
CORBA Transactions Through Firewalls

David Ingham*, Owen Rees, Andy Norman
Extended Enterprise Laboratory
HP Laboratories Bristol
HPL-1999-50
April, 1999

atomic transactions,
electronic commerce,
security, firewalls,
CORBA

Electronic commerce on the Internet is evolving from
simpler customer-to-customer (C2B) interactions, such as
online shopping, to more complex business-to-business
(B2B) applications, so called extranet applications. This
class of application differs from C2B as back-office
processing is typically required within each organisation.
CORBA provides abstractions and transparencies that
make it a good candidate technology for building such
applications; organisations are required to agree on object
interfaces but are free to implement objects in their
preferred language using their chosen ORB vendor.
Multi-party interactions introduce complex failure modes
and, given the unpredictable quality of service of the
Internet, occasional failures are likely to occur. Atomic
transactions are a well known structuring technique for
ensuring the overall consistency of system state in the
presence of concurrent access and occasional failure.
Transactions therefore appear an appropriate technology
to support extranet applications. The use of CORBA
transactions for supporting extranet applications is
complicated by the use of organisational firewalls.
Conventional firewall technology that operates by
restricting access based on port numbers and protocols is
not appropriate for CORBA, which abstracts away from
these concepts. This paper describes the issues involved
and shows how they can be addressed using an advanced
CORBA object gateway.

*Department of Computing Science, Newcastle University, Newcastle upon Tyne, UK
 Copyright Hewlett-Packard Company 1999

Internal Accession Date Only

1

CORBA Transactions Through Firewalls

David Ingham

Dave.Ingham@ncl.ac.uk
Department of Computing Science,

Newcastle University,
Newcastle upon Tyne, NE1 7RU,

United Kingdom.

Owen Rees

Owen_Rees@hpl.hp.com
Hewlett-Packard Laboratories,

Filton Road, Stoke Gifford,
Bristol, BS34 8QZ,
United Kingdom.

Andy Norman

Ange@hplb.hpl.hp.com
Hewlett-Packard Laboratories,

Filton Road, Stoke Gifford,
Bristol, BS34 8QZ,
United Kingdom.

Abstract: Electronic commerce on the Internet is evolving from simple customer-to-
business (C2B) interactions, such as online shopping, to more complex business-to-
business (B2B) applications, so called extranet applications. This class of application
differs from C2B as back-office processing is typically required within each organisation.
CORBA provides abstractions and transparencies that make it a good candidate
technology for building such applications; organisations are required to agree on object
interfaces but are free to implement objects in their preferred language using their
chosen ORB vendor. Multi-party interactions introduce complex failure modes and,
given the unpredictable quality of service of the Internet, occasional failures are likely to
occur. Atomic transactions are a well known structuring technique for ensuring the
overall consistency of system state in the presence of concurrent access and occasional
failure. Transactions therefore appear an appropriate technology to support extranet
applications. The use of CORBA transactions for supporting extranet applications is
complicated by the use of organisational firewalls. Conventional firewall technology that
operates by restricting access based on port numbers and protocols is not appropriate
for CORBA, which abstracts away from these concepts. This paper describes the issues
involved and shows how they can be addressed using an advanced CORBA object
gateway.

Keywords: atomic transactions; electronic commerce; security; firewalls; CORBA

Introduction

Much of the effort to support electronic commerce over public networks has focused on the
provision of secure communication channels and electronic payment protocols, e.g., SET
[Mastercard95]. While being necessary, secure payment is only one aspect of electronic
business (e-business). Today, there are successful Internet-based shops selling both hard and
soft goods over the Web. Such shops require a number of other computing systems in addition
to payment to support their businesses, e.g., stock control, customer accounts, billing,
ordering, etc. Co-ordinating the interactions between these sub-systems in a reliable manner is
a non-trivial task. For example, it would be unsatisfactory if a computer failure caused a
customer to be billed for an item that was not dispatched. Furthermore, this example is one of
the more simplistic cases from the spectrum of possible e-business interactions since, although
the purchase is initiated by the customer, once the ‘Go’ button is pressed then all of the
processing takes place under the control of a single merchant.

More complex scenarios may require end-to-end guarantees that necessitate the participation
of the client in the processing, e.g., the delivery of soft-goods [Little97]. Increasing in
complexity further are a general class of business-to-business transactions that involve back-
office processing within two or more organisations. In this scenario the problem of reliably
ensuring the integrity of changes to overall system state is dramatically complicated due to the
independent control and the widely distributed nature of the interaction.

CORBA Transactions Through Firewalls

2

Atomic actions (transactions) are a well known technique for addressing these application
consistency requirements [Lomet77, Bernstein87]. An atomic action guarantees that, despite
failures, either all of the items of work performed within its scope are completed successfully
or all are undone. The Object Management Group specified Object Transaction Service (OTS)
provides support for implementing distributed transactional applications based on CORBA
technology [OMG95]. Additionally, the Microsoft Transaction Service (MTS) offers similar
capabilities for applications implemented using distributed COM objects [Microsoft97]. It is
the belief of the authors that distributed object-oriented transactional technology will become
an indispensable component of the e-business infrastructure.

However, although e-business offers the potential for significant productivity and financial
benefits, it must be conducted within a framework that does not compromise the security of an
enterprise’s data. Currently, many organisations operate behind firewalls to reduce the
possibility of external attacks1. If e-business is to be carried out using objects and transactions
then it will be necessary that these operate within the restrictions imposed by such security
solutions.

Implementing secure inter-enterprise e-business applications using CORBA distributed object
technology necessitates access to objects that are behind organisational firewalls. One of the
primary issues in implementing such applications is the requirement that the access be
controlled, that is, only the objects published by an organisation should be externally visible
and in addition, access to these exposed objects should be authenticated. As far as the authors
are aware, there are currently no commercial offerings that address these requirements. This
paper presents our experience in building such applications using the OTSArjuna transaction
system developed by Newcastle University and commercially supported by Arjuna Solutions
Limited and CORBAgate, a research prototype object gateway from Hewlett-Packard
Laboratories.

The remainder of this paper begins with an overview of atomic transactions, focusing on their
use in a CORBA environment. Next, we introduce the CORBAgate architecture showing how
it provides a secure object gateway for firewall machines. Throughout the paper, we illustrate
the issues using a simple inter-enterprise e-business example. Finally, we compare our work
with alternative technologies and draw conclusions.

Atomic transactions for e-business applications

This section provides an introduction into the concepts behind atomic transactions and shows
how transactions can be used within CORBA applications using the Object Transaction
Service. An example is provided to illustrate how CORBA e-business applications can be
implemented using transactions.

Overview of transaction concepts

The concept of atomic transactions is an important programming paradigm to aid in the
construction of reliable applications. Using transactions alleviates much of the programming
burden of ensuring application integrity in the presence of failures. Atomic transactions
possess the well-known ACID properties:

1 The Gartner Group, in a recent report, predicted that the use of firewalls will expand from their current role
in shielding organisations from the Internet to being used within organisations to protect Intranets.

CORBA Transactions Through Firewalls

3

atomicity: a transaction completes successfully (commits) or, if it fails (aborts), then all of
its effects are undone (rolled back);

consistency: transactions produce consistent results and preserve invariant properties;

isolation: the intermediate states produced while a transaction is executing are not
externally visible. Furthermore, transactions appear to execute serially, even if
they are performed concurrently;

durability: the effects of a committed transaction are never lost (except by catastrophic
failure).

Transactions were originally used in centralised database systems to allow concurrent access
to be performed without interference. The Distributed Transaction Processing (DTP)
Reference Model, developed by the X/Open Company, extended the concepts to include
distributed applications so that a transaction could encompass more than a single application,
process or machine [Xopen96]. In the DTP model, a Transaction Manager (TM), is
responsible for managing transactions on behalf of multiple clients. The TM keeps track of the
resources that are manipulated within the scope of each transaction and co-ordinates their
completion when instructed to do so by the transaction originator. Transactions are committed
by using a two-phase-commit (2PC) protocol; during phase 1, all involved parties are
instructed to prepare to commit and return a result indicating whether they prepared
successfully. Based on the responses, TM begins phase 2 of the protocol: if all of the parties
prepared okay, then they are told to commit, otherwise, they are instructed to roll-back.

Although widely used in industry today, the DTP model is procedure-oriented and is therefore
not well suited to the more modern concepts of object-oriented computing. For the CORBA
platform, the OMG has specified the Object Transaction Service (OTS) which extends
transaction semantics to distributed object-oriented applications. The next section provides an
overview of the OTS.

CORBA Object Transaction Service

In the OTS model, there are three classes of application object, namely, transactional clients,
transactional servers, and recoverable servers. A transactional client is simply an application
program that creates a transaction and invokes operations on transactional objects within its
scope. Transactional objects are those objects that are somehow affected by being invoked
within the scope of a transaction. Any transactional object that directly manages persistent
data is known as a recoverable object and has to participate in the transaction completion
protocol. They do this by creating Resource objects and registering them with the
transaction service. The transaction service drives the two phase commit protocol by issuing
requests to the resources that are registered with the transaction. A transactional server is one
that contains one of more transactional objects, none of which have recoverable state whereas
a recoverable server is one that contains one or more recoverable objects.

 The OTS is a flexible service that allows transaction applications to be implemented in a
number of ways. Figure 1 shows the interfaces provided by the service and how they are
typically used by transactional clients and recoverable servers.

CORBA Transactions Through Firewalls

4

Recoverable
object Resource

Recoverable server

transaction
context

Distributed Transaction Service

transaction
context

Transactional Client

transaction
context

Transaction Factory
Control
TerminatorCurrent

Resource
SubtransactionAwareResource

Synchronisation

Control
Coordinator
RecoveryCoordinatorCurrent

associated
with thread

associated
with thread

Figure 1: Overview of OTS interfaces

Fundamental to the OTS architecture is the notion of a transaction context. Each thread of
control is associated with a context. This association may be null, indicating that the thread has
no associated transaction, otherwise it refers to a specific transaction. Management of a
transaction may be undertaken by an application in either a direct or indirect manner. In the
direct approach, the transaction originator issues a create invocation on a
TransactionFactory object to begin a new transaction. The factory returns a Control
object for the transaction that enables two further interfaces to be obtained: the
Terminator, which allows an application to end a transaction and the Coordinator
which is used to register participants with the transaction. These objects are expected to be
passed as explicit parameters in operations on transactional objects since transaction creation
using these interfaces does not explicitly change a thread’s current context. This is known as
explicit propagation. Using the alternative indirect approach, transactions are created by
invoking the begin method on the Current pseudo object, which automatically associates
the newly created transaction with the current thread. With indirect context management, it is
usual to use implicit propagation, to pass the transactional context to transactional objects.
With this approach the signatures of the methods of the objects are not modified, rather the
object inherits from the empty OTS interface TransactionalObject. This provides the
necessary indication to the ORB that the transactional context should be propagated for all
methods of the object2. The object can then use its local Current object to perform
transactional operations.

The OTS specification is also flexible as regards the degree of distribution inherent in the
implementation of the service. Some OTS implementations, for example, OrbTP from Groupe
Bull [OrbTP], adopt a centralised approach in which all transactions are created and managed
by a single Transaction Manager. The libraries that are linked in to the transactional clients and
servers map the OTS interfaces to remote invocations on objects that reside within the
centralised transaction manager. An alternative approach (e.g., the Iona/Transarc OTS
[OTM]) is to distribute transaction management so that each transaction is managed by the
client that created it. This approach has the advantage of not having a single point of failure,
i.e., the failure of a component of a transaction will cause only that transaction to block while
others may proceed. The OTS implementation used for our experiments, OTSArjuna from
Arjuna Solutions, can be configured to support both models [Arjuna].

2 Implicit transaction propagation requires support from the underlying ORB. This feature is not available in
all current ORB products.

CORBA Transactions Through Firewalls

5

A full description of the OTS is beyond the scope of this paper; for more details consult the
OMG’s specification [OMG95].

Example: an inter-organisation meeting arranger application

To illustrate how transactions can be used to support e-business, consider the simple example
of a distributed meeting arranger application. The diagram in Figure 2 shows two diary
objects, Alice’s diary (DiaryA) and Bob’s diary (DiaryB), located within their respective
organisations (A and B). Alice’s secretary in organisation A is using the application to
schedule a meeting between Alice and Bob. In order to check availability and to create an
appropriate appointment in the two diaries the application has to perform read/write
operations on both of the diary objects. In order to ensure the integrity of the objects is
preserved in the presence of possible concurrent access and occasional failure, the diary
objects are implemented as OTS recoverable objects and the application performs its
manipulation of them within the scope of transactions.

Organisation A Organisation B

DiaryA

DiaryB

Figure 2: Inter-organisational meeting arranger application

For this example we shall assume indirect context management, explicit transaction
propagation and the use of a centralised transaction manager executing within organisation A.
The sequence of events that take place during the arrangement of the meeting are illustrated
graphically in Figure 3 and are described below:

1-2 The client begins a transaction by invoking the begin method on the Current
pseudo object within the client’s address space. The implementation of begin in the
OTS library causes a remote invocation of the create method on the
TransactionFactory object residing in the transaction manager process. This
causes the creation of Control, Coordinator and Terminator objects in the
transaction manager process. In the client process, the newly created transaction
context is associated with the client’s current thread.

3 The client invokes the get_control method on Current which returns a
reference to the Control object residing in the transaction manager.

4-6 The client then invokes the make_appt method of Alice’s diary (DiaryA), passing
the reference to the Control object as an explicit parameter. The implementation of
make_appt creates a new Resource object that is responsible for managing the
persistent state changes to the diary object. A reference to the Coordinator object

CORBA Transactions Through Firewalls

6

is obtained through the get_coordinator method of the Control object. The
newly created Resource is then registered with the transaction by invoking the
register_resource method of the Coordinator. Although not shown in
Figure 1 for simplicity, register_resource returns a reference to a
RecoveryCoordinator object (RCA) that is created in the transaction manager.
This object can be used to complete the transaction after recovery from a failure.

7-9 Repeat of operations 4 – 6 for DiaryB.

10 The client triggers the completion of the transaction by invoking the commit method
of Current.

11-12 The implementation of Current::commit first obtains a reference to the
Terminator object using the get_terminator method of Control and
invokes the commit method on the Terminator.

13-16 This initiates the 2-phase commit protocol; in the first phase the prepare method is
invoked on the two resource objects (ResourceA and ResourceB). If both respond
successfully then in the second phase the commit method is invoked on the two
resources thereby completing the transaction.

recoverable serverBrecoverable serverAtransaction manager client

TF Cnt Crd Trm Client Current DA RA DB RB

1 begin
2 create

4 make_appt (Cnt)

6 register_resource (R A)

10 commit

12 commit
13 prepare

14 prepare
15 commit

16 commit

5 get_coordinator

11 get_terminator

7 make_appt (Cnt)

9 register_resource (R B)

8 get_coordinator

KEY: TF = transaction factory, Cnt = Control, Crd = Coordinator, Trm = Terminator, Dx = Diary x, Rx = Resource x

Organisation A Organisation B

3 get_control

Figure 3: Meeting arranger application walk-through

Organisations protect their internal systems, and the business critical data they contain, by
putting a firewall between an external network and their internal network The network
topology is arranged so as to form enclaves where all traffic into or out of the enclave must go
through the firewall. It is common for the whole of an organisation to form an enclave; the
more security conscious organisations may have inner enclaves containing particularly
sensitive information protected by internal firewalls.

CORBA Transactions Through Firewalls

7

The example in Figure 3 will now be extended to add a firewall belonging to each
organisation.

FA FB

Organisation BOrganisation A

Host A2Host A1 Host B1

Figure 4: Meeting arranger interactions through firewalls

For the purpose of this example, we consider the case where each organisation forms a single
enclave so that we have two firewalls, FA and FB, one belonging to each organisation.

Note that interactions go through both firewalls in both directions, and involve objects that
already existed and new objects created for the transaction. This can present problems for
conventional firewall mechanisms.

Firewalls and CORBA

In
te

rn
al

 N
et

w
or

k

Internet

Exterior
Router

Interior
Router

Bastion Host
SOCKS

WWW

newsnews P
er

im
et

er
 N

et
w

or
k

Figure 5: Typical screened subnet firewall

Figure 5 shows a typical screened subnet firewall configuration [Chapman95] with a bastion
host. Outbound connections can be made via SOCKS on the bastion host, or via some other

CORBA Transactions Through Firewalls

8

proxy. Inbound connections, for services such as WWW are usually allowed in only as far as a
bastion host. Some inbound connections may be permitted through to the internal network,
but these will be restricted to connections from a specific external host to a specific internal
host on a specific port. For example, a connection to deliver usenet news from the known
news host of a service provider to the news host of the organisation on the standard NNTP
(NetNews Transfer Protocol) port 119.

Exterior and interior routers configured in terms of IP addresses, ports and the ACK bit in the
TCP headers. The more sophisticated routers can also inspect the traffic for some commonly
used application protocols (e.g. HTTP, FTP) to grant some permissions dynamically, and to
reject traffic where the application protocol is not followed correctly.

In our transactional application, the essence of the requirement it that the incoming
invocations act on the live data, and data that must be held on the internal network. The
invocations may originate from various external sources, and may be directed at various hosts
on the internal network. The application requirements go beyond those normally satisfied by a
firewall, and the challenge is to satisfy those requirements without compromising security.

A further difference from the conventional firewall is that CORBA does not fit particularly
well into the model where control is based on hosts and port numbers known in advance. The
strengths of CORBA as a platform for building distributed applications rest on hiding the
location information from application objects. CORBA applications never need to deal with
hosts by name (or IP address), nor do they need to be aware of port numbers. CORBA allows
objects to be invoked without the invoker needing to know whether the object is local or
remote, or where it is in relation to any other object.

With a typical ORB, there may be several objects in a process, several processes containing
objects on a host, and several hosts within any enclave. Figure 4 shows that even for the
simple example we have chosen this may be the case. This flexibility of CORBA makes it hard
to know in advance which hosts will need to make or to receive invocations. CORBA also
does not depend on any particular well-known port being used; it is common for servers to
allow the system to choose an arbitrary port for incoming invocations. Figure 6 shows the
connections that would be needed through the firewalls in order to support the meeting
arranger application, if we were to permit direct connection.

FA FB

Organisation BOrganisation A
Host A2Host A1 Host B1

P

P

Q21 3 4

1 2

1 2

P

1 2

Figure 6: Meeting arranger connections through firewalls

Here we show a process on host A1 listening on port P for requests for its objects. A CORBA
Interoperable Object Reference (IOR) for the Internet Inter-ORB Protocol (IIOP) contains the
host and port, and an “object key” that identifies the object in the context of that host and
port. In Figure 6 the objects have been labelled 1,2,3 and 4, and we will assume that these are
the object keys. An IOR contains additional information, but it is the host, port and key that
are significant in this discussion, and we will show IORs in the form IOR[h:p:k] where we

CORBA Transactions Through Firewalls

9

need to discuss their contents. For example, the IOR of the Transaction Factory in our
example is IOR[A1:P:1]. Note that the same port may be used on different hosts, but need not
be. The same object key may be used by different objects, or the keys may be different, and the
keys may have internal structure that differs depending in which ORB implementations are
used.

The key issues for configuring the firewall are:

- How do we know which connections need to be enabled?

- How do we limit connections so that only essential objects can be accessed?

In this scenario, the client object on host A2 invokes DiaryB (at IOR[B1:P:1]) passing the
reference to the Control object for the transaction (IOR[A1:P:2]). If there were no firewalls,
the ORB hosting DiaryB would simply connect to port P on host A1 to invoke the Control
object. Picking the information A1:P out of the request requires knowledge not only of the
IIOP protocol, but also the definition of the Diary interface.

Even if we could construct a router with enough CORBA capability to discover the host and
port, simply enabling incoming connections on that host and port combination would expose
all of the objects hosted by that ORB instance.

The problem faced by the router also applies to a transport level relay approach such as
SOCKS. A SOCKS proxy would have to be extended to understand CORBA well enough to
find the host and port data.

In order to achieve the degree of control that we want, we add a CORBA service to the
firewall that can mediate the interactions to ensure that only the authorised interactions take
place. This service must permit all of the interactions that are necessary to complete the
transaction, and we shall adopt the policy that by authorising the invocation of the
transactional object – the diary in our example – we implicitly authorise invocations of the
objects created to support the transaction.

This mediation service is provided by the Object Gateway.

The CORBAgate Object Gateway

Design Goals

The object gateway should not require changes to the application. For the meeting arranger
example, this means that the existing meeting arranger client and the diary servers should not
need to be changed when the object gateways are introduced.

The object gateway should enforce access control at a level that matches the application. The
enforcement mechanism must work at the level of individual objects. Management of access
should be in terms of collections of objects that participate in a series of related interactions.

The administration overhead should be low. Adding new applications and adjusting the access
control policy should be the only administration required.

The gateway should be extensible to allow new kinds of application and new kinds of access
control to be introduced.

Deployment of new applications should be rapid. The time from developing or acquiring a new
application to having it deployed through the gateway should be short.

CORBA Transactions Through Firewalls

10

Object Gateway Structure

The design goals are achieved by creating proxy objects in the gateway. Outbound proxies
accept invocations from clients in their own enclave, and then become the client making a
corresponding invocation on an object outside the enclave. Inbound proxies accept invocations
from clients outside the enclave, and become the client making a corresponding invocation on
an object inside the enclave.

As far as the client is concerned, the proxy is the server; as far as the server is concerned, the
proxy is the client. This means that one proxy may invoke another proxy just as if the first
were the original client, and the second the final server. This makes it possible for each
organisation to deploy an object gateway and the interactions to go through both with no
additional functionality or configuration requirements.

Figure 7 shows the object interfaces that need to be exposed for the meeting arranger
application. Note that since our example is using a centralised transaction manager then the
client’s invocations on the Current pseudo object are mapped under the covers onto remote
invocations on the TransactionFactory object.

recoverable
serverB

Object
GatewayB

DBDB
’

RCB
’’

Crd’’

Object
GatewayA

RCB RCB
’

DB
’’

Crd Crd’

RBRB
’RB

’’

transactional
client

used during
recovery

transaction
manager

Cnt’’Cnt Cnt’

TF

Organisation A Organisation B

Trm

Figure 7: Meeting arranger application through object gateways

Some of the object references have to be known in advance, e.g., the transaction manager and
the Diary object, DB. Either, these IORs must be well-known to all of the parties through some
external mechanism, or, more likely, the IORs will be found through naming or trading
services. Other objects are created dynamically as the application executes, such as the
resource object, RB, and the recovery coordinator, RCB. In the case of the well-known
references, it would be possible to create the object gateway interceptors a priori. However,
this cannot be done for the objects that are created dynamically by the application. In general,
if the application passes an object reference through the firewall then there is a requirement to
create a proxy for that object reference, inbound or outbound as appropriate.

CORBA Transactions Through Firewalls

11

Proxies and reference mapping

Using an individual proxy for each target object provides access control at the level of objects.
Access can be denied by choosing not to create a proxy for a target object. The gateway also
supports revocation of access. Proxies can be shut down to deny access that had previously
been granted without having to shut down the target service. The access control and
revocation mechanisms that have been implemented are described below.

Using proxies also means that neither the application code nor the ORB it runs on need be
aware of the gateway or the firewall. Provided that the application is given references to the
proxies rather than the target objects, the underlying CORBA mechanisms hide the
differences. The proxies in the gateway must be able to detect and replace object references as
required in the invocations that pass through. Figure 8 illustrates this process. A client object
Ca has a reference to a server object Sa, and passes this in an invocation request. The target of
this invocation is server object Sb, but Ca has a reference to Sb’ a proxy for Sb. The proxy Sb’
replaces the reference to Sa with a reference to Sa’, a proxy for Sa, when it forwards the
invocation to Sb. When Sb receives this reference, it cannot and need not know that the
reference is to a proxy and not the ultimate target object. If Sb uses the reference in an
invocation, the invocation request goes to Sa’ which forwards it to Sa.

Ca

Sa Sa'

SbSb'

Figure 8: Proxy creation and reference mapping

The proxy Sa’ could be created when Sb’ creates the reference for it, but it need not be
created until it is invoked. The gateway implementation uses the lazy incarnation policy and
does not create proxies until they are invoked.

The gateway is designed to be easy to install, and to require no routine maintenance. It
manages its own resources so that it can run indefinitely. Access control is enforced
automatically according to an extensible set of policies. An example of such a policy is
described below.

The gateway is designed to be extensible. Application specific proxies that provide custom
functionality can be added easily, and in particular, additional access control policies can be
added.

Application specific proxies

Custom functionality is provided by application specific proxies. These are specific to the type
of the target object as described by its IDL definition.

An application specific proxy is written as a server for the required type that is also a client for
that type. A body must be implemented for each operation in the interface. This body must

CORBA Transactions Through Firewalls

12

translate any object references in the parameters that it receives. Support classes with the
required translation operations are provided.

The operation bodies can also include application specific logic. This has been used to modify
the object reference translation so as to implement particular access control policies.

Since the IDL is known, so are the places where object references are passed as parameters.
This means that application specific proxies can give the best performance that is possible for a
proxy implemented as a CORBA object.

The disadvantage of an application specific proxy is that the type specific code needs to be
written, even if it has no additional application specific logic. Development time must be
allocated, and this could delay the introduction of a new service.

Generic proxies

In addition to any application specific proxies, the gateway has generic proxies. These proxies
retrieve interface definitions from the Interface Repository - a standard CORBA service - and
use that information to discover where there are object references in the parameters.

Ca

Sa Sa'

SbSb'

IRg IRbIRa

Figure 9: Generic Proxies and Interface Repositories

Figure 9 shows the relationships between the application objects, generic proxies, and
Interface Repositories. In principle, CORBA objects should always be able to respond to a
‘get_interface’ request with a reference to an object that describes the interface to the object.
These interface description objects are usually implemented by an Interface Repository. Some
ORBs do not have an Interface Repository, and even if they do, the necessary definitions
might not have been installed. For example, the object Sb may be able to respond with a
reference to an object in IRb, its local Interface Repository. If it cannot then the generic proxy
Sb’ can look up the definition in its local interface Repository IRg. The necessary interface
definition must have been installed in one or other of these interface repositories for a generic
proxy to be able to process the invocation. Similarly, the generic proxy Sa’ may be able to
obtain a reference to the definition object in IRa from Sa, or it may look up the definition in
IRg.

A generic proxy can act for an object of any type. This means that the gateway can handle any
service that has its IDL installed in the Interface repository. To deploy a new application, all
that is required is to add the interface definitions to the Interface Repository. New definitions
can be added while the gateway is running, so deploying a new type of application is a very
simple and rapid process.

The main disadvantage of the generic proxy is that it has more work to do to discover where
object references occur in the parameters. The other disadvantage compared to an application
specific proxy is that there is no way to add custom functionality.

CORBA Transactions Through Firewalls

13

Revocation

It is useful to be able to revoke access to an object without shutting down the object. Since the
target objects can be accessed only through proxies, access can be revoked by shutting down
proxies. The revocation mechanism must match the automatic reference mapping and proxy
creation mechanisms; it must undo whatever has been done by those automatic mechanisms.

Each proxy has a tag, implemented as a string, which it propagates into the references that it
creates in the mapping process, and the proxies incarnated to support those references. The
revocation mechanism operates by shutting down all the active proxies with a given tag. With
the lazy incarnation policy mentioned above, it is also necessary to have a check at incarnation
time that will fail when the tag has been revoked.

Figure 10 illustrates tags in both generic and application specific proxies. The revoke
operation will shut down both kinds of proxy; it shuts down all proxies with the specified tag.

y

x

IR IRIR

x

y

revoke("y")
y

Figure 10: Tagging and revocation

Since tags propagate to references and proxies as references are passed as parameters, it is the
means by which a reference is obtained that determines which access is revoked. A target
object may have several proxies with different tags. Revoking the proxies with one of these
tags will not affect the other proxies. This means that access granted for one purpose is not
affected if access granted for a different purpose is revoked.

The access control policy is determined by how new tags are generated, and by the validity
test applied to a tag before a proxy is incarnated. These are controlled by application specific
proxies. When mapping a reference, an application specific proxy can generate a new tag
rather than just propagating the existing tag. An application specific proxy can also register
itself as the validator for certain tags. An example of this is given below where the naming
service based access control strategy is described.

Access control strategies

One of the access control strategies that has been implemented uses the standard CORBA
naming service.

CORBA Transactions Through Firewalls

14

Ca

Sa

Sb

NC
x

Tag=name:/export/x
Sb'

Tag=name:/export/x

if (resolve(/export/x)) create

Sa'

Init
NC export

x

Figure 11: Access Control using the Naming Service

Figure 11 shows a server Sb that we shall assume has bound its reference under the name “x”
in its initial naming context which is implemented by the object “Init NC”. A second naming
context, implemented by the object “NC”, has been bound under the name “export”, and
another binding of Sb has been made in that context, also under the name “x”. The proxy Sb’
has the tag “name:/export/x” which it propagates to the reference for the proxy Sa’. When the
time comes to incarnate Sa’, this tag indicates that the access control policy is based on using
the naming service, and that the validation test is to check that the name “/export/x” can be
resolved. Incarnation of Sa’ is controlled by the presence of the binding with name “x” in the
context bound under the name “export” in the initial naming context. This binding can be
deleted or recreated without affecting the server itself, or its binding in the initial naming
context.

Ca NC
x

Tag=name:/export/
NCP

Tag=name:/export/x

Init
NC export

x

resolve("x")resolve("x")

Sb

Figure 12: Naming context proxy

Figure 12 shows how a naming context proxy is used to create new tags. The naming context
proxy NCP takes special action when mapping the reference that it returns as the result of the
“resolve” operation. It generates a new tag by adding the name being resolved to its own tag.
The effect is that access to the objects bound in the context for which NCP is the proxy can be
revoked independently. If the external clients are given the proxy for the ‘export’ context as
their initial naming context, it becomes very easy to control which objects are visible. An
object is made visible by creating a binding for it in the ‘export’ context; access is revoked by
deleting that binding.

The structure of the gateway allows other application specific proxies to generate different
kinds of tags, and register themselves as the validation mechanism for those tags.

CORBA Transactions Through Firewalls

15

Statelessness and reference embedding

In CORBA systems, it is normal practice to create short-lived objects for some purpose, and
pass their references to other objects. The Object Transaction Service uses objects of this kind.
If the gateway is to run for any extended period, it must not consume additional resources for
each object reference that passes through, nor must it accumulate additional proxies.

The reference mapping system implemented in the gateway puts all of the information needed
to create a proxy into each mapped reference. Proxies are created on demand from the
information in the incoming requests.

Inside Outside

Host: hi
Port: pi

TagX,i,IOR[hi:pi:ki],h<TagX,i,IOR[hi:pi:ki],S>

IOR[hx:px:kio[hi:pi:ki]]IOR[hi:pi:ki]

Proxy X

Host: hx
Port: px

Figure 13: Structure of mapped references

Figure 13 shows the structure of mapped references, and how they relate to the original target
reference. The object key in a mapped reference contains the information needed to create the
proxy: the original target reference, the tag for the proxy, and a flag to indicate whether the
proxy is inbound or outbound. The object key also contains a secure hash of this information
and a secret known only to the gateway.

Since all of the information used to create a proxy is in the mapped reference, it is important to
ensure that an attacker cannot make a successful invocation with some forged object key. An
attacker can obtain the host and port of the gateway from any valid mapped reference. An
attacker can also discover or guess a valid tag easily. If the attacker also discovers or guesses
an object reference for some internal object that should not be accessible from the outside, the
attacker must be prevented from combining this information in such a way that it can make an
invocation that the gateway will forward to the target object. It is the secure hash that
prevents the attacker from constructing an object key acceptable to the gateway.

Invocation requests arriving at the gateway include an object key, and this will designate a
proxy for some target object. If the proxy exists, the invocation can proceed. If the proxy does
not exist, an activator is called to create the necessary proxy. It is this activator that checks the
secure hash and the validity of the tag in the object key, and creates the proxy only if both
tests pass.

Transactions through the gateway

The object gateway described above has the mechanisms necessary to support the interaction
patterns that occur in distributed transactions across firewalls. To complete the picture, the

CORBA Transactions Through Firewalls

16

appropriate mechanisms must be triggered by the interactions that can occur in practice when
a transaction takes place.

The simpler case is where the transaction context information is passed by explicit
propagation. In this case, an additional parameter is added to each operation on the
transactional objects. These additional parameters appear in the IDL, and all of the type
definitions associated with the transaction support objects must be explicitly available. As far
as the gateway is concerned, all of the transaction support is just part of the type, and needs no
special processing. The existing generic proxies can discover all that they need from the
description registered in the interface repository; application specific proxies can also be used.
The proxies do not take an active part in the transaction, they simply pass on the invocations.

Transaction context information may also be passed by implicit propagation. In this case, the
IDL does not have any additional parameters to the operations. The necessary transaction
context information is passed in the invocation request and response messages, separately
from the parameters. The CORBA General Inter-ORB Protocol defines a place for this
information in the messages, but there is no standardized way to use this facility. The Object
Gateway must include special processing for the implicitly propagated transaction information.

Related Work

There are some products that can be used to allow some kinds of CORBA interactions across
firewalls. There is also a specification, recently adopted by OMG, that sets out to address this
issue. These will be described briefly, with emphasis on the different objectives of the various
approaches.

OMG CORBA/Firewall Security Specification

The Object Management Group has recently adopted a specification for a mechanism to allow
CORBA interactions to cross firewalls. The primary focus of this specification is to define how
to change CORBA so as to allow interactions across current conventional firewall
components. A new GIOP proxy firewall component is also described in the specification.

The specification describes changes to Interoperable Object References (IORs) to include
additional data, as well as changes to the GIOP protocol, and the Portable Object Adapter. All
of these involve changes to ORB implementations.

The OMG specification describes three kinds of firewall: TCP firewall, SOCKS proxy firewall
and GIOP proxy firewall. For each of these, a particular type of component must be added to
the profile in the IOR if the target object is to be invokable across that type of firewall. A
profile includes a list of these components in order to support interaction across multiple
firewalls.

Unlike CORBAgate, the OMG specification is based upon having each object create its own
references containing the components that describe all of the inbound firewalls that need to be
traversed to reach the object. There are two issues with this approach:

- Every object that creates a reference that might need to be used from an outer enclave
must have been configured to know about all of the inbound firewalls. There is no
description of how this configuration is to be done, and the issue of managing the
configurations of all the servers is not discussed.

- There is no anti-forgery mechanism, and, since every server object can create references,
there is no plausible way to add such a mechanism. Neither the TCP nor the SOCKS

CORBA Transactions Through Firewalls

17

mechanisms inspect any CORBA specific data, so they cannot perform any CORBA
reference validation. A GIOP proxy can inspect the CORBA specific data, but it has no
way to verify that the target object included the inbound proxy data in the reference. If the
proxy is to reject any incoming invocations, it must have an access control mechanism
separate from the reference. The OMG specification does not discuss the issues involved in
creating an access control mechanism that can permit invocations of dynamically created
objects.

The OMG specification also requires that a client inside an enclave be configured to know its
outbound proxy. The configuration management issues are not discussed.

Clients, including proxies acting as clients, are presented with references containing a list of
firewall components and a target reference. It is up to the client to determine where it is
relative to the firewalls in the list, the target object, and its own outbound firewall. The
reference contains all the information needed to invoke the target from anywhere, and it is up
to the client to determine how much of that information it needs.

The emphasis of the OMG specification is on changing CORBA in order to live with current
popular firewall mechanisms, and other security restrictions. In particular, some of the
mechanisms are specifically aimed at applets that are to act as CORBA clients and servers
despite both the applet security model imposed by the browser running the applet, and a client
side firewall which has not had any CORBA-specific functionality added. These objectives are
different from the CORBAgate design goals.

Orbix Wonderwall

Orbix Wonderwall is perhaps the best known product designed to support IIOP across
firewalls [Iona]. Unfortunately, there is no publicly available detailed information available
about the current version. Therefore the remarks here have to be based upon the white paper
dated November 1996, and the Wonderwall Administrators guide dated May 1997.

Clients wishing to access servers through Wonderwall must be given 'proxified' IORs. Since
IORs with the OMG specified firewall components are not yet available, the proxified IOR
cannot contain all the necessary information for servers implemented on arbitrary ORBs.
References created by Orbix and OrbixWeb have an internal structure understood by
Wonderwall, which contains sufficient information to discover the target object. For non-
Orbix servers, Wonderwall must be explicitly configured to know the target IOR for each
individual object.

Orbix and OrbixWeb servers can create proxified references, but mechanisms provided seem
to have an all or nothing approach. Either all references created by the server are proxified, or
none are. This is a problem for any server that is to be used from within an enclave as well as
from outside.

Wonderwall can provide access control at the granularity of individual objects for Orbix and
OrbixWeb objects, provided that the references are well-known, and specified in the
Wonderwall configuration. If objects are created dynamically, access control must be based on
the host and port, rather than the individual object.

None of the information available to us mentions 'callbacks' - invocations from what was
initially the server side of the firewall. Support for this interaction pattern is essential for
transactions across the firewall.

CORBA Transactions Through Firewalls

18

The GIOP proxy part of the OMG specification addresses many of the problems described
here. Since Iona Technologies, the suppliers of Wonderwall, were one of the submitters of the
proposal adopted by OMG, it is likely that Wonderwall will evolve in that direction.

VisiBroker Gatekeeper

VisiBroker Gatekeeper is primarily intended to support Java applets that connect back to
server objects after being downloaded into a browser [Inprise]. Much if the emphasis is on
providing ways for applets to operate despite the security restrictions imposed by a browser.
Gatekeeper also makes it possible to interact across a firewall.

Some experiments suggest that the client must be using the VisiBroker ORB in order to use
Gatekeeper successfully, but the target server may be using a different ORB. The client needs
some configuration information in order to know where to find Gatekeeper. This is well
matched to the downloaded applet scenario; all connections must go back to the download
host, and configuration parameters can be supplied in the download. The absence of any
mention of 'proxification' or any other reference modification also suggests that the client must
be using something other than the information in the IOR.

Gatekeeper is not intended to provide any kind of access control. There is no apparent
mechanism to limit the objects that can be invoked through Gatekeeper. Although this may be
a security issue, it means that there is no problem in accessing dynamically created objects.

Gatekeeper does support callbacks, but it is not clear if this means that every object that acts
as a client must be using VisiBroker.

There is no mention of nested enclaves, or crossing multiple firewalls, in any of the
Gatekeeper documentation.

Although this has not been verified experimentally, Gatekeeper seems to have the mechanisms
necessary to support transactions across a firewall, provided that all the participants use
VisiBroker, and there is no requirement for access control at the firewall.

Implementation notes

The CORBAgate object gateway has been implemented using the ORBacus ORB from Object
Oriented Concepts [OOC]. Some of the functionality, such as support for the stateless proxies,
was only possible because of the availability of the ORBacus source code. The transaction
service used was OTSArjuna from Arjuna Solutions. OTSArjuna is an OTS-compliant
transaction service that is portable across many ORB products including ORBacus. Some
interoperability testing was also carried out using Visibroker from Inprise. The platforms used
were HP-UX and Windows NT.

Conclusions

Transactions and security (in particular firewalls) are essential elements of the e-commerce
framework. The objects that make up a transaction (application objects, transaction
infrastructure objects such as recovery co-ordinators) are deployed over both sides of the
firewall and will need to be visible to each other in a controlled way through the firewall.

The configuration required for transactions poses problems for firewall design. In particular,
the case that client-side objects may be invoked by other objects involved in the transaction,

CORBA Transactions Through Firewalls

19

and may in fact not even reside in the same process causes significant problems with current
firewall offerings.

CORBAgate demonstrates that currently available ORB technology is sufficient to create a
firewall component that can support the required interactions, without unnecessary exposure
on unrelated objects.

Acknowledgements

This work has been partially funded by the European Union as part of Esprit Fourth
Framework Programme Project No 26810 (MultiPLECX). David Ingham’s contribution has
also been partially funded by a grant from Hewlett-Packard through their External Research
Programme.

The authors would like to thank Chris R. Dalton, Paula Dotti, Nigel Edwards, Mark Little,
Santosh Shrivastava and Qun Zhong for their useful comments and suggestions during the
writing of this paper.

URLs

[Arjuna] Arjuna Solutions homepage.
<URL:http://www.arjuna.com/>

[Inprise] Inprise homepage.
<URL:http://www.visigenic.com/>

[Iona] Iona homepage.
<URL:http://www.iona.com/>

[OOC] Object Oriented Concepts homepage.
<URL:http://www.ooc.com/>

References

[Bernstein87] P. A. Bernstein, V. Hadzilacos and N. Goodman, "Concurrency Control and
Recovery in Database Systems," Addison Wesley, 1987.

[Chapman95] D. B. Chapman, E. D. Zwicky, “Building Internet Firewalls” O’Reilly &
Associates 1995.

[DOD85] Department of Defence Standard, “DOD Trusted Computer System Evaluation
Criteria,” DoD 5200.28-STD, December 1985.
<URL:http://www.disa.mil/mls/info/orange/index.html>

[Edwards97] N. Edwards and O. Rees, “High Security Web Servers and Gateways,”
Computer Networks and ISDN Systems, 29(8-13), Proceedings of the 6th International
World-Wide Web Conference, Santa Clara, USA, April 1997.
<URL:http://proceedings.www6conf.org/HyperNews/get/PAPER59.html>

[JPW91] J. P. L. Woodward, “Compartmented Mode Workstation Evaluation Criteria
VERSION 1 (Final),” DDS-2600-6243-91, 1991.

[Little97] M. C. Little, S. K. Shrivastava, S. J. Caughey, and D. B. Ingham, “Constructing
Reliable Web Applications Using Atomic Actions,” Computer Networks and ISDN Systems,
29(8-13), pp. 1405-1416, Proceedings of the 6th International World-Wide Web Conference,
pp. 563-571, Santa Clara, USA, April 1997.
<URL:http://proceedings.www6conf.org/HyperNews/get/PAPER12.html>

CORBA Transactions Through Firewalls

20

[Lomet77] D. B. Lomet, “Process Structure, Synchronisation and Recovery using Atomic
Actions,” Proceedings of the ACM Conference on Language Design for Reliable Software,
SIGPLAN Notices, vol. 12, no. 3, March 1977.

[Mastercard95] Mastercard and Visa, “Secure Electronic Transaction (SET) Specification,
Book 2: Programmer’s Guide,” June 1996.
<URL:http://www.visa.com/cgi-bin/vee/sf/set/setprog.html>

[Matena96] V. Matena and R. Catell, “JTS: A Java Transaction Service API,” Sun
Microsystems, December 96.
<URL:ftp://ftp.javasoft.com/pub/jts/jts.pdf>

[Microsoft97] Microsoft Corporation, “Microsoft Transaction Server White Paper,” 1997.
<URL:http://www.microsoft.com/transaction/learn/mtswp.htm>

[OMG95] Object Management Group, “CORBAservices: Common Object Services
Specification,” OMG Document Number 95-3-31, March 1995.
<URL:http://www.omg.org/>

[OrbTP] Bull S.A., “OrbTP White Paper,” 1997.
<URL:http://www-frec.bull.com/dom/orbtp/doc/orbtpwp12.doc>

[OTM] IONA Technologies, plc., "The Orbix Object Transaction Monitor (OTM)," 1997.
<URL:http://www.iona.com/Developers/whitepaper/otm/otm_wp.html>

[Parrington95] G. D. Parrington et al., “The Design and Implementation of Arjuna,” USENIX
Computing Systems Journal, vol.8, no. 3, pp. 253-306, Summer 1995.
<URL:http://arjuna.ncl.ac.uk/group/papers/p048.ps>

[Shrivastava97] S. K. Shrivastava, “Notes on Arjuna Transactions,” Dept. Computing
Science, Newcastle University, UK, August 1997.
<URL:http://arjuna.ncl.ac.uk/Arjuna/OTSArjuna.ps>

[TIP] IETF Transaction Internet Protocol Working Group.
<URL:http://www.ietf.org/html.charters/tip-charter.html>

[Xopen96] X/Open Ltd., "X/Open Guide Distributed Transaction Processing: Reference
Model. Version 3".

