards bodies have only
recommended the use of elliptic curves over prime �elds Fp and �elds of the form
form F2p for prime p.
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