
Protecting the Hosted Application Server

Paola Dotti, Owen Rees
Extended Enterprise Laboratory
HP Laboratories Bristol
HPL-1999-54
April, 1999

E-mail: {Paola_Dotti,Owen_Rees}@hpl.hp.com

application server,
CORBA, security,
firewall, outsourcing

Internet applications, are evolving from the web server
to the more powerful and dynamic application server
in order to support the deployment of complex
applications integrated with the organization's back
end systems.
A key element of the application server architecture is
CORBA, the Common Object Request Broker that
allows applications to communicate in a transparent
and interoperable manner. For this new architecture to
succeed, it must guarantee a secure processing
environment to the organisations.
This paper explains why a conventional firewall can not
be used to secure CORBA applications. It describes the
architecture of CORBAgate, a gateway based on the
concept of proxies and object key re-mapping. The
paper compares the CORBAgate solution with the
OMG specification for CORBA firewall security.
Finally, the paper discusses how these elements
combine to enable outsourced application services.

 Copyright Hewlett-Packard Company 1999

Internal Accession Date Only

Protecting the Hosted Application Server

Paola Dotti, Owen Rees
Hewlett-Packard Laboratories,

Filton Road, Stoke Gifford,
Bristol, BS34 8QZ,
United Kingdom.

Paola_Dotti@hpl.hp.com, Owen_Rees@hpl.hp.com

Abstract
Internet applications, are evolving from the web server
to the more powerful and dynamic application server in
order to support the deployment of complex applications
integrated with the organization’s back end systems.
A key element of the application server architecture is
CORBA, the Common Object Request Broker that allows
applications to communicate in a transparent and
interoperable manner. For this new architecture to
succeed, it must guarantee a secure processing
environment to the organisations.
This paper explains why a conventional firewall can not
be used to secure CORBA applications. It describes the
architecture of CORBAgate, a gateway based on the
concept of proxies and object key re-mapping. The paper
compares the CORBAgate solution with the OMG
specification for CORBA firewall security. Finally, the
paper discusses how these elements combine to enable
outsourced application services.

Introduction

Application server has become one of the hottest new
Internet product categories. Despite the numerous
definitions currently in circulation, the application
server can be seen as a concrete sign of the
technological evolution of the Web Server, core of
today’s internet applications, towards a more intelligent,
complex and dynamic entity. Generally, the application
server is a set of middleware and application level
components which allow application processing to be
moved out of the back end system into a middle tier
component. Figure 1 shows the transition from the old
Web Sever Model to the new Application Server Model.

There are currently various application server
solutions provided by different vendors. Services
provided by the application server usually include

support for components to allow rapid deployment of
applications, support for a middleware communication
for a more scalable integration among applications and
the back end systems, and support for complex
transactions to give the required predictability. Most
vendors offer Enterprise Java Beans as the component
model, and CORBA[1] as the middleware
communication infrastructure.

Client Web Server

Back End System:

Distributed
transactions
Legacy Data

.......

HTML CGI-legacy

Application Server:

Transactions
Workflow
Filtering

Rules processing...

IIOP... IIOP...

IIOP....

Web Server Model

Application Server Model

Figure 1. Web Server versus Application Server
Model

This new architectural model will not be successful if
it does not guarantee a secure processing environment for
the applications. Security is a vital element for the
success of any Internet application, and its value grows
with the level of interaction an organisation allows
between the clients and its back end systems. Application
server is about breaking the barriers between clients and
servers. It is about replacing the Web Server model – a
basic GUI window on the back end data – with a multi-
tier model by opening up the back end system and
moving some intelligence out of it into a middle tier.

With appropriate security, the middle tier can be
hosted separately from the client and from the back-end

data. This opens up the opportunity for outsourcing
application services.

Where the different elements are hosted by different
organizations, the interactions must pass through the
firewalls that protect each organization’s network.
Conventional firewall mechanisms are not well matched
to the needs of CORBA, as used by many application
servers. CORBAgate enables the CORBA interactions
without compromising security.

CORBA and Firewalls

CORBA – Common Object Request Broker – is an
infrastructure that allows applications, written in
different languages, to communicate and collaborate with
each other without knowing where they run. An
application wanting to use the services provided by
another application, needs only to know its code name.
This unique code name is called Interoperable Object
Reference (IOR).

The beauty of CORBA is that the programmer has to
know little about how the communication actually
happens and who is listening on the other side. Server
applications can be launched on demand and an
application can be simultaneously act as a client or a
server. References to objects can be passed around among
objects allowing a very dynamic global interaction. The
dynamism and the transparency of CORBA make it
difficult to control access to CORBA applications
through a firewall. To understand the issues it is
necessary to analyze how IORs pass between objects.

An object that has a reference to a second object can
pass this reference to a third object. The CORBA
infrastructure must arrange that the third object can then
use the reference it receives to invoke the second object.

FA FB

A1 A2 B1
A.org B.org

x y z p q

Figure 2. Object reference passing

Figure 2 illustrates the passing of references to both
new and existing objects. In this example, an object x in
a process on host A1 has a reference to an existing object
z which is in a process on host A2, and an existing object

p which is in a process on host B1. Object x creates a
new object y, and then invokes p passing references to
both y and z. The object p then creates a new object q and
uses the reference it just received to invoke z passing a
reference to q. The responses (which are not shown) may
also carry object references as the result, as out
parameters, or in an exception.

The example shows the objects as belonging to
different organizations, A and B, both of which have
firewalls protecting their networks. CORBA through
firewalls presents two main unresolved issues. First of
all, the passing of object references in CORBA means
that the set of hosts and ports that must be accessible
through the firewall changes dynamically, and this does
not match current firewall configuration mechanisms.

A further issue is that an ORB will typically support
many objects through the same port on a host. If the
mechanism at the firewall grants access at the
granularity of a port, then if one object on an ORB is
made visible then so are some, if not all, other objects on
that ORB.

The CORBAgate object gateway

Although CORBA presents a problem for
conventional firewall mechanisms, it provides a solution
by enabling the creation of an application level object
gateway that can be inserted transparently between
application objects. An application object cannot tell that
it has been given a reference to a proxy object in the
gateway, rather than a reference to the target object. The
target object cannot tell that it has been invoked by the
proxy, rather than the original client object. This
transparency also makes it possible for invocations to
cross multiple gateways without any additional
mechanisms. The key to this transparent gateway
insertion is that the gateway replaces references in
invocation parameters and results as they pass through.
Once an initial reference has been replaced by a
reference to a proxy, this mechanism ensures that exactly
the necessary set of proxies is created.

A gateway based on proxies allows access control to
be enforced at the level of individual objects. A proxy is
for a specific target object and does not grant access to
other objects that happen to be hosted by the same ORB
instance.

A standard proxy can be replaced by an application
specific proxy to provide special controls. This makes the
proxy solution modular.

A CORBA interoperable object reference (IOR) for an
object that supports the Internet Inter-ORB Protocol
(IIOP) includes a host and port to which the client object
will connect, and an object key which identifies the

particular object. IORs will be written here as IOR[h:p:k]
to identify these significant elements.

hxhi

Inside Outside

TagX,i,IOR[hi:pi:ki],h<TagX,i,IOR[hi:pi:ki],S>

IOR[hx:px:kio[hi:pi:ki]]

IOR[hi:pi:ki]

Proxy

pi px

Figure 3. Reference embedding

Figure illustrates the reference mapping that occurs
when references are replaced. The client object invokes
the proxy object, passing an IOR. The proxy object
replaces the IOR in the request with an IOR that refers to
another proxy object in the gateway. The substitute IOR
contains the host and port of the gateway, and an object
key. That object key includes the original IOR, a flag to
indicate that the proxy will be for incoming invocations,
a tag that is used for access control, and a secure hash of
these elements and a secret known only to the gateway.

The information included in the object key is
sufficient to create the proxy. Since this information will
be included in an incoming invocation, the gateway need
not retain any state. The activator mechanism of the
ORB supporting the proxy objects is used to create new
proxies when they are needed.

The tag in the object key identifies how the reference
came to be created. Each proxy contains a tag, and, by
default, inserts the same tag into references it creates.
The tag identifies a set of proxies for access control.
Before creating a proxy in response to an incoming
invocation, the tag is checked against the current access
policy. If the check fails, the proxy is not created, and the
invocation is rejected. The tag is also used to shut down
active proxies so that access can be revoked immediately
if required.

If a new tag is created as the starting point of some
series of interactions then all interactions initiated from
that starting point can be disabled when the tag is
revoked. This combines access control enforcement at the
granularity of individual objects with management of
access in terms of the application logic.

The secure hash with a private secret protects
against forgery of the external IORs. It is easy enough to
discover the host and port of the gateway, and a valid
tag. The target IOR of an internal service may be
discovered or guessed. The hash with a secret prevents

an attacker from combining these elements into an
object key that will trigger the creation of a proxy.
Without this defense, every object would have to defend
itself against access from external clients as if there
were no firewall.

The interactions of clients and servers with the
gateway depend only on facilities defined in the CORBA
2.0 specifications. This means that CORBAgate can be
used with application objects implemented on existing
interoperability compliant ORBs.

CORBAgate supports a modular approach to security.
It allows organizations to enforce their security policies
by changing the application proxies, allows fine grained
access control at the object level, uses an anti forgery
mechanism to prevent security attacks, complies fully
with the CORBA specifications and is completely
transparent to the end user and the applications.

Figure 4 shows how CORBAgate can be deployed to
protect the application server from rogue clients, and also
to protect the back-end system

Client Web Server Back End SystemHTML CGI-legacy

Application Server

Web Server Model

Application Server Model

CORBAgateIIOP

IIOP
CORBAgate

Figure 4 CORBAgate and the Application Server

The OMG specification

The Object Management Group has recently adopted
a CORBA firewall security specification. The primary
focus of this new specification is to define how to change
CORBA so as to allow interactions across current
conventional firewall components, although it also
describes a new proxy firewall component.

CORBAgate was designed to achieve a different goal,
providing a firewall component that can be used with
existing CORBA infrastructure and applications.

The OMG specification describes changes to IORs to
include additional data, as well as changes to the GIOP
protocol, and the Portable Object Adapter; these are
fundamental parts of the CORBA core. This requires
changes to ORB implementations, and objects built on

current implementations will not be able to interact
across the firewall mechanisms described in the new
specification.

Unlike CORBAgate, the OMG specification is based
upon having each object, or rather the ORB supporting
it, create IORs containing additional components that
describe all of the inbound firewalls that need to be
traversed to reach the object. These references are
transmitted unchanged rather than being mapped as they
pass the firewall.

This strategy means that every ORB supporting server
objects must be configured to know where it is relative to
the firewalls; the issues of managing the configuration
are not discussed in the OMG specification.

Since any object may create references to be used
externally, there is no protected environment in which
these references can have forgery protection added. Since
the references and the object keys in them are generated
away from the firewall, checking at the firewall would
require digital signatures on the relevant parts of the
reference. Every ORB instance would need a signing key,
and would need to keep it secret.

CORBAgate does not depend upon any of the changes
introduced in the new specification. The prototype has
been built on an ORB that has none of the new features,
and it interacts with applications built on various
currently available ORBs. CORBAgate also concentrates
all of the security mechanisms and administration into
one place rather than spreading them over a large
number of hosts that will typically be continually
changing.

Hosting the Application Server

Application servers not only provide a framework for
rapid deployment of new business processes, they also
separate the business logic from the back end data. This
makes it possible to outsource the application server and
the processing of the middle tier business logic to an
application service provider.

The fine-grained but unobtrusive access control
provided by CORBAgate will be essential to allow the
application service provider to access the back end data.

An application service provider will want to offer its
hosting service to many clients, and it will be essential to
keep the application components and data belonging to
different clients separate. Fine-grained access control in
front of the application server is required.

In a service provider environment, using separate
machines for different clients becomes a burden due to
the physical space required. The solution is to use fewer,
but more powerful machines, but hosting different clients
on the same machine requires special security
precautions in order to preserve the separation. An
effective solution is to use a trusted operating system of
the kind originally designed to handle classified data.
Such systems can be configured to enforce the required
separation.

CORBAgate has been tested on a system of this kind,
the HP Praesidium VirtualVault.

Conclusions

CORBAgate is an application level gateway for the
IIOP protocol which allows fine grained access control to
CORBA applications, provides high security through its
anti-forgery mechanism, complies fully with the CORBA
standard and is completely transparent to the
applications. Its superior security approach make it the
ideal component in the application server architecture for
any organization concerned about opening up its back
end systems either to an outsourced middle tier or
directly to their internet clients.

References

[1] “Common Object Request Broker: Architecture and
Specification”, Object Management Group, Framingham, MA,
USA, February 1998.

