

FLEX: Design and Management Strategy
for Scalable Web Hosting Service

Ludmila Cherkasova
Computer Systems and Technology Laboratory
HP Laboratories Palo Alto
HPL-1999-64(R.1)
October, 1999

E-mail: {cherkasova}@hpl.hp.com

web hosting
service, web
server farm, web
server cluster,
virtual servers,
DNS, load
balancing,
scalability,
performance
analysis,
synthetic traces

We propose a new scalable solution for design and management of an
efficient Web hosting service, called FLEX. This solution can be
applied to a Web hosting service implemented on different
architecture platforms, such as web server farms with replicated disk
content, or web server clusters having access to a shared file system.
FLEX is based on the "locality aware" balancing strategy which aims
to avoid the unnecessary document replication to improve the overall
performance of the system.

By monitoring the traffic to each customer's site and analyzing the
combined traffic to a system in whole, FLEX proposes a balanced
(logical) partitioning of the customers (web sites) by the number of
nodes in the system.

The desirable routing can be done by submitting the correspondent
configuration files to the DNS server, since each hosted web site has a
unique domain name. FLEX can be easily implemented on top of the
current infrastructure used by Web hosting service providers.

Using a simulation model and a synthetic trace generator, we compare
the current solutions and FLEX over the range of different workloads.
For generated traces, FLEX outperforms current solutions 2-5 times.

This paper is a continuation and development of the work started in
[Ch99].

 Copyright Hewlett-Packard Company 1999

Contents

1 Introduction 3

2 Shared Web Hosting: Typical Hardware Solutions 5

3 Load Balancing Products and Solutions 7

3.1 DNS Based Approaches : 8

3.2 IP/TCP/HTTP Redirection Based Approaches : : : : : : : : : : : : : : : : : : : 9

3.3 Locality Aware Balancing Strategies : 13

4 Virtual Servers and Multiple Domains 14

5 New Scalable Web Hosting Solution: FLEX 15

6 Load Balancing Algorithm ex-alpha 17

7 Algorithm ex-alpha: Analysis, Speed and Qualitative Results 20

8 Synthetic Trace Generator 22

9 Simulation Results with Synthetic Traces 23

10 Conclusion and Future Research 25

11 References 26

A APPENDIX 28

A.1 Example 1: 50 Customers Balanced Across 10 Servers : : : : : : : : : : : : : : : 28

A.2 Example 2: 100 Customers Balanced Across 10 Servers : : : : : : : : : : : : : : 30

A.3 Example 3: Synthetic Trace with 100 Customers Balanced Across 8 Servers 32

A.4 Example 4: Synthetic Trace with 100 Customers Balanced Across 16 Servers 35

2

1 Introduction

Due to the explosive growth of the Web and an increasing demand on the servers, Web content

hosting is an increasingly common practice. In Web content hosting, providers who have a

large amount of resources (for example, bandwidth to the Internet, disks, processors, memory,

etc.) o�er to store and provide Web access to documents from institutions, companies and

individuals who lack the resources, or the expertise to maintain a Web server, or are looking

for a cost e�cient, \no hassle" solution. The service is typically provided with a fee, though

some servers do not charge fees for non-commercial accounts.

Demand for Web hosting and e-commerce services continues to grow at rapid pace. IDC [IDC98]

forecast rapid growth for Web hosting over the next �ve years. In particular, businesses will

invest heavily in Web hosting services following the resolution of the Y2K compliance issues.

IDC forecasts that Web hosting market will reach nearly $12 billion by 2002, i.e. Web hosting

market will experience 30 times growth in 5 years.

Typical uses of a web site are wide and varied. The web is being used for communication,

research, marketing, customer support, selling and collaborative working. Many businesses

achieve payback within months owing to cost savings, attraction of new business, speed to

market or better market intelligence.

More than two-thirds of all corporate web sites are now hosted (outsourced), accordingly to

Forrester Research Inc.

Web hosting services are represented by the following market segments:

� shared web hosting. Shared servers host multiple sites from di�erent companies;

� dedicated web hosting, which includes complex dedicated hosting and custom hosting.

Dedicated servers belong to a single company and contain only its content.

One of the main bene�ts of shared web hosting is the price which can be one-tenth that of the

dedicated platforms. Performance and security are the primary issues for shared web hosting.

Shared web hosting forces companies to contend for server resources and LAN connections.

Providing some performance guarantees will make shared web hosting a much more attractive

solution.

Another interesting angle of web hosting is the proportion and the amount of servers used to

support it.

For example, Digex Inc. (its market share is estimated by IDC to 2.9%) provides dedicated

servers exclusively. Digex has a large Sun server web farm that supports Unix-based Web

hosting, and it owns and operates the world's largest dedicated Web site management facility

for Windows NT, with more than 500 Windows NT servers. Overall, Digex manages 900

dedicated servers for 650 customers.

3

We can speculate that with predicted growth for Web hosting services (8 times in next 3 years),

the di�culty in management of thousands of dedicated servers might stimulate a larger growth

of shared web hosting, especially if the performance and security issues are resolved.

A cluster (farm) of servers is used to increase the capacity and compute power of the solution.1

Ideally, a cluster (farm) of N web servers should be N times more powerful than one web server.

However, to create a scalable solution one has to overcome a number of problems in a design:

content management and load balancing.

Web server performance greatly depends on e�cient RAM usage. A web server works faster

when it pools pages from a cache in RAM. Moreover, its throughput is much higher too.

We've measured web server throughput when it supplied �les from the RAM (i.e. the �les

were already downloaded from disk and resided in the �le bu�er cache), comparing it against

the web server throughput when it supplied �les from the disk. Di�erence in throughput was

more than 10 times.

One of the typical remedies to improve the web server performance is to increase RAM size

and to con�gure a bigger �le bu�er cache. The signi�cance of e�cient RAM usage is di�cult

to underestimate.2

Load balancing (of either kind) for a cluster of web servers pursues the goal to equally dis-

tribute the load across the nodes. This solution interferes with another goal of e�cient RAM

usage for the cluster. The popular �les tend to occupy RAM space in all the nodes. This

redundant replication of \hot" content through the RAM of all the nodes leaves much less

available RAM space for the rest of the content, leading to a worse overall system perfor-

mance. Under such an approach, a cluster having N times bigger RAM (which is a combined

RAM of N nodes) might e�ectively have almost the same RAM as one node, because of the

replicated popular content through the RAMs in the cluster.

An orthogonal approach is to partition the content and in such a way to use RAM space more

e�ciently. However, static partitioning will inevitably lead to an ine�cient, suboptimal and

inexible solution, since the changes in access rates as well as access patterns tend to vary

dramatically over time, and static partitioning does not accommodate for this.

The observations above have led to a design of the new \locality aware" balancing strate-

gies [LARD98] which aim to avoid the unnecessary document replication to improve the

overall performance of the system.

In this paper, we introduce a new scalable, \locality aware" solution FLEX for design and

management of an e�cient Web hosting service. The solution can be applied to a shared web

hosting service implemented on di�erent architecture platforms such as web server farms, web

1Cluster (farm) of computers is a common way of improving availability too. However, in this paper, we mostly

concentrate on scalability and performance issues.
2The case of our interest is when the overall �le set is greater than the RAM of one node. If the �le set completely

�ts to the RAM, any of existing load balancing strategies provides a good solution.

4

server clusters or multi-computer systems [HP-MCS]. FLEX can be easily implemented on

top of the current infrastructure used by Web hosting service providers.

This paper is the second part of the work started in [Ch99]. In [Ch99], we analyzed the

Web hosting market and its major segments, distinguished the main set of parameters which

characterize the di�erent web sites, outlined the FLEX solution idea and provided preliminary

performance analysis of FLEX.

In this paper, we provide a more detailed survey and analysis of existing load balancing strate-

gies and products. The FLEX solution and its \core" part { the load and content balancing

algorithm ex-alpha { are described and analyzed in depth. We outline the synthetic trace

generator, which has been used to generate a variety of di�erent workload types to analyze

the performance of FLEX. For generated traces, FLEX outperforms the current solutions 2-5

times.

ACNOWLEDGMENTS: The author would like to thank Denny Georg for motivation,

sharing the ideas, encouragement and active support during all the stages of this work.

2 Shared Web Hosting: Typical Hardware Solutions

Web hosting is an infrastructure service that allows to design, integrate, operate and maintain

all infrastructure components required to run web-based applications. It includes server farms,

network access, data staging tools and security �rewalls. Some business require an environ-

ment supporting business critical processes, which must o�er 24x7 availability, enterprise-wide

scalability, worldwide coverage and trusted security. Many other businesses have simpler re-

quirements, and are operating web environments that do not have the same critical require-

ments.

Web server farms and clusters are used in a Web hosting infrastructure as a way to create

scalable and highly available solutions.

.........

......

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

Web Server Farm

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

Web
Server

Web
Server

Web
Server

Web
Server

Replicated Disk Content

Figure 1: Web Server Farm with Replicated Disk Content.

5

One popular solution is a farm of web servers with replicated disk content shown in Figure 1.

This architecture has certain drawbacks:

� replicated disks are expensive, and

� replicated content requires content synchronization, i.e. whenever some changes to con-

tent data are introduced { they have to be propagated to all of the nodes.

Another popular solution is a clustered architecture, which consists of a group of nodes con-

nected by a fast interconnection network, such as a switch. In a at architecture, each node

in a cluster has a local disk array attached to it.

As shown in Figure 2, the nodes in a cluster are divided into two logical types: front end

(delivery, HTTP servers) and back end (storage, disks) nodes.

.........

......

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

Shared File System

Web Server Cluster (Flat Architecture)

���
���
���

���
���
���

���
���
���

���
���
���

High Speed Interconnect

���
���
���

���
���
���

Web
Server

Web
Server

Web
Server

Web
Server

Figure 2: Web Server Cluster (Flat Architecture).

The (logical) front-end node gets the data from the back-end nodes using a shared �le system.

In a at architecture, each physical node can serve as both the logical front-end and back-end,

all nodes are identical, providing both delivery and storage functionality.

In a two-tiered architecture, shown in Figure 3, the logical front-end back-end nodes are

mapped to di�erent physical nodes of the cluster and are distinct. It assumes some under-

lying software layer (e.g., virtual shared disk) which makes the interconnection architecture

6

transparent to the The NSCA prototype of the scalable HTTP server based on two-tier ar-

chitecture is described and studied in [NSCA94, NSCA95, NSCA96].

Back-End
 Nodes

 Nodes

.........

Front-End

����
����
����

����
����
����

����
����
����

����
����
����

���
���
���

���
���
���

���
���
���

���
���
���

 Web

High Speed Interconnect

���
���
���

���
���
���

���
���
���

���
���
���Disks

Server
 Web

Server
 Web

Server
 Web

Server

Virtual Shared Disk
 Software Layer

Virtual Shared Disk
 Software Layer

���
���
���

���
���
���

Web Server Cluster (Two-Tier Architecture)

���
���
���

���
���
���

Figure 3: Web Server Cluster (Two Tier Server Architecture).

In all the solutions, each web server has the access to the whole web content. Therefore, any

server can satisfy any client request.

What are the problems a service provider faces when trying to design a scalable and cost

e�cient solution using web server farms? One of the main problems in web server cluster

(farm)1 management is content management and load balancing.

3 Load Balancing Products and Solutions

The di�erent products introduced on a market for load balancing can be partitioned in two

major groups:

� DNS Based Approaches;

� IP/TCP/HTTP Redirection Based Approaches;

{ hardware load-balancers;

{ software load-balancers.

1We often use the terms of web server cluster and web server farm interchangeably, because the problems as well as

the solutions are often very similar. Only in those cases when it matters, it is clearly speci�ed.

7

3.1 DNS Based Approaches

Software load balancing on a cluster is a job traditionally assigned to a Domain Name System

(DNS) server. Round-Robin DNS [RRDNS95] is built into the newer version of DNS.

Round-Robin DNS distribute the access among the nodes in the cluster: for a name resolution

it returns the IP address list (for example, list of nodes in a cluster which can serve this content,

see Figure 4), placing the di�erent address �rst in the list for each successive requests. Ideally,

the di�erent clients are mapped to di�erent server nodes in a cluster.

......

.........���
���
���
���

���
���
���
���

Shared File System

Subdomain
High Speed InterconnectCluster

Cluster

Web
Server

Web
Server

Web
Server

���
���
���
���

Web
Server

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Client

RR-DNS

DNS Gateway

Web Server

Figure 4: Web Server Cluster Balanced with Round-Robin DNS.

In most of the cases, Round-Robin DNS is widely used: it is easy to set up, it does provide

reasonable load balancing and it is available as part of DNS which is already in use, i.e. there

is no additional cost.

The Round-Robin schema has been critisized that it simply posts packets to the next server

on the chain { without verifying whether it is already overloaded (partially, this problem

occurs due to unequal capacity of servers). The second problem, is that if web server becomes

unavailable, the DNS still keeps sending the requests to this server.

There are two products on a market that attempt to solve these problems: Cisco Dis-

8

tributedDirector and HP Network Connection Policy Manager.

Cisco DistributedDirector (DD) consists of DNS server software running on a Cisco 2500

or 4700 router hardware with some enhancements. In addition, a Cisco proprietary "DRP

Protocol" is active on routers that attach the distributed web server farm to the rest of the

network. A new subdomain is created for the web cluster. When a web request has to be

routed to a web cluster, DD queries the DRP agents running on each of the routers for a

number of metrics, such as distance from that router to the client, administrative weight of

the server, server availability, etc. On the basis of the above metrics (one or more can be

administratively con�gured) the DD selects the best server, and returns that IP address to

the client.

HP Network Connection Policy Manager (NCPM)may be also used for load balancing

on web cluster (although it was not explicitly designed for this purpose). NCPM is a software

add-on that is co-resident with the BIND DNS server running on HP-UX. In addition, a

host agent must be running on each web server. The host agent periodically (period is user

con�gurable) sends a status message to the NCPM Manager with values for a few metrics

such as:

� CPU Utilization

� Free memory

� Free swap space

� Number of TCP connections

� Number of running processes

� one user-de�nable metric.

At most 2 metrics can be used to select possible candidates in a cluster, and one metric is

used to sort selected servers in order from best to worst. This list is then returned to the

client, just as in simple Round Robin DNS.

The user de�ned metric can be any script written by the user, as long as it returns a numeric

value that can be processed by NCPM.

3.2 IP/TCP/HTTP Redirection Based Approaches

The market now o�ers several hardware/software load-balancer solutions that can distribute

incoming stream of requests among a group of Web servers.

One group of load balancers are often called as load-balancing servers: they intelligently

distribute incoming requests across the multiple web servers. These products can decide where

to send incoming request, taking into account the processing capacity of attached servers,

9

monitoring the responses in real time and shifting the load onto servers that can best handle

the tra�c.

There are at least nine representatives of load-balancing servers:

� six are standalone units (hardware load balancers);

� three are software packages that can be loaded onto network servers.

Four of the six hardware load balancers on the market are built around Intel pentium proces-

sors:

� LocalDirector from Cisco Systems [Cisco],

� Fox Box from Flying Fox [FlyingFox],

� BigIP from F5 Labs [F5Labs], and

� Load Manager 1000 from Hydraweb Technologies Inc. [HydraWEB].

Another two load balancers employ a RISC chip:

� Web Server Director from RND Networks Inc. [RND] and

� ACEdirector from Alteon [Alteon].

All these boxes except Cisco's and RND's run under Unix. Cisco's LocalDirector runs a deriva-

tive of the vendor's IOS software; RND's Web Server Director also runs under a proprietary

program.

Three software load-balancing servers also are available:

� ClusterCATS from Bright Tiger Technologies [BrightTiger],

� SecureWay Network Dispatcher from IBM [IBM-SWND], and

� Central Dispatch from Resonate Inc [Resonate].

These products are loaded onto Unix or Windows NT servers.

Hardware and software load balancers can perform double duty. Load-balancing boxes are

basically IP routers and can o�oad their corporate counterparts. Software balancers also can

function as Web servers.

10

Switch
LAN

Firewall

Router

Request

Response

Internet

Web
Servers

Hardware
Load-Balancing
Server

Web

Browser1
Web

Browser2

TCP/IP

Figure 5: Web Server Farm with Hardware Load-Balancing Server.

Load-balancing servers are typically positioned between a router (connected to the Internet)

and a LAN switch which fans tra�c to the Web servers. Typical con�guration is shown in

Figure 5.

In essence, they intercept incoming web requests and determine which web server should

get each one. Making that decision is the job of the proprietary algorithms implemented in

these products. This code takes into account the number of servers available, the resources

(CPU speed and memory) of each, and how many active TCP sessions are being serviced.

The algorithms also monitor how e�ciently each web server is processing requests by time-

stamping a packet and seeing how long it takes to reach the server and be returned. In theory,

faster servers are sent more requests than their slower counterparts. The balancing methods

across di�erent load-balancing servers vary, but in general, the idea is to forward the request

to the least loaded server in a cluster.

Load-balancing server acts as a fast regulating valve between the Internet and the pool of

servers. The load balancer uses a virtual IP address to communicate with the router, masking

the IP addresses of the individual servers. Only the virtual address is advertised to the

Internet community, so the load balancer also acts as a safety net.

The IP addresses of the individual servers are never sent back to the Web browser. If they

11

were, the browser would try to establish a session with a speci�c Web server, rather than

with the load-balancing server. This would defeat the entire purpose of deploying a load-

balancing server to distribute requests. Both inbound requests and outbound responses must

pass through the balancing server.

The software load balancers take a di�erent tack, handing o� the TCP session once a

request has been passed along to a particular server. In this case, the server responds directly

to the browser (see Figure 6). Vendors claim that this improves performance: responses don't

have to be rerouted through the balancing server, and there's no additional delay while an

internal IP address of the server is retranslated into an advertised IP address of the load

balancers.

Switch
LAN

RouterFirewall

Internet

Request

Response

Response
bypasses
software
load-balancing
server

Load-Balancing
Software
Running on a Server

Web
Servers

Web

TCP/IP

Browser1
Web

Browser2

Figure 6: Web Server Farm with Load-Balancing Software Running on a Server.

Actually, that translation is handled by the Web server itself. Software load balancers are

sold with agents that must be deployed on the Web server. It's up to the agent to put the

right IP address on a packet before it's shipped back to a browser. If a browser makes another

request, however, that's shunted through the load-balancing server.

Hardware switches mentioned above are expensive (Cisco Local Director cost around $32,000).

They might signi�cantly increase a solution cost. All tra�c to the content is directed through

the switch. If only one switch is used then it introduces a single point of failure. Minimal

con�guration of two switches increases the solution cost even further. Clearly, scalability

12

might be a problem, since a switch could become a bottleneck. In fact, similar concerns are

applied to software load balancers as well.

More information on load balancing products and solutions can be found in [Bruno97,

Roberts98].

To complete the survey, the latest, di�erent approach which vendors of network devices are

undertaken, is worth mentioning. Now some vendors of network devices propose to delegate

load balancing to linchpins like switches and �rewalls. The advantages seem hard to ignore.

For one thing, it saves money. For another, it brings better scalability and performance: bal-

ancing is performed in speedy hardware instead of slow software, and with functions combined

the number of network devices through which tra�c passes is reduced.

In fact, of the six vendors now entering new territory, switch makers represent the majority.

Alteon Networks Inc. (San Jose, Calif.), Arrowpoint Communications Inc. (Westford, Mass.),

Foundry Networks Inc. (Sunnyvale, Calif.), and Holontech Corp. (San Jose) all are building

load balancing into their LAN switches. Check Point Software Technologies Inc. (Redwood

City, Calif.), sells an optional software module that lets its Firewall-1 �rewall distribute loads

across servers. Finally, there's Allot Communications Inc. (Los Gatos, Calif.), which has built

load balancing into its AC200 and AC300 tra�c tuner products.

Most of these devices perform NAT (network address translation), so that a single virtual

IP address can be used by the switch, �rewall, or tra�c tuner to represent multiple servers.

The exception is Holontech's Hyperow SP800, which relies on clustering technology from the

operating system vendors to allow a server farm to share a virtual IP address.

3.3 Locality Aware Balancing Strategies

Load balancing for a cluster (farm) of web servers pursues the goal to equally distribute the

load across the nodes. This solution may prevent the e�cient usage of RAM in the cluster

(farm).1 There is a redundant replication of \hot", popular content through the RAM of all

the nodes which leaves much less of available RAM space for the rest of the content. This

may signi�cantly decrease overall system performance. This observation have led to a design

of the new \locality aware" balancing strategies [LARD98]. The elements of the \content

aware" strategies can be found in last products of Alteon Networks Inc. (San Jose, Calif.)

and Arrowpoint Communications Inc. (Westford, Mass.

A new locality-aware request distribution strategy (LARD) is proposed for cluster-based net-

work servers in [LARD98]. The cluster nodes are partitioned into two sets: front ends and

back ends. Front ends act as the smart routers or switches: their functionality is similar to

load-balancing software servers described above. Front end nodes implement LARD to route

the incoming requests to the appropriate node in a cluster. LARD takes into account both

a document locality and the current load. Authors show that on workloads with working

sets that do not �t in a single server nodes RAM, the proposed strategy allows to improve

1We consider only workloads with working set that does not �t in a single server nodes RAM.

13

throughput by a factor of two to four for 16 nodes cluster.

In this paper, we introduce a new scalable solution FLEX for design and management of an

e�cient Web hosting service. FLEX motivation is similar to the \locality aware" balancing

strategies discussed above: we would like to avoid the unnecessary document replication to

improve the overall performance of the system.

However, we achieve this goal via logical partition of the content on a di�erent granularity

level. Since the original goal is to design a scalable web hosting service, we have a number of

customers and their sites as a starting point. Each of these sites might have di�erent tra�c

patterns in terms of both the number and types of �les accessed and the average access rates.

By monitoring the tra�c to each site and analyzing the combined tra�c to a system in whole,

FLEX proposes a balanced partitioning of the customers (web sites) by the number of nodes

in the system.

Customers-to-Servers
Assignment

Customers-to-Servers
Log Collection Assignment

Customer’s Web Site

with correspondent

Log Analysis

AlgorithmTraffic Monitoring flex-alphaTraffic Analysis

Customer’s Web Site

DNS Server

Figure 7: FLEX Strategy: Logic Outline.

FLEX can be easily implemented on top of the current infrastructure used by Web hosting

service providers. The desirable routing can be done by submitting the correspondent con�g-

uration �les to the DNS server, since each hosted web site has a unique domain name. The

DNS server is going to route the incoming requests to a correspondent node in the system

(accordingly to partition provided by FLEX). The logic of the FLEX strategy is shown in

Figure 7.

4 Virtual Servers and Multiple Domains

Although the resent survey revealed over 1 milion web servers on the Internet, the number

of web site exceeds this number several times. The illusion of more web sites existing than

actual web servers is created through the use of virtual servers (hosts).

Web hosting service is based on this technique. Web hosting service uses the possibility to

create a set of virtual servers on the same server. There are di�erent alternatives how it can

be done.

Unix web servers (Netscape and Apache) have the most exibility to address the web hosting

problem. Multiple host (domain) names can be easily assigned to a single IP address. It

allows to create an illusion that each host has its own web server, when in reality multiple

14

\logical" hosts share one physical host.

There is also a possibility to create a separate IP address per each host. It could be used

as well in Web hosting solution when the number of hosted sites is rather limited. It is less

scalable when a web hosting service is dealing with a large number of relatively small sites.

For a while, in NT world, the second alternative was the only alternative. WWW Publishing

Service can be con�gured to answer requests for more than one single domain name. To

accomplish this, one should requests the IP addresses for the primary server and for each

additional virtual server. Finally, these additional IP addresses have to be included in TCP/IP

protocol con�guration and DNS (or WINS) con�guration �les in order to resolve the IP

addresses to the correspondent domain names. As noticed above, this solution is a good

solution when the number of hosted sites is rather limited. It does not scale.

Last version of NT web server (IIS-4) introduces a new feature which allows to create multiple

host names which can be assigned to the same IP address. This feature makes NT web server

world to look similar to the Unix one.

One way to implement a Web Hosting Service will be to use a web server farm (or web server

cluster) which has access to the whole content (whether it is achieved with replicated content or

shared distributed �le system). For example, there are total of 100 di�erent sites (customers)

which would like to publish their information on WWW. Each physical web server creates

a virtual server per customer site, and announces prescribed IP addresses to correspondent

domain names via DNS server con�guration �les.

For load balancing in such a cluster, Round Robin DNS is a typical solution. The disadvan-

tages of such an approach were discussed in Subsection 3.3.

The other simple way to approach the load balancing in such a cluster, is to statically partition

and assign the customers to the servers. For example, 100 customers could be partitioned

as 10 customers per server in the con�guration of 10 web servers. However, any such static

partition can not take into account changing tra�c patterns as well as nature of changes in

the content of the sites. So, it can not adjust the partition to accommodate and provision for

the tra�c and sites dynamics.

Next Section 5 proposes a \logical partition" and assignment of customers to servers in a

special way via the DNS server as a \router".

5 New Scalable Web Hosting Solution: FLEX

A new scalable solution, called FLEX, for shared Web Hosting consists in the following. By

monitoring the access patterns and access rates to the customers content, the overall content

can be logically partitioned in a number of \equally balanced" groups by the number of

cluster (farm) nodes. Each customer group is serviced by some prescribed node in a cluster

(farm).

15

For example, there is a total of C customers hosted on a cluster (farm) of N web servers. For

each customer c, a \customer pro�le" CPc is built. A customer pro�le CPc consists of two

following basic characteristics:

� ARc - the access rates to a customer's content, i.e. bytes/sec requested of this customer

content.

� WSc - the total size of the most often requested �les, so-called \working set".

The next step is to partition all the customers in N \equally balanced" groups: C1; :::; CN in

such a way, that cumulative access rates and cumulative \working sets" in each of those Ci

groups are approximately the same. We designed a special algorithm, called ex-alpha, which

does it. The next Section 6 describes the implementation details of ex-alpha.

The �nal step is to prescribe a web server Ni from a cluster (farm) to each group Ci.

REMARK1: The variation of the algorithm can be used for additional load (rate) balancing.

For example, one site has a high bursty tra�c. To smooth the high access rates this site, the

site can be assigned to be served by two or more servers (depending on the balancing goal

and a threshold for desirable rate).

REMARK2: This algorithm can be used to provide a desirable degree of high availability,

additionally to load balancing. For example, the algorithm can prescribe minimum 2 (or 3, if

desired) nodes per site to increase the site availability in case of the nodes failure. Note, that

the load balancing is easier in such con�guration since the rate per customer site decreases

correspondingly to the number of nodes prescribed.

The FLEX solution is supported by providing the correspondent information to a DNS server

via con�guration �les. A resolution of the customer domain name is going to be a correspon-

dent IP address on the prescribed node (nodes) in the cluster (farm). This solution is exible

and easy to manage. Tuning can be done on a daily, weekly or even hourly (if necessary)

basis. Once the server logs analysis shows enough changes in the average tra�c rates and

patterns and �nds a new, better partitioning of the customers for this cluster (farm), then

new DNS con�guration �les are generated. Once a DNS server has updated its con�guration

tables,1 new requests are routed accordingly to the new con�guration �les, which leads to

more e�cient tra�c balancing on a cluster (farm).

Such a self-monitoring solution allows to observe changing users' access behaviour and to

predict future scaling trends, and plan for it. This solution could also be used to provision

some special advertisement or promotion campaigns when one could expect very high tra�c

1The entries from the old con�guration tables can be cached by some servers and used for request routing without

going to DNS server. However, the cached entries are valid for a limited time only dictated by TTL (time to live). Once

TTL is expired, the DNS server is requested for updated information. During the TTL interval, both types of routing:

old and a new one, can exist. This does not lead to any problems since any server has the access to the whole content

and can satisfy any request.

16

rates for a certain content during some period of time. In those cases, for example, \hot"

content can be prescribed to access via all the nodes in a cluster (farm).

6 Load Balancing Algorithm ex-alpha

We designed a special algorithm, called ex-alpha, which partitions the overall content in a

number of \equally balanced" groups by the number of cluster (farm) nodes. Each group of

customers is serviced by some prescribed node in a cluster (farm).

This Section describes the implementation details of ex-alpha. We use the following nota-

tions:

� NumCustomers { a number of customers hosted on a web cluster (farm).

� NumServers { a number of nodes (servers) in a web cluster (farm).

� CustomerWS[i] { an array which provides the total size of the most frequently requested

�les of the i-th customer content, so-called \a working set" for the i-th customer.

Without a loss of generality, we assume that the customers are ordered by the working

set, i.e. the array CustomerWS[i] is ordered.

� CustomerRate[i] { an array which provides the access rates to the i-th customer content,

i.e. bytes/sec requested of this the i-th customer content.

Our goal is to assign the customers to the servers in such a way that balances the size of the

working set and the access rates for each server. We will call such an assignment as partition.

At �rst, we compute the ideal balance Even we aim to achieve per server with respect to

balancing the customers working set across the servers.

WorkingSetTotal =
NumCustomersX

i=1

CustomerWS[i]

Even =
WorkingSetTotal

NumServers

Second, we are going to normalize the access rates. It is done in two steps. We compute the

sum of all customers rates RatesTotal (in bytes/sec):

RatesTotal =
NumCustomersX

i=1

CustomerRate[i]

The RatesTotal represents 100% � NumServers. After that, the normalized access rate (in

%) for each i-th customer is computed in the following way:

17

CustomerRate[i] =
100% �NumServers � CustomerRate[i]

RatesTotal

Now, the overall goal can be rephrased in the following way: we aim to partition all the

customers in NumServers \equally balanced" groups: C1; :::; CN in such a way, that

� cumulative \working sets" in each of those Ci groups is close to Even
1 and

� cumulative access rates in each of those Ci groups are around 100%.

The pseudo-code2 of the core fragment of the algorithm ex-alpha is shown below in Figure 8.

In this pseudo-code, we use additional notations:

� CustomersLeftList { the ordered list of customers which are not yet assigned to the

servers. In the beginning, the CustomersLeftList is the same as the original ordered list

of customers CustomersList;

� ServerAssignedCustomers[i] { the list of customers which are assigned to the i-th server;

� ServerWS[i] { the cumulative \working set" of the customers currently assigned to the

i-th server;

� ServerRate[i] { the cumulative \access rate" of the customers currently assigned to the

i-th server.

� abs dif(x; y) { the absolute di�erence between x and y, i.e. (x� y) or (y�x), whatever

is positive.

The assignment of the customers to all the servers except the last one is done accordingly to

the pseudo-code in Figure 8. Fragment of the algorithm shown in Figure 8 above is applied

in a cycle to the the �rst NumServers� 1 servers.

All the customers which are left in CustomersLeftList are assigned to the last server.

This completes one iteration of the algorithm, resulting in the assignment of all the customers

to the servers in balanced groups. Typically, this algorithm generates a very good balancing

with respect to the cumulative \working sets" of the customers assigned to the servers, because

of the construction.

The second goal is to balance the cumulative access rates per server.

1Working sets can be normalized too. In Appendix, the Examples 3,4 are derived from the synthetic traces and have

normalized working sets. For the normalized working sets, Even=100.
2We only describe the basic case. In exceptional situations such as when the size of working sets of some sites are

larger than Even, and balanced solution does not exist, the algorithm provides correspondent warnings and produces

the \best e�ort" solution.

18

/*

* we assign customers to the i-th server from the CustomersLeftList

* using random function until the addition of the chosen customer

* content does not exceed the ideal content limit per server Even.

*/

customer = random(CustomersLeftList);

if (ServerWS[i] + CustomerWS[customer]) <= Even) {

append(ServerAssignedCustomers[i], customer);

remove(CustomersLeftList, customer);

ServerWS[i] = ServerWS[i] + CustomerWS[customer];

ServerRate[i] = ServerRate[i] + CustomerRate[customer];

}

else {

/*

* if the addition of the chosen customer content exceeds

* the ideal content limit per server Even

* we try to find such a last_customer from the CustomersLeftList

* which results in a minimum deviation from the SpaceLeft

* on this server.

*/

SpaceLeft = Even - ServerWS[i];

find last_customer with min(abs_dif(SpaceLeft - CustomersWS[last_customer]));

append(ServerAssignedCustomers[i], last_customer);

remove(CustomersLeftList, last_customer);

ServerWS[i] = ServerWS[i] + CustomersWS[last_customer];

ServerRate[i] = ServerRate[i] + CustomersRate[last_customer];

}

if (ServerWS[i]) > Even) {

/* small optimization at the end: returning the customers with smallest

* working sets back to the CustomersLeftList until the deviation

* between the server working set ServerWS[i] and the ideal content

* per server Even is minimal.

*/

if (abs_dif(Even - (ServerWS[i] - CustomersWS[redundant_customer])) <

abs_dif(Even - (ServerWS[i])) {

append(CustomersLeftList, redundant_customer);

remove(ServerAssignedCustomers[i], redundant_customer);

ServerWS[i] = ServerWS[i] + CustomersWS[redundant_customer];

ServerRate[i] = ServerRate[i] + CustomersRate[redundant_customer];

}

Figure 8: Pseudo-code of the core fragment of the algorithm ex-alpha.

19

For this purpose, for each partition P generated by the algorithm, the rate deviation of P is

computed:

RateDeviation(P) =
NumServersX

i=1

abs dif(100; ServerRate[i])

We de�ne partition P1 is better rate-balanced than partition P2 i�

RateDeviation(P1) < RateDeviation(P2):

The algorithm is programmed to generate partition accordingly to the rules shown above. The

number of iterations is prescribed by the input parameter Times. On each step, algorithm

keeps a generated partition only if it is better rate-balanced than the previously best found

partition.

Typically, the algorithm generates a very good balancing partition with respect to both:

cumulative \working sets" and cumulative access rates of the customers assigned to the servers

in 10,000 - 100,000 iterations. Next Section gives few examples of the algorithm results and

the algorithm performance.

7 Algorithm ex-alpha: Analysis, Speed and Qualitative Re-

sults

In Appendix, we show few examples of di�erent customers sets and the best partition gener-

ated by the ex-alpha algorithm on di�erent iterations.

Here, we give only the summary of the algorithm results and the algorithm speed.

Speed of the algorithm linearly depends on the number of iterations the algorithm is prescribed

to perform.

Speed of each iteration, in its turn, depends on the number of customers and servers in the

input set. The higher the number of customers and servers - the longer it takes to �nish the

iteration.

But in general { the algorithm is fast: for a set of 50 customers to be balanced on 10 servers

(see the Example 1 in Appendix A.1) the algorithm spent:

� to accomplish 10,000 iterations { 5.5 sec;

� to accomplish 100,000 iterations { 54.7 sec;

� to accomplish 1,000,000 iterations { 551.1 sec;

20

The new best partitions were found during the following iterations shown in Figure 9. We

show the percentage of deviation of the generated partition from the optimal one. Here and

further, by the optimal partition we mean a partition with Even size for \working set" per

server, and 100% (normalized) access rates per server. Clearly, for some customers sets, this

\optimal" partition may be not achievable. However, it is a good metric to regard to when

evaluating the algorithm results.

Iteration WS_Deviation(%) Rate_Deviation(%)

0 1.39394 14.4923

1 0.40404 12.1055

5 0.484848 9.50175

14 0.323232 9.2801

24 0.343434 8.86048

48 0.808081 8.03578

83 0.464646 8.02679

103 0.585859 5.50325

2,168 0.707071 5.24268

2,728 0.808081 5.04131

5,774 0.484848 4.78754

5,937 0.525253 4.19492

33,608 0.484848 3.61023

80,664 0.484848 3.56745

145,640 0.989899 3.55944

165,040 0.444444 2.43375

236,698 0.444444 2.03177

Figure 9: Summary Results for a Set of 50 Customers Balanced Across 10 Servers.

Figure 9 shows that during the �rst 100,000 iterations the algorithm has found several better

rate-balanced partitions. After that, the next improvements took signi�cantly longer time.

The quality of the results produced by the algorithm during the �rst 100,000 iterations is

very high: it insigni�cantly deviates from the optimal partition.

Now, we consider the algorithm results for a set of 100 customers to be balanced on 10 servers

(we used a similar distribution as for 50 customers in the previous example).

For a set of 100 customers to be balanced on 10 servers(see the Example 2 in Appendix A.2)

the algorithm spent:

� to accomplish 10,000 iterations { 13.6 sec;

� to accomplish 100,000 iterations { 135.7 sec;

21

� to accomplish 1,000,000 iterations { 1356.4 sec;

The new best partitions were found during the following iterations shown in Figure 10.

Iteration WS_Deviation(%) Rate_Deviation(%)

0 0.184894 8.97584

2 0.114084 8.68343

3 0.228167 8.16569

7 0.236035 5.40416

49 0.267507 5.32785

92 0.0944142 4.792

110 0.0983484 4.77531

663 0.133753 4.48847

858 0.204564 4.04967

1,272 0.153423 3.70506

2,752 0.0747447 3.52089

3,308 0.0983484 3.29225

5,462 0.165225 3.00555

8,020 0.184894 2.96249

9,768 0.29111 2.85959

21,771 0.118018 2.03705

148,067 0.0865465 1.74509

Figure 10: Summary Results for a Set of 100 Customers Balanced Across 10 Servers.

First of all, the results are better than for the set of 50 customers. The number of servers

in the example did not change. Having a bigger set of customers, allows richer combination

choices, and, typically, better qualitative results. The other interesting observation is that the

best results were received on the 148,067 iteration, and no improvement was found during the

next 851,933 iterations.

8 Synthetic Trace Generator

We developed a synthetic trace generator to evaluate the performance and e�ciency of pro-

posed load balancing strategy FLEX.

There is a set of basic parameters which de�nes the tra�c pattern, �le distribution, and \web

site" pro�les in generated synthetic trace:

1. NumCustomers - number of web sites or (in other words) customers sharing the cluster;

22

2. NumWebServers - number of web servers in the targeted con�guration. This parameter

is used to de�ne a number of directories used in the trace. We use a simple scaling

rule: trace targeted to run on N nodes con�guration has N times greater number of

directories (and �les) than single node con�guration;

3. OPS - a single node capacity similar to SpecWeb96 benchmark. This parameter is only

used to de�ne the number of directories and �le mix on a single server. Accordingly

to SpecWeb96, each directory has 36 �les from 4 classes: 0 class �les are 100bytes-

900bytes (with access rate of 35%), 1 class �les are 1Kbytes-9Kbytes (with access rate

of 50%), 2 class �les are 10Kbytes-90Kbytes (with access rate of 14%), 3 class �les are

100Kbytes-900Kbytes (with access rate of 1%).

4. MaxCustSize - a desirable maximum size of normalized working set per web site (per

customer).

WorkingSetTotal =
NumCustomersX

i=1

CustomerWS[i]

The WorkingSetTotal represents 100% �NumServers.

The normalized working set NormCustomerWS[i] is computed in the following way:

NormCustomerWS[i] =
100% �NumServers � CustomerWS[i]

WorkingSetTotal

The MaxCustSize is used as an additional constraint:

NormCustomerWS[i] �MaxCustSize:

5. RateBurstiness - a range for a number of consequent requests to the same customer

web site. For each customer web site, we generate its RateBurstiness as CustRate[i] =

random(1; RateBurstiness). In the trace, the requests to the particular customer web

site, say i, are represented with a length CustRate[i] requests sequence to di�erent �les

in customer i content.

6. TraceLength - a length of the trace.

REMARK: Items 2 and 3 can be speci�ed di�erently to de�ne di�erent �le distributionmixture

(currently, it is SpecWeb96 like) and di�erent scaling rules.

9 Simulation Results with Synthetic Traces

In order to estimate the performance bene�ts of a new solution as well as to illustrate the

pitfalls of the current solutions, the high level simulation model of web cluster (farm) has

been built using C++Sim [Schwetman95].

Synthetic traces allow to create di�erent tra�c patterns, di�erent �les distributions, and

di�erent \web site" pro�les. This variety is very useful to evaluate the designed FLEX strategy

23

over wide variety of possible workloads. Evaluation of the strategy on a base of the real web

sites is a next step in our research. But for now, we \probed" our strategy over di�erent

synthetic traces.

The �rst trace was generated for 100 customers and 8 web servers, each with capacity of

1000 OPS, with MaxCustSize = 30%, and RateBurstiness= 30. The length of the trace was

20,000,000 requests.

The \customer pro�le" analysis and the results of FLEX balancing algorithm for this trace

are shown in Appendix A.3.

The simulation results for this trace are shown in Figure 11.

 100MB 200MB 300MB 400MB 500MB 600MB 700MB 800MB

Server RAM Size

0

200

400

600

800

1000

Se
rv

er
 T

hr
ou

gh
pu

t
(O

ps
/s

ec
)

 RR
FLEX

Figure 11: Server Throughput in the Cluster (Farm) of 8 Nodes under Round-Robin and FLEX

Balancing Solutions.

Load balancing strategy FLEX outperforms the classic round-robin strategy by 2-3 times

depending on a RAM size of the server.

The second trace was generated for 100 customers and 16 web servers, each with capacity of

1000 OPS, with MaxCustSize = 30%, and RateBurstiness= 30. The length of the trace was

40,000,000 requests.

The \customer pro�le" analysis and the results of FLEX balancing algorithm for this trace

are shown in Appendix A.4.

24

The simulation results for this trace are shown in Figure 12.

 100MB 200MB 300MB 400MB 500MB 600MB 700MB 800MB

Server RAM Size

0

200

400

600

800

1000
Se

rv
er

 T
hr

ou
gh

pu
t

(O
ps

/s
ec

)

 RR
FLEX

Figure 12: Server Throughput in the Cluster (Farm) of 16 Nodes under Round-Robin and FLEX

Balancing Solutions.

Load balancing strategy FLEX outperforms the classic round-robin strategy by 2-5 times

depending on a RAM size of the server.

10 Conclusion and Future Research

In this paper, we analyzed several hardware/software load-balancing solutions on the market

which are used to distribute incoming stream of requests among a group of Web servers, and

demonstrated their potential scalability problems. We outlined a new solution FLEX which

provides a truly scalable performance.

A new solution FLEX (applied to a shared web hosting) acccomplishes a load-balancing task

in a di�erent way than the majority of tra�tional solution. It can me considered as a planning

and management tool for web hosting service.

It monitors and analyzes incoming requests over the period of time (analysis of web server

logs can be one way to do it), and generates a favorable assignment of web sites to nodes in

a cluster, and submits this information to a DNS server.

It allows to observe changing users' access behaviour, predict future scaling trends, and plan

25

for it.

A key requirement in order to achieve scalability of the web server is that of balancing the

load across the multiple front-end nodes and the back-end nodes. We are looking to extend

the designed strategy to the management of the back-end nodes (or disks) as well.

The interesting future work will be to extend the solution and the algorithm to work with

heterogenous nodes in a cluster, to take into account SLA (Service Level Agreement), and

some additional QoS requirements.

We are planing to design an e�cient hybrid router-DNS scheme which combines the logical

router and web server functionality: the FLEX-DNS solution is used to get the coarse grained

load balancing. Each web server node then acts as a router; if the load on the server is

low, then the request is handled by that server, otherwise the router forwards the request to

another node based on its load or global load balancing algorithm. This schema eliminates

the forwarding by the router unless the load on the web server requires it.

11 References

[Alteon] URL: http://www.alteon.com/products/acelerate-data.html

[BrightTiger] URL: http://www.brighttiger.com

[Bruno97] L. Bruno: Balancing the Load On Web Servers.

CMPnet, September 21, 1997. URL: http://www.data.com/roundups/balance.html

[Cisco] URL: http://www.cisco.com/warp/public/751/lodir/

[Ch99] L. Cherkasova: Scalable Web Hosting Service.

HP Laboratories Report No. HPL-1999-52, April, 1999.

[F5Labs] URL: http://www.f5labs.com/

[FlyingFox] URL: http://www.yingfox.com/

[HP-MCS] The HPL Multi-Computer Systems (MCS) Program.

URL: http://www.hpl.hp.com/research/itc/csl/x86/

[HydraWEB] URL: http://www.hydraweb.com/z2 index.html

[IBM-SWND] http://www.software.ibm.com/network/dispatcher/

[IDC98] Web Hosting and E-Commerce Service Providers. Analysts: P. Burstyn, P. Johnson.

International Data Corporation, Doc.No 16894, October 1998.

[LARD98] V.Pai, M.Aron, G.Banga, M.Svendsen, P.Drushel, W. Zwaenepoel, E.Nahum:

Locality-Aware Request Distribution in Cluster-Based Network Servers. In Proceedings of

the 8th International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS VIII), ACM SIGPLAN,1998, pp.205-216.

26

[MS97] S.Manley and M.Seltzer: Web Facts and Fantasy. Proceedings of USENIX Symposium

on Internet Technologies and Systems, 1997, pp.125-133.

[NSCA94] E. Katz, M. Butler, R.McGrath: A Scalable HTTP Server: The NSCA Prototype.

Computer Networks and ISDN Systems, v.27, pp.155-163, 1994.

[NSCA95] T. Kwan, R. McGrath, D.Reed: NSCA's World Wide Web Server: Design and

Performance. IEEE Computer, November 1995, pp.68-74.

[NSCA96] D. Dias, W. Kish, R. Mukherjee, R. Tewari: A Scalable and Highly Available Web

Server. Proceedings of COMPCON'96, Santa Clara, 1996, pp.85-92.

[Resonate] URL: http://www.resonate.com/products/

[RND] URL: http://www.rndnetworks.com/

[Roberts98] E. Roberts: Load Balancing: On a Di�erent Track. CMPnet, May 1998. URL:

http://www.data.com/roundups/load.html

[RRDNS95] T. Brisco: DNS Support for Load Balancing.

RFC 1794, Rutgers University, April 1995.

[Schwetman95] Schwetman, H. Object-oriented simulation modeling with C++/CSIM. In

Proceedings of 1995 Winter Simulation Conference, Washington, D.C., pp.529-533, 1995.

[SpecWeb96] The Workload for the SPECweb96 Benchmark.

URL http://www.specbench.org/osg/web96/workload.html

27

A APPENDIX

For readability and illustration reasons, in the following examples, we provide only the integer part of
the numbers.

A.1 Example 1: 50 Customers Balanced Across 10 Servers

Example 1 is based on the following 50 customer's web sites and their tra�c pro�les:

Customer WS Rate(Normalized)

1 1 13

2 7 12

3 9 0

4 10 6

5 10 27

6 10 35

7 12 6

8 13 23

9 14 10

10 17 11

11 17 11

12 17 15

13 19 37

14 21 33

15 21 18

16 22 31

17 23 38

18 24 23

19 25 8

20 26 12

21 29 15

22 32 29

23 36 20

24 37 25

25 47 14

26 47 0

27 57 10

28 60 23

29 63 34

30 64 10

31 73 35

32 74 28

33 74 34

34 76 18

35 79 30

36 80 9

37 82 11

38 82 28

39 83 32

40 85 32

41 85 7

42 86 16

43 87 2

44 87 34

45 88 15

46 90 30

47 93 4

48 93 8

49 94 20

50 94 33

28

We performed one million iteration in the ex-alpha algorithm to partition the customers in 10 balanced
groups. The best balanced partition was found on the iteration 236,698. The later iterations could
not improve this result.

Accordingly to this partition (the Table serves as an input to construct the correspondent DNS Tables),
the customers have to be assigned to the servers in the following way:

SERVER 0 CustNum 3 10 14 27 29 41

SERVER 1 CustNum 17 31 34 36

SERVER 2 CustNum 1 8 15 24 42 43

SERVER 3 CustNum 6 7 9 18 25 26 48

SERVER 4 CustNum 2 4 5 12 20 37 47

SERVER 5 CustNum 11 19 23 33 50

SERVER 6 CustNum 21 22 46 49

SERVER 7 CustNum 16 28 35 45

SERVER 8 CustNum 32 40 44

SERVER 9 CustNum 13 30 38 39

The partition, found by the ex-alpha algorithm, deviates from the \ideal" partition in the following
way:

SERVER 0 TOTAL_RATE 98 TOTAL_WS 252 Even 247

SERVER 1 TOTAL_RATE 101 TOTAL_WS 252 Even 247

SERVER 2 TOTAL_RATE 101 TOTAL_WS 245 Even 247

SERVER 3 TOTAL_RATE 99 TOTAL_WS 247 Even 247

SERVER 4 TOTAL_RATE 90 TOTAL_WS 245 Even 247

SERVER 5 TOTAL_RATE 109 TOTAL_WS 246 Even 247

SERVER 6 TOTAL_RATE 95 TOTAL_WS 245 Even 247

SERVER 7 TOTAL_RATE 100 TOTAL_WS 249 Even 247

SERVER 8 TOTAL_RATE 95 TOTAL_WS 246 Even 247

SERVER 9 TOTAL_RATE 108 TOTAL_WS 248 Even 247

The combinations of working sets per server constituted by the working sets of assigned customers are
the following:

SERVER 0 WS_Deviation 4 WS_Combination 9 17 21 57 63 85

SERVER 1 WS_Deviation 4 WS_Combination 23 73 76 80

SERVER 2 WS_Deviation -2 WS_Combination 1 13 21 37 86 87

SERVER 3 WS_Deviation 0 WS_Combination 10 12 14 24 47 47 93

SERVER 4 WS_Deviation -2 WS_Combination 7 10 10 17 26 82 93

SERVER 5 WS_Deviation -1 WS_Combination 17 25 36 74 94

SERVER 6 WS_Deviation -2 WS_Combination 29 32 90 94

SERVER 7 WS_Deviation 1 WS_Combination 22 60 79 88

SERVER 8 WS_Deviation -1 WS_Combination 74 85 87

SERVER 9 WS_Deviation 0 WS_Combination 19 64 82 83

The combinations of the access rates per server constituted by the access rates of assigned customers
are the following:

SERVER 0 RATE_Deviation -1 RatesCombination 0 11 33 10 34 7

SERVER 1 RATE_Deviation 1 RatesCombination 38 35 18 9

SERVER 2 RATE_Deviation 1 RatesCombination 13 23 18 25 16 2

SERVER 3 RATE_Deviation 0 RatesCombination 35 6 10 23 14 0 8

SERVER 4 RATE_Deviation -9 RatesCombination 12 6 27 15 12 11 4

SERVER 5 RATE_Deviation 9 RatesCombination 11 8 20 34 33

SERVER 6 RATE_Deviation -4 RatesCombination 15 29 30 20

SERVER 7 RATE_Deviation 0 RatesCombination 31 23 30 15

SERVER 8 RATE_Deviation -4 RatesCombination 28 32 34

SERVER 9 RATE_Deviation 8 RatesCombination 37 10 28 32

29

A.2 Example 2: 100 Customers Balanced Across 10 Servers

Example 2 is based on the following 100 customer's web sites and their tra�c pro�les:

Customer WS Rate(Normalized)

1 1 17

2 2 9

3 4 18

4 5 11

5 6 7

6 7 1

7 7 3

8 13 10

9 15 11

10 16 7

11 16 15

12 18 1

13 18 17

14 18 13

15 21 0

16 22 10

17 22 5

18 22 6

19 23 12

20 23 18

21 23 3

22 26 7

23 27 15

24 27 10

25 28 13

26 28 19

27 30 19

28 30 10

29 30 0

30 30 4

31 31 1

32 32 6

33 32 10

34 32 5

35 32 13

36 33 19

37 33 7

38 34 7

39 35 13

40 35 11

41 37 7

42 37 17

43 40 19

44 40 10

45 40 18

46 41 15

47 42 14

48 43 8

49 46 9

50 46 17

51 46 0

52 48 0

53 49 4

54 53 19

55 58 16

56 59 4

30

57 60 5

58 60 5

59 60 0

60 61 4

61 64 14

62 64 10

63 65 8

64 65 4

65 66 18

66 68 3

67 69 12

68 69 16

69 71 9

70 72 19

71 74 9

72 74 14

73 75 9

74 76 18

75 77 17

76 78 13

77 81 11

78 82 19

79 82 0

80 83 12

81 83 7

82 84 0

83 84 1

84 85 5

85 85 7

86 86 4

87 86 5

88 87 5

89 87 2

90 88 11

91 89 17

92 89 13

93 90 17

94 90 1

95 91 5

96 93 17

97 93 7

98 94 2

99 94 11

100 98 7

We performed one million iteration in the ex-alpha algorithm to partition the customers in 10 balanced
groups. The best balanced partition was found on the iteration 148,067. The later iterations could
not improve this result.

Accordingly to this partition (the Table serves as an input to construct the correspondent DNS Tables),
the customers have to be assigned to the servers in the following way:

SERVER 0 CustNum 12 14 20 21 27 29 38 43 56 58 87 88

SERVER 1 CustNum 8 11 13 19 33 59 76 85 90 100

SERVER 2 CustNum 9 23 24 30 40 45 77 78 79 94

SERVER 3 CustNum 1 25 31 32 39 48 57 60 62 68 83

SERVER 4 CustNum 16 26 61 66 67 72 92 99

SERVER 5 CustNum 4 15 17 18 35 54 55 64 69 71 89

SERVER 6 CustNum 7 10 41 63 65 70 74 82 86

SERVER 7 CustNum 3 36 37 44 49 51 52 81 84 93

SERVER 8 CustNum 5 34 46 47 50 73 80 95 97

SERVER 9 CustNum 2 6 22 28 42 53 75 91 96 98

31

The partition, found by the ex-alpha algorithm, deviates from the \ideal" partition in the following
way:

SERVER 0 TOTAL_RATE 102 TOTAL_WS 508 Even 508

SERVER 1 TOTAL_RATE 105 TOTAL_WS 511 Even 508

SERVER 2 TOTAL_RATE 105 TOTAL_WS 509 Even 508

SERVER 3 TOTAL_RATE 98 TOTAL_WS 508 Even 508

SERVER 4 TOTAL_RATE 100 TOTAL_WS 508 Even 508

SERVER 5 TOTAL_RATE 99 TOTAL_WS 510 Even 508

SERVER 6 TOTAL_RATE 88 TOTAL_WS 509 Even 508

SERVER 7 TOTAL_RATE 97 TOTAL_WS 508 Even 508

SERVER 8 TOTAL_RATE 95 TOTAL_WS 509 Even 508

SERVER 9 TOTAL_RATE 105 TOTAL_WS 504 Even 508

The combinations of the working sets per server constituted by the working sets of assigned customers
are the following:

SERVER 0 WS_Deviation 0 WS_Combination 18 18 23 23 30 30 34 40 59 60 86 87

SERVER 1 WS_Deviation 2 WS_Combination 13 16 18 23 32 60 78 85 88 98

SERVER 2 WS_Deviation 0 WS_Combination 15 27 27 30 35 40 81 82 82 90

SERVER 3 WS_Deviation 0 WS_Combination 1 28 31 32 35 43 60 61 64 69 84

SERVER 4 WS_Deviation 0 WS_Combination 22 28 64 68 69 74 89 94

SERVER 5 WS_Deviation 1 WS_Combination 5 21 22 22 32 53 58 65 71 74 87

SERVER 6 WS_Deviation 0 WS_Combination 7 16 37 65 66 72 76 84 86

SERVER 7 WS_Deviation 0 WS_Combination 4 33 33 40 46 46 48 83 85 90

SERVER 8 WS_Deviation 0 WS_Combination 6 32 41 42 46 75 83 91 93

SERVER 9 WS_Deviation -4 WS_Combination 2 7 26 30 37 49 77 89 93 94

The combinations of the access rates per server constituted by the access rates of assigned customers
are the following:

SERVER 0 RATE_Deviation 2 RatesCombination 1 13 18 3 19 0 7 19 4 5 5 5

SERVER 1 RATE_Deviation 5 RatesCombination 10 15 17 12 10 0 13 7 11 7

SERVER 2 RATE_Deviation 5 RatesCombination 11 15 10 4 11 18 11 19 0 1

SERVER 3 RATE_Deviation -1 RatesCombination 17 13 1 6 13 8 5 4 10 16 1

SERVER 4 RATE_Deviation 0 RatesCombination 10 19 14 3 12 14 13 11

SERVER 5 RATE_Deviation 0 RatesCombination 11 0 5 6 13 19 16 4 9 9 2

SERVER 6 RATE_Deviation -11 RatesCombination 3 7 7 8 18 19 18 0 4

SERVER 7 RATE_Deviation -2 RatesCombination 18 19 7 10 9 0 0 7 5 17

SERVER 8 RATE_Deviation -4 RatesCombination 7 5 15 14 17 9 12 5 7

SERVER 9 RATE_Deviation 5 RatesCombination 9 1 7 10 17 4 17 17 17 2

A.3 Example 3: Synthetic Trace with 100 Customers Balanced Across 8

Servers

Example 3 is based on the synthetic trace. Here is their 100 customer's web sites and their tra�c
pro�les constructed from the trace analysis:

NORMALIZED

Customer WS Rate

1 1 9

2 1 12

3 1 4

4 1 12

5 1 13

6 1 13

32

7 1 2

8 1 7

9 1 16

10 1 13

11 1 5

12 1 17

13 1 7

14 1 1

15 1 10

16 1 1

17 1 13

18 1 2

19 1 7

20 1 4

21 1 10

22 1 4

23 1 13

24 1 13

25 1 8

26 1 5

27 1 15

28 1 8

29 1 14

30 1 7

31 1 6

32 1 16

33 1 4

34 1 6

35 1 7

36 1 8

37 1 15

38 1 10

39 2 12

40 2 17

41 2 3

42 2 10

43 2 1

44 4 4

45 4 3

46 4 10

47 4 4

48 4 4

49 5 2

50 6 3

51 7 16

52 7 14

53 7 6

54 7 7

55 8 17

56 8 14

57 8 7

58 9 3

59 9 4

60 9 13

61 9 9

62 9 11

63 10 4

64 10 8

65 10 10

66 10 2

67 11 5

68 8 1

33

69 12 9

70 12 15

71 11 2

72 10 1

73 12 5

74 12 6

75 13 15

76 12 3

77 14 16

78 15 7

79 14 2

80 16 14

81 17 8

82 18 7

83 18 12

84 18 3

85 16 2

86 18 4

87 19 11

88 18 3

89 19 6

90 20 14

91 10 1

92 23 15

93 23 7

94 26 10

95 24 5

96 28 7

97 28 12

98 28 13

99 24 3

100 23 2

We performed one million iteration in the ex-alpha algorithm to partition the customers in 8 balanced
groups. The best balanced partition was found on the iteration 926,932.

Accordingly to this partition (the Table serves as an input to construct the correspondent DNS Tables),
the customers have to be assigned to the servers in the following way:

SERVER 0 CustNum 15 26 32 37 53 62 63 65 81 88 94

SERVER 1 CustNum 3 6 8 21 41 52 60 71 74 78 83 93

SERVER 2 CustNum 5 7 27 36 39 44 50 54 61 69 72 87 96

SERVER 3 CustNum 1 2 4 14 17 20 24 33 57 58 64 66 67 85 89 91

SERVER 4 CustNum 9 11 34 40 49 55 59 68 77 98 99

SERVER 5 CustNum 10 12 16 25 35 46 48 56 80 84 86 97

SERVER 6 CustNum 18 19 29 31 45 47 51 70 75 79 90 100

SERVER 7 CustNum 13 22 23 28 30 38 42 43 73 76 82 92 95

The partition, found by the ex-alpha algorithm, deviates from the \ideal" partition in the following
way:

SERVER 0 TOTAL_RATE 97 TOTAL_WS 100 Even 100

SERVER 1 TOTAL_RATE 97 TOTAL_WS 100 Even 100

SERVER 2 TOTAL_RATE 100 TOTAL_WS 100 Even 100

SERVER 3 TOTAL_RATE 101 TOTAL_WS 100 Even 100

SERVER 4 TOTAL_RATE 99 TOTAL_WS 100 Even 100

SERVER 5 TOTAL_RATE 106 TOTAL_WS 100 Even 100

SERVER 6 TOTAL_RATE 99 TOTAL_WS 100 Even 100

SERVER 7 TOTAL_RATE 94 TOTAL_WS 99 Even 100

34

The combinations of the working sets per server constituted by the working sets of assigned customers
are the following:

SERVER 0 WS_Deviation 0 WS_Combination 1 1 1 1 7 9 10 10 17 18 26

SERVER 1 WS_Deviation 0 WS_Combination 1 1 1 1 2 7 9 11 12 15 18 23

SERVER 2 WS_Deviation 0 WS_Combination 1 1 1 1 2 4 6 7 9 12 10 19 28

SERVER 3 WS_Deviation 0 WS_Combination 1 1 1 1 1 1 1 1 8 9 10 10 11 16 19 10

SERVER 4 WS_Deviation 0 WS_Combination 1 1 1 2 5 8 9 8 14 28 24

SERVER 5 WS_Deviation 0 WS_Combination 1 1 1 1 1 4 4 8 16 18 18 28

SERVER 6 WS_Deviation 0 WS_Combination 1 1 1 1 4 4 7 12 13 14 20 23

SERVER 7 WS_Deviation -1 WS_Combination 1 1 1 1 1 1 2 2 12 12 18 23 24

The combinations of the access rates per server constituted by the access rates of assigned customers
are the following:

SERVER 0 RATE_Deviation -2 RatesCombination 9 4 15 14 5 10 3 9 7 2 9

SERVER 1 RATE_Deviation -2 RatesCombination 3 12 6 9 2 13 12 1 5 6 11 6

SERVER 2 RATE_Deviation 0 RatesCombination 12 1 14 7 11 3 2 6 8 8 0 10 6

SERVER 3 RATE_Deviation 1 RatesCombination 8 11 11 0 12 3 12 3 6 2 7 1 4 1 5 0

SERVER 4 RATE_Deviation 0 RatesCombination 15 4 5 16 1 16 3 0 15 12 2

SERVER 5 RATE_Deviation 6 RatesCombination 12 16 0 7 6 9 3 13 13 2 3 11

SERVER 6 RATE_Deviation 0 RatesCombination 1 6 13 5 2 3 15 14 14 1 13 1

SERVER 7 RATE_Deviation -5 RatesCombination 6 3 12 7 6 9 9 0 4 2 6 14 4

A.4 Example 4: Synthetic Trace with 100 Customers Balanced Across 16

Servers

Example 4 is based on the synthetic trace. Here is their 100 customer's web sites and their tra�c
pro�les constructed from the trace analysis:

NORMALIZED

Customer WS Rate

1 1 23

2 1 4

3 1 7

4 1 30

5 1 24

6 1 26

7 1 26

8 1 8

9 1 8

10 1 11

11 1 12

12 1 16

13 2 8

14 2 14

15 2 28

16 2 2

17 2 9

18 3 12

19 4 18

20 4 11

21 5 26

22 5 15

23 5 3

24 6 8

25 6 29

26 6 31

35

27 7 10

28 7 29

29 7 8

30 7 12

31 7 24

32 7 15

33 7 29

34 8 13

35 8 18

36 8 31

37 9 11

38 9 13

39 9 6

40 11 7

41 12 12

42 12 14

43 11 2

44 12 22

45 12 2

46 14 18

47 14 10

48 15 9

49 15 17

50 14 2

51 17 30

52 17 22

53 17 26

54 19 5

55 20 23

56 20 23

57 20 27

58 21 20

59 21 30

60 21 15

61 21 16

62 14 1

63 23 20

64 18 2

65 24 19

66 26 14

67 26 29

68 27 10

69 27 10

70 28 27

71 28 24

72 24 3

73 28 11

74 28 14

75 29 31

76 29 20

77 31 26

78 31 15

79 31 25

80 22 2

81 28 5

82 31 18

83 31 29

84 31 28

85 31 12

86 30 14

87 31 27

88 30 9

36

89 26 4

90 31 19

91 31 25

92 28 5

93 31 26

94 31 24

95 30 13

96 31 16

97 30 12

98 31 14

99 16 1

100 31 17

We performed one million iteration in the ex-alpha algorithm to partition the customers in 16 balanced
groups. The partition found on the iteration 402,080 was the best. The later iterations could not
improve this result.

Here is the partition (i.e. how the customers have to be assigned to the servers). This Table serves as
input to construct the correspondent DNS Tables.

SERVER 0 CustNum 44 70 75 77

SERVER 1 CustNum 14 27 32 34 47 79 82

SERVER 2 CustNum 1 3 16 18 20 29 60 85 97

SERVER 3 CustNum 9 46 51 54 59 74

SERVER 4 CustNum 38 76 83 96

SERVER 5 CustNum 4 15 43 50 58 68 72

SERVER 6 CustNum 36 84 88 90

SERVER 7 CustNum 17 25 86 93 94

SERVER 8 CustNum 2 35 41 55 71 100

SERVER 9 CustNum 5 6 13 40 66 73 87

SERVER 10 CustNum 30 31 37 56 61 62 63

SERVER 11 CustNum 7 8 12 42 81 89 91

SERVER 12 CustNum 19 22 23 45 48 52 57 80

SERVER 13 CustNum 21 24 28 33 64 69 98

SERVER 14 CustNum 10 26 39 67 92 95

SERVER 15 CustNum 11 49 53 65 78 99

The partition, found by the ex-alpha algorithm, deviates from the \ideal" partition in the following
way:

SERVER 0 TOTAL_RATE 105 TOTAL_WS 100 Even 100

SERVER 1 TOTAL_RATE 104 TOTAL_WS 100 Even 100

SERVER 2 TOTAL_RATE 101 TOTAL_WS 100 Even 100

SERVER 3 TOTAL_RATE 104 TOTAL_WS 100 Even 100

SERVER 4 TOTAL_RATE 77 TOTAL_WS 100 Even 100

SERVER 5 TOTAL_RATE 94 TOTAL_WS 100 Even 100

SERVER 6 TOTAL_RATE 86 TOTAL_WS 100 Even 100

SERVER 7 TOTAL_RATE 101 TOTAL_WS 100 Even 100

SERVER 8 TOTAL_RATE 97 TOTAL_WS 100 Even 100

SERVER 9 TOTAL_RATE 116 TOTAL_WS 100 Even 100

SERVER 10 TOTAL_RATE 106 TOTAL_WS 101 Even 100

SERVER 11 TOTAL_RATE 97 TOTAL_WS 100 Even 100

SERVER 12 TOTAL_RATE 97 TOTAL_WS 100 Even 100

SERVER 13 TOTAL_RATE 117 TOTAL_WS 101 Even 100

SERVER 14 TOTAL_RATE 94 TOTAL_WS 100 Even 100

SERVER 15 TOTAL_RATE 89 TOTAL_WS 104 Even 100

The combinations of the access rates per server constituted by the access rates of assigned customers
are the following:

37

SERVER 0 WS_Deviation 0 WS_Combination 12 28 29 31

SERVER 1 WS_Deviation 0 WS_Combination 2 7 7 8 14 31 31

SERVER 2 WS_Deviation 0 WS_Combination 1 1 2 3 4 7 21 31 30

SERVER 3 WS_Deviation 0 WS_Combination 1 14 17 19 21 28

SERVER 4 WS_Deviation 0 WS_Combination 9 29 31 31

SERVER 5 WS_Deviation 0 WS_Combination 1 2 11 14 21 27 24

SERVER 6 WS_Deviation 0 WS_Combination 8 31 30 31

SERVER 7 WS_Deviation 0 WS_Combination 2 6 30 31 31

SERVER 8 WS_Deviation 0 WS_Combination 1 8 12 20 28 31

SERVER 9 WS_Deviation 0 WS_Combination 1 1 2 11 26 28 31

SERVER 10 WS_Deviation 0 WS_Combination 7 7 9 20 21 14 23

SERVER 11 WS_Deviation 0 WS_Combination 1 1 1 12 28 26 31

SERVER 12 WS_Deviation 0 WS_Combination 4 5 5 12 15 17 20 22

SERVER 13 WS_Deviation 0 WS_Combination 5 6 7 7 18 27 31

SERVER 14 WS_Deviation 0 WS_Combination 1 6 9 26 28 30

SERVER 15 WS_Deviation 3 WS_Combination 1 15 17 24 31 16

The combinations of the access rates per server constituted by the access rates of assigned customers
are the following:

SERVER 0 RATE_Deviation 5 RatesCombination 21 26 30 25

SERVER 1 RATE_Deviation 4 RatesCombination 13 9 14 12 9 24 17

SERVER 2 RATE_Deviation 1 RatesCombination 22 6 1 11 10 7 14 11 11

SERVER 3 RATE_Deviation 4 RatesCombination 7 17 29 4 29 13

SERVER 4 RATE_Deviation -22 RatesCombination 12 19 28 15

SERVER 5 RATE_Deviation -5 RatesCombination 29 27 1 1 19 9 2

SERVER 6 RATE_Deviation -13 RatesCombination 30 27 8 18

SERVER 7 RATE_Deviation 1 RatesCombination 8 28 13 25 23

SERVER 8 RATE_Deviation -2 RatesCombination 3 17 11 22 23 16

SERVER 9 RATE_Deviation 16 RatesCombination 23 25 7 6 13 10 26

SERVER 10 RATE_Deviation 6 RatesCombination 11 23 10 22 15 0 19

SERVER 11 RATE_Deviation -2 RatesCombination 25 7 15 13 4 3 24

SERVER 12 RATE_Deviation -2 RatesCombination 17 14 2 1 8 21 26 1

SERVER 13 RATE_Deviation 17 RatesCombination 25 7 28 28 1 9 13

SERVER 14 RATE_Deviation -5 RatesCombination 10 30 5 28 4 12

SERVER 15 RATE_Deviation -10 RatesCombination 11 16 25 18 14 0

38

