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Abstract eliminate networlhotspotsy reducing the volume
This paper presents a detailed workload character-Of traffic to popular sites. File caching can also

ization study of a World-Wide Web proxy. Measure-dyn"’lmlcally adjust to eliminatéash crowdsi.e.,

ments from a proxy within an Internet SerVicetemporarily popular sites), something that network
Provider (ISP) environment were collected. Thisulogrades cannot [27].

ISP allows clients to access the Web using highThis paper presents a detailed workload character-
speed cable modems rather than traditional dial-ization of a Web proxy server. We focus on identi-

up modems. By examining this site we are able tdying characteristics that we believe are important
evaluate the effects that cable modems have ofor proxy cache performance. We also examine the
proxy workloads. data set to determine the effects of higher client
access speeds on the proxy workload. The main
observations from our characterization study are:

HTTP accounts for almost all of the client

This paper focuses on workload characteristics
such as file type distribution, file size distribution,
file referencing behaviour and turnover in the ® :
active set of files. We find that when presented with  '€duests (99.3%) and most of the data traffic
faster access speeds users are willing to download (87.7%)

extremely large files. A widespread increase in the  more than 73% of all requests are for image
transfer of these large files would have a signifi-  files; a further 12% are for HTML files

cant impact on the Web. This behaviour increases the unique file and transfer size distributions
the importance of caching for ensuring the scal-  are heavy-tailed

ability of the Web. « clients are (more) willing to download

. extremely large files when access speeds are
1 Introduction higher y larg P

Since its inception in the early 1990’s, the World-. growth in usage of the service is due to new
Wide Web (WWW or the Web) has grown at an subscribers and more use by all subscribers
exponential rate. This rapid growth is expected to,  fjle referencing patterns are non-uniform
persist as the number of Web users continues to .o than 60% of the unique files were
increase and as new uses for the Web such as elec- requested only a single time

tronic commerce become widely accepted. As the the active set of files chanaes over time
Web evolves into a part of the daily lives of people® ithouah fil 9 lar f '
and businesses, Web performance becomes not athough - some files remain  popular for
only desirable but necessary. extended periods

There are a number of approaches to improving th he remainder of this paper is organized as fol-

performance of the Web. Web sites can utilize clus OWS: Section 2 provides an overview of related
ters of machines to handle incoming requests. Ne work. Section 3 describes the methodology of the
work links can be upgraded to higher bandwidthsworkload characterization study. Section 4 presents
to handle the increased volume of data traﬁicthe detailed results of the workload characteriza-

However, these approaches are really only short1O": Section 5 summarizes the paper, presents our
term solutions. A more permanent solution to theconclusmns and discusses future directions in Web
scalability problems of the Web is file caching (proxy) caching research.
[18][27]. File caching is used to store documénts 2 Related Work

closer to the clients that request them. By doin o _
this user latency, network loads and origin SerV(_:‘%Norkload characterization is a crucial component

loads can all be reduced. File caching can helpﬁ)f systems design as it allows us to understand the

current state of the system. By characterizing a sys-

1. Throughout this paper we use the tefites doc- tem over time we can observe the effects that
umentandobjectinterchangeably.
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changes to the system have had. Workload charagroxy retrieved the object from an origin server on
terization is also necessary in the design of newhe Internet. All requests for the ISP’s own Web
components. site issued by this group of subscribers went

In this paper we focus on the characterization of a{[hrough the proxy. Since the ISP's Web site was

Web proxy workload. Several workload studies quuite popular \.Nith _the subscribers_t_he hit rate in the
Web proxies have already been reported in the ljtProxy cache is higher than traditionally seen in
erature, including [8],[14],[17], and [21]. We proxy caches.

examine our data set for similar characteristics torhis site provides us with a unique opportunity to
determine how the workload changes in a cabldgpotentially) characterize client access patterns of
modem environment. Other studies have examinethe future. The cable modems utilized at this site
the workloads of various components of the Webhad peak bandwidths reaching several megabits per
including clients ([7],[13]), servers ([4],[12],[22]) second. This is several orders of magnitude more
and the HTTP protocol ([6],[16],[23]). than is achieved by traditional dialup modems. The

The main performance benefit of Web proxies is?ncreased access bandwidths made proxy caching

the file caching that they perform. There are t\Nolmportar_]t for reducing user latency as the ISP's
general approaches to file cache management, Orggnnectlon to the Internet was the main bottleneck
approach attempts to use as few resources as pos'sr?-the system.
ble by making good replacement decisions wherg.2 Data Collection

the cache is full (we call this thelegantapproach).

The alternative approach is to provide the cache N€ 8ccess logs of the proxy server described in

with sufficient resources such that few relolace_Sectlon 3.1 were collected _for thl_s study. These
were collected on a daily basis from January

. logs
ments are needed (this is theute-forceapproach). rg . t
Supporters of the elegant approach have utilized » 1997 until May 3%, 1997. The access logs

workload characterization to develop a number ofvere not available on 13 days and were incomplete

different replacement policies [3][9][20][26]. Feld- ©N four other days. Despite these gaps in the data
mannet al. [15] point out that proxies may also set we have a relatively complete view of the proxy

improve performance by caching persistent conVorkioad for an extended period of time.

nections. Each entry in an access log contains information
on a single request received by the Web proxy from

3 MethOdOIOQy a client. Each entry includes the following infor-

This section describes the methodology of themation:

workload characterization study. Section 3.1 pre~ client address the IP address that was dynam-

sents background information on the data collec- ically assigned to the client upon connection to

tion site. Section 3.2 discusses the data that was the ISP

collected at the site. Section 3.3 describes how the timestamp: the date and time that the request

collected data was reduced into a more manageable \yas made

format. Section 3.4 summarizes the assumptions request contains the method (e.g., GET,

we made to address the limitations of our data set. HEAD, etc.), the requested URL and the proto-

3.1 Data Collection Site col used for client-proxy communication

status codesindicate the nature of the proxy
response and, if necessary, the origin server
response

header data the amount of header data, mea-

The site under study is an Internet Service Provider
(ISP) that offers interactive data services to resi-
dential and business subscribers. These subscribers
utilized cable modems to connect to the ISP’s’ _ .
server complex. Several thousand subscribers uti- sured in by@es, passed betwegn_ the client, the
lized the system during the data collection period. proxy, and, if necessary, the origin server

All subscriber requests for Web objects (e.g.,» content data the amount of content data,
HTTP, FTP, and Gopher requests) were forwarded ~mMeasured in bytes, passed between the client,
to a single server running a commercial proxy soft-  the proxy and, if necessary, the origin server
ware package. This proxy server includes a filee transfer time: the amount of time (millisecond
cache so some of the client requests were satisfied precision) between the arrival of the request at
within the server complex. On a cache miss the
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the proxy and the end of the response from théf it did not contain substrings such agi-bin
proxy or ‘?’, if it did not have a file extension such as
‘.cgi ’, and if the origin server response contained
an appropriate status code (e200 Success ).
zb\ny URL that failed one or all of these tests was
ﬁonsidered to be uncacheable.

Some of the information that is not specifically
recorded in the access logs can be inferred b
examining the data. For example, proxy cache hit
and misses can be determined by examining bot
the proxy and origin server response codes. UnforAfter reducing the access logs in this manner we
tunately, not all information of interest is available recalculated the overall statistics. The results are
in the access logs. For example, the logs contain nehown in Table 2. The reduced data set contains
information that would allow us to correctly iden- 115,310,904 requests for 1,328 GB of content data.
tify individual users. There is also no information 16,225,621 unique cacheable URLs and a total of
that enables us to correctly identify all of the 9,020,632 uncacheable URLs are present in the
aborted transfers (i.e., the user becomes impatiemeduced data set. Assuming that the cache is ini-
with a slow response and presses the Stop buttatially empty, this means that the minimum number

on the browser). of requests that could not be satisfied by the proxy

i 0,
Table 1 contains the summary statistics for the ra izh?r:nzl?érmo?‘,ztﬁg Orn?llge/ocgiﬁgiir rreequ:r?tz.
data set. The access logs contain a total o S uniqu sponses

117 652652 requests for a total of 1.340 GB Ofaccounted for 389 GB of the content data; a further
cont’ent aata d ' 56 GB of content data was transferred in response

to requests for uncacheable objects. In total, a min-
imum of 445 GB or 33.5% of all content data
needed to be transferred by thigin servers.

Table 1: Summary of Access Log Characteristics

(Raw Data)
Access Log Duration January 3rd - May 31st, 1997 Table 2: Summary of Access Log Characteristics
Total Requests 117,652,652 (Reduced Data)
Avg Requests/Day 840,371 Access Log Duration January 3rd - May 31st, 1997
Total Content Data 1,340 GB Total Requests 115,310,904
Avg Content Data/Day 9.6 GB Total Content Bytes 1,328 GB
Unique Cacheable Requests 16,255,621
3.3 Data Reduction Total Uncacheable Requests 9,020,632
Due to the extremely large access logs cre_ated BYUnique Cacheable Content Bytes 389 GB
the proxy (nearly 30 GB of data) we found it nec-
Total Uncacheable Content Bytes 56 GB
essary to create a smaller, more compact log due to

storage constraints and to ensure _that our workloag 4 Assumptions

analyses could be completed in a reasonable

amount of time. We performed these reductions inn Section 3.4 we stated that not all information of
two ways: by storing data in a more efficient man-interest is available in the access logs. In particular
ner (e.g., we mapped all distinct URLs to uniquewe cannot accurately identify if a file has been
integers), and by removing information of little modified at the origin server since the previous
value (e.g., we kept only GET requests whichrequest for that file, or if the user aborted the trans-
accounted for 98% of all requests and 99.2% of thder of a file. Since we felt it was important to iden-
content data transferred). We utilize a database tfy these occurrences, we developed a method for
perform the mapping of URLs to unique integers.approximating when one of these conditions has
This approach allows us to map the integers backappened. Our approach monitors the size reported
to the original URL. During the reduction process for a file on every request for that file. We assume
it became apparent that there were too manyghatif no change in the size occurs then the file has
unique URLs to map all of them (the databasenot been modified. We speculate that if a file is
became a bottleneck). Since the ability to determodified that it will result in a relatively small
mine the URL from the integer identifier was change in the size. An aborted request is identified
important to us, we decided to map only the cacheif the number of bytes transferred is less than our
able URLSs. We considered a URL to be cacheabl€urrent estimate of the requested file’s size. While
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these assumptions are not always true we believprotocol, accounting for over 99% of all requests
they will allow us to get a reasonable estimate.and almost 88% of the content data. The only other
Based on an analysis of this data set, we chose protocol responsible for any significant amount of
threshold value of 5% to distinguish between a fileactivity is FTP. Although FTP was seen in only
maodification and an aborted transfer. This mean®.3% of requests it accounted for 12.1% of the total
that if a file increases or decreases in size by lessontent data. These results suggests that HTTP has
than 5% it is considered a modification; otherwiseall but eliminated the use of the Gopher protocol,
an abort has occurred. Using this threshold valuend has significantly altered the way in which FTP
we estimate that 10.3% of all requests in the datas used. The primary purpose of FTP in this work-
set were aborted. Since Feldmagtral.[15] found load appears to be to provide clients with access to
similar values in their study of a traditional dial-up very large files.

ISP environment, we believe that our approach i

. For the remainder of this paper we focus exclu-
not unrealistic.

sively on the HTTP protocol. Due to space con-
4 \Workload Characterization straints we do not include the results from our
analysis of the FTP requests. We found that there is

In this section we present the results of our work-jitje henefit to be gained from caching FTP files,
load characterization. We analyze only the reducedys e\ clients are interested in these files and they

data set described in Section 3.3 for these analysesgnsume a lot of space in the cache. Both of these
We begin with an examination of the different pro- characteristics degrade the potential hit rates for
tocols in use on the Web. the cache. Furthermore, the FTP protocol does not
4.1 Protocols provide_a consistency mechanism, _vvhich furt'her
_ ) _ undermines the usefulness of caching FTP files.
Our first analysis examines the protocol (€.9.,Finally, we observed problems with the caching of
HTTP, FTP, Gopher) contained in each URL in therTp files due to incompatibilities between the
repeatedly returned cached error messages to cli-

Table 6: Breakdown of Requests by Protocol ents rather than the files that were requested.

Item HTTP | FTP | Gopher | Other 4.2 Response Status Codes

Requests (%) 99.30 | 0.30 002 | 0.38 In this section we analyze the proxy and origin

Content Data (%) 87.70 | 12.10 003 | o017 server response codes for the HTTP requests.
, Table 3 shows the breakdown of the proxy

Avg Content Size(kE) | 106 | 432 144 > response code distribution. Most of the client

Table 3: Breakdown of Proxy Response Codes for HTTP Requests

ltem Successful(200) | Found(302)  |Not Modified(304) Client Error(4xx)  Server Error(5xx) ~ No|Response  Other
Requests (%) 75.6 39 15.9 1.6 15 0.6 0.9
Content Data (%) 99.8 0.1 0.0 0.1 0.0 0.0 0.0

Table 4. Breakdown of Origin Server Responses for HTTP Requests

Item Successful(200) [ Found(302)  |Not Modified(304) Client Error(4xx) ~ Server Error(5xx) ~ No|Response  Othpr
Requests (%) 52.1 39 143 16 0.1 26.9 11
Content Data(%) 77.0 0.1 0.0 0.1 0.0 22.8 0.0

Table 5: Breakdown of HTTP Requests by File Type

ltem HTML | Images |Audio |Video [Format Text Comp Hxe Uncache  Other
Requests(%) 124 731 0.6 0.2 0.0 0.2 02| 01 8.6 46
Content Data(%) 48 47.6 39 19.9 0.2 0.1 58 | 83 4.7 4.7

Page 4 of 12



requests (75.6%) result in the Successful transfefable 5 shows the results of the file type analysis
of the requested document. These responsdsr all of the HTTP requests that resulted in a Suc-
account for almost all of the content data. The nextessful (i.e., status 200) response from the proxy.
most common response is ‘Not Modified” which These results indicate that Images (73.1%) and
makes up 15.9% of all HTTP responses but none oHTML files (12.4%) account for most of the
the content data. These responses indicate cliemequests. 8.6% of the responses were uncacheable.
cache hits that are being validated. This means thBespite the increased bandwidth available to the
client is checking to ensure that the version of theclients there does not appear to be a significant
file it has in its cache is consistent with the latestnumber of requests for multimedia files (e.qg.,
version of that file at the origin server. While theseAudio and Video). However, this may be due in
validations do not reduce the number of requestpart to a lack of multimedia objects on popular
that clients send to the proxy they do reduce théVeb sites rather than just minimal subscriber inter-
volume of content data that needs to be transferredst.

Table 4 presents the results for the origin serveHTML and Image files account for just over half of
response codes. This distribution differs from thethe content data transferred from the proxy to the
results in Table 3 in three ways: there are fewerclients. This is significantly less than the percent-
‘Successful’ responses; there are significantly morage of requests that these types receive, since most
‘No Responses’; and there are slightly fewer ‘Notof the HTML and Image files are quite small (see
Modified’ responses. The first two differences areSection 4.4). The content data is impacted heavily
caused by proxy cache hits that do not require théy the transfer of larger file types such as Audio,
file to be validated. Thus the ‘No Response’ col-Video, Compressed and Executables. While these
umn provides an estimate of the hit rate and bytdypes make up only 1.1% of the requests, they
hit rate achieved by the proxy cache for the data seaccounted for 37.9% of the content data traffic.
under study. The reduction in ‘Not Modified’ . . C

responses from the origin server is caused by thé}"'4 File Size Distributions

proxy responding directly to some of the client val- One of the obstacles for Web caching is working
idation requests. with variable-sized objects. Earlier studies of Web
traffic found that Web file sizes span several orders
of magnitude, from tens of bytes to tens of MB
Our next analysis classifies the types of files beind4][12]. These studies suggest that the distribution
requested by clients. We place each file into one 0bf Web file sizes isheavy-tailed A heavy-tailed
ten categories: HTML, Image, Audio, Video, For- distribution has the property that the tail of the dis-
matted (Format), Text, Compressed (Comp), Exetribution declines relatively slowly [11]. This
cutable (Exe), Uncacheable, or Other types. Theneans that when sampling random variables from
categorization for the cacheable file types is based distribution of this type, the probability of obtain-
on the file extension (e.g.gif and.jpg are ing extremely large values is non-negligible. The
Images,.pdf is Formatted,gz is Compressed, mathematical defin_igon of a heavy-tailed distribu-
.exe is Executable, etc.). The criteria for classify- tion isP[X> x] OX ,X - o0,0<0a<2.

ng a‘flle a? uncacheable areé given in Section 3'31'0 examine a distribution for evidence of a heavy-
The ‘Other’ category contains all files that could

not be classified based on their extension, althoug%aII we plot the complementary distribution (CD)

. . . unction on log-log axes and examine the results
gggcg#;i potentially belong in one of the Oleflnedfor linear behaviour in the upper tail [10].

4.3 File Types

Table 7: Unique File Size Information by File Type

ltem All Files HTML Image Audio Video Format  Text Comp Eixe CJther

Number 16,110,226 | 3,433,769 | 11,033,981 | 136,225 43,583 5,884 | 32,378 49,017 14,488 | 1,360,901
Mean (bytes) 21,568 6,354 14,032 | 135,734 | 1,593,565 | 247,374 | 30,026 | 553,781 | 1,642,792 21,686
Median (bytes) 4,346 3,051 4,694 37,806 925,735 79,920 5,854 92,263 766,692 5,719
Maximum (MB) 148 12.7 89.2 28.5 148 222.1 21.7 86.0 74.1 49.7
Total Size (GB) 323 20 144 17 65 1 1 25 22 28
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In the remainder of this section we examine twoskew is caused by the presence of a few extremely
different file size distributions. In Section 4.4.1 we large files. However, Table 7 reveals that no one
analyze the sizes of the unique cacheable filefile type is responsible for the presence of these
requested in the access log. In Section 4.4.2 wéarge files. In fact, all of the classes contain some
study the sizes of all Successful HTTP responsesxtremely large files. We confirmed that these large

from the proxy. files did indeed exist on the Web by downloading
them ourselves. We speculate that these extremely
4.4.1  Unique File Size Distribution large transfers are a direct result of the increased

bandwidth available to the clients, since it is

(?]ur first analysis ixﬁm'nes t?e S|Oz|es_ of eagh il nlikely that a subscriber would be patient enough
that ]:/vas sugcissg_y transterre (e, a "€y \ait more than 6 hours for a 148 MB file to
transfers, as defined in Section 3.4, are not consid; ;- <fer at 56Kb/s.

ered) at least once in the data set. For the purpose

of this study we utilize the initial size recorded for Figure 1 shows the analysis of the size distribution
each unique file. Since some of the unique filegor all unique HTTP files in the data set. We have
change over time so too will the unique file sizeapplied a logarithmic transformation to the file
distribution. However, we believe that the choice ofSizes to enable us to identify patterns across the
which size to use for a file will only affect the Wide range of sizes [25]. Figure 1(a) compares the

parameters of the distribution and not the distribu-empirical distribution to a synthetic lognormal dis-
tion itself. tribution with parameterqu=12.17 andc=2.18.

. . Figure 1(b) provides the corresponding cumulative
Table 7 presents the overall statistics on the Uniqugequency plot. Although there are clearly differ-
files transferred in the data set. These statistiC§ e between the empirical and synthetic distribu-

were C?'C“'atehd for th? fﬁet of all f”:(q“; f”gsz 2Stions, the body of the unique file size distribution
well as for each class of files. A total of 16,110, appears to follow a lognormal distribution.

unique HTTP files were seen in the data set. The

combined size of these files was 323 GB. 90% ofWWhile most of the unique files requested in the data
the unique files were either HTML or Image S€t were less than 64 KB in size, a few were sub-
objects. However, these objects account for onlystantially larger. Figure 1(c) shows the CD plot for

51% of the total size. 40% of the total size is due tothe tail of the unique file size distribution. Since

the presence of a few |arge file classes (Audio,this distribution does exhibit some linear behaviour
Video, Compressed and Executable). in the upper region we conclude that it is indeed

heavy-tailed. We estimate the weight of the tai) (

'I_'he 'medi_an value of the unique file size OIiStribu'from the slope of this linear region [10]. This anal-
tion is quite small at only 4,346 bytes. The mean sis results in an estimate of 1.5 éar

size is several times larger (21,568 bytes). Thi
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Figure 1  Analysis of Unique File Size Distribution: (a) Frequency; (b) Cumulative Frequency
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4.4.2  Transfer Size Distribution 4.5 Usage

Our next analysis focuses on the sizes of _all SUcFigure 3(a) shows the time-of-day analysis for the
cessful transfers from the proxy. We do not includeHTTP requests and content data traffic. From this
the transfers that we believe to have been abortedigure it is obvious that the proxy workload is
Table 8 presents the overall statistics on the sucaffected by the daily routine of the subscribers. The
cessful transfers, for all transfers (Xfers) as well asyorkload is lightest in the early morning when
by file type. The decrease in mean and mediamnost users are likely sleeping. Usage increases
sizes between Table 7 and Table 8 for the overallhroughout the morning and afternoon, with flat
distributions indicates that the smaller unique filesperiods around the lunch and dinner hours. Peak
tended to get requested more often than the larggsage occurs in the evening, when most subscribers
ones. However, for the Video and Executablegre presumably home from school or work and
classes, the mean and median sizes increased, in(ﬂiave time to use their computers. Figure 3(b)
cating that the larger files were slightly more popu-shows the breakdown of the proxy workload by the
lar in these classes. Table 8 reveals that HTML andjay of the week on which the requests were made.
Image files accounted for most of the requestsas with the time-of-day results, the day-of-week
(86% of all successful transfers, 94% when onlyysage is obviously affected by the routines of the
the cacheable responses are considered). The trangsers. For example, the peak usage occurs on
fer of large file types (Audio, Video, Compressedweekends when most subscribers are likely at
and Executable) accounted for 38% of the contenhome.

data transferred even though only 1% of the

requests were for files of this type. Figure 4(a) shows the level of proxy usage over

time. This figure reveals that the number of HTTP
Figure 2 shows the frequency and cumulative frerequests per day and the daily volume of content
quency histograms for the successful transfer sizgata increased during the five month measurement
distribution. The body of the successful transferperiod. Note that the y-axis in Figure 4 ia logarith-
size distribution appears to follow the lognormal mic, so even a slight increase in the slope indicates
distribution (1=11.68, 0=2.24) quite closely, as significant growth, During this time the number of
was the case with the unique file size distribution.HTTP requests per day increased by 83%, or an
The tail of the successful transfer size distributionayverage of 12.8% per month, while the volume of
is shown in Figure 2. This distribution appears toHTTP content data grew by 92% (13.9% per
be heavy-tailed withn estimated at 1.5, the same month).

as for the unique file size distribution,

Table 8: Successful Transfer Size Information by File Type

Item All Xfers [HTML |[Images |Audio ideo Format  Text Gomp Exe Upcache  Other

Number (000s) 75,617 9,387 55,284 454 127 9 117 134 42 6,510 3,553
Mean (bytes) 14,660 | 5721 9,540 | 95,694 1,732,027 | 252,666 | 12,319 | 480,076 | 2,192,718 8,018 | 14,466
Median (bytes) 3,450 2,625 3,390 | 41,638 1,076,836 73,000 779 58,962 776,877 4,835 4,760
Maximum (MB) 148 12.7 89.2 285 148 22.1 217 86.0 74.1 123 49.7
Total Transfer (GB) 1,032 50 491 40 205 2 1 60 86 49 48

25 T T T T T T T T T 100
2r 80

15 60 -
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Percentage

1r 40 -
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Figure 2 Analysis of Successful Transfer Size Distribution: (a) Frequency; (b) Cumulative Frequency
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Figure 3  Analysis of Proxy Usage: (a) Time-of-Day; (b) Day-of-Week

Figure 4(b) provides some insights into the growthThis policy works best when the access stream
of the daily proxy usage. This figure shows theexhibits strong temporal locality (i.e., recency of
number of unique files requested per day, the numreference). This means that files that have recently
ber of distinct origin servers contacted per day, andeen referenced are likely to be referenced again in
the number of unique client IP addresses issuinghe near future. To measure the temporal locality
requests per day. The number of unique files grevpresent in this data set we utilize the standard LRU
at a rate of 14.6% per month (98% overall), while stack-depth analysis [1][4]. This analysis deter-
the number of origin servers contacted dailymines the depth in the stack at which re-references
increased by 13.6% per month, or 90% for the fiveoccur. Reference streams which exhibit a high
month period. During this time the number of cli- degree of temporal locality will have a small aver-
ents rose by 11.7% per month (74% overall). Weage stack depth while streams with a low degree of
believe that much of the growth in the workload istemporal locality will have high average stack
due to an increase in the number of clients ovedepths. In order to compare the degree of temporal
time (i.e., new subscribers). This also leads to arocality across data sets we normalize the stack
increase in both the unique files requested per dagtepth by dividing by the number of unique files
and the number of distinct servers contacted. Weequested.

believe that the growth in the workload is partially Table 9 presents the results of the stack depth anal-
due to existing clients using the service on a mor%Sis Due to the presence of requests to the ISP
;e)(%lélsée?ﬁﬂ; Osf'tr;:;enfjhrﬁbg:%vﬁg 'Seggnﬁgtsdzé erver in this data set, the degree of temporal local-

9 ' Pe l'rlty is stronger than has been reported for other
late that users began to download more large f”?%é

as the subscribers became more comfortable usi foxy workloads. For example, Barfordt al.
ported a normalized mean stack depth of 0.2340

the Web. for a recent proxy workload [7]. However, the
4.6 Recency of Reference degree of temporal locality reported in Table 9 is

: o still significantly weaker than that of Web servers
Most Web proxy caches in use today utilize the

Least Recently Used (LRU) replacement policy.

lel0 T T T T 1,000,000

1€9 L i i
le8
le7
le6 i
le5
led
le3
le2
lel -

10,000

Number

1,000 i 7

Count

100 -

10 +

January February March April May January February March April May
Requests ] —— Files e Servers - Clients
(a)

Figure 4  Growth Trends: (a) Proxy Workload; (b) Unique Files, Origin Servers and Clients

[ Content Data
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(e.g., the normalized mean stack depth for theall unique files received 78% of the requests); and
World Cup Web site was 0.015 [2]). unpopularfiles (the remaining 63% of unique files
were requested only a single time; we refer to these
Table 9: Stack Depth Analysis for HTTP Requests ~ as “one-timers” [4]). The presence of large num-
bers of one-timers has been observed in numerous

Median Stack Depth 60,564 other proxy workloads [5][19][20][21]. This char-
Mean Stack Depth 639,412 acteristic is significant as there is no benefit in
Standard Deviation 1,489,815 caching a one-timer. Cache performance could be

, improved if these files could be readily identified
Maximum Stack Depth 16.102,789 so that they would not be stored in the cache. A
Normalized Median Depth 0.004 more thorough discussion of one-timers is pro-
Normalized Mean Depth 0.04 vided by Mahanti and Williamson [21].

Figure 5(b) indicates the popularity of individual
files in the data set. This distribution appears to be
Several recent studies, including [4],[8],[13] and Zipf-like with a estimated at 0.79 (a thorough dis-
[21], have found that some Web objects are subeussion of Zipf-like distributions is provided in
stantially more popular than others. That is, Web[8]). Similar observations have been made for other
referencing patterns are non-uniform. We performproxy workloads [7][8][21].

two analyses to determine if this characteristic is

also present in the data set under study. One analf'—'8 Origin Servers

sis examines the concentration of referenceSeveral recent studies have examined the reference
among the unique files. In this analysis the uniquepatterns to origin servers in proxy workloads
files are sorted into decreasing order based on thg][24]. These studies found that some of these
number of times that they were requested. We themorkloads exhibit non-uniform referencing pat-
determine the fraction of all client requests forterns to origin servers. In this section we analyze
each of these files. The second analysis determinesur data set for this characteristic.

a file’s popularity. The unique files are again sorte
into decreasing order based on the number of time
they were requested. Each file is then assigned

rank, with rank 1 given to the file with the most ref- . ) : -
tration of client requests to all of the unique origin

erences and ranlN (assumingN unique files) 4 duri h iod
granted to the file with the fewest requests. Thesrirver's contacte uring the measurement period.
results of these analyses are shown in Figure 5. & disparity between the extremely popuilar sites
and the moderate and unpopular sites is much
Figure 5(a) indicates that the referencing patterngreater than was the case with the unique files. For
for HTTP files in this data set are definitely non- example, the top 1% of origin servers (about 2,500)
uniform. Three distinct groups of files can be iden-were the intended recipients of 65% of all client
tified in this figure:extremely populafiles (the top  requests (caching at the proxy reduces the number
1% of the unique files received 39% of all client that actually reach these servers). The top 10% of
requests)moderately populafiles (the top 37% of  the distinct origin servers were the target of 91% of

100 T T T T 1le+06

4.7 Frequency of Reference

he results in Figure 6 indicate that the reference
atterns to origin servers are non-uniform for the
ata set under study. Figure 6(a) shows the concen-
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Figure 5 Frequency of Reference Analysis: (a) Concentration of References; (b) File Popularity
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Figure 6 Analysis of Reference Patterns to Origin Servers: (a) Concentration of References; (b) Server Popularity

all client requests. Figure 6(b) shows the number oshows the results when the 500 most popular files
requests that clients issued for each of the uniqu&om the first day of the measurement period are
servers. For example, more than 500,000 requestompared to the top 500 files for each subsequent
were issued for each of the top ten serversday inthe data set. The graph indicates the percent-
Figure 6(b) appears to be Zipf-like for the serversage of files that are common to the active sets from
that were the intended recipients of more thanDay 1 and DayX. Figure 7 reveals that some files
1,000 requests. For this portion of the graph wehave very short popularity, as only about half of the
estimatea at 0.83. popular objects from Day 1 remain popular on the
following days. As time passes fewer and fewer of

We also examined the temporal locality in refer- e obiects that were pooular from the first da
ence stream to the set of origin servers accesseEp. ) bop day
remain popular. However, some of the objects

Since clients typically issue multiple requests to a__, ... ] i
ypically P g exhibit long-term popularity, as even after five

zfﬁ:;/gg nw?a S:)?F:LE,; réofooééznz ﬁégﬁéf%%%r:cejz %r onths 20% of the active set from Day 1 are still
locality than for the references to unique fiIes.pOpu.Iar' We also performed this test for _dn‘_ferent
Table 10 reveals that this is indeed the case. starting days. The resulf[s. were very similar to

Figure 7. Mahanti and Williamson have observed
similar behaviour in the proxy workloads that they
examined [21].

Table 10: Stack Depth Analysis for Origin Servers

Median Stack Depth 4 0 ;
4.10 Proxy Performance
Mean Stack Depth 725 y
Standard Deviation 6.750 Our final analysis examines the performance of the
: proxy for several different cache actions: cache
Maximum Stack Depth 252,909 hits; cache hits requiring origin server validation;
Normalized Median Depth 0.00002 cache misses; and uncacheable requests (must be
Normalized Mean Depth 0.003 handled by the origin server). We measure the per-
formance of these actions by the bandwidth
4.9 Turnover received for the response. The bandwidth is calcu-

In this section we examine the turnover that occurs
in the set ofactive documentdn other words, we
want to determine how the set of files that users ar
interested in changes over time. This characteristi
is important as one of the responsibilities of a & ¢°

\/\WVW\/W

100

N

ained lgr’ochay 1

cache management policy is to identify the set of &
active documents and keep a cached copy. If the?
active set changes with time then the cache man-
agement policy must be able to adjust accordingly.

40

1V

20 M

f Adt

5]
S

. . . 0 L . . .
Our analysis consists of selecting a set of popular  Januay February March — April  May
files and observing how that set changes in differ-
ent fixed-length intervals of the data set. Figure 7Figure 7 Turnover in the Set of Active Documents
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20 : : : these characteristics, including file sizes, recency
of reference, frequency of reference and turnover
i in the set of active files, are important to consider
e when choosing a cache replacement policy. A
e number of the other characteristics, such as the
protocol, the file type and the origin server refer-
encing patterns suggest that alternative approaches

15

Bandwidth (log 2 bytes/second)
X

°s 10 15 20 25 to cache management, such as partitioning, may be
Response Size (log 2 bytes) . . .
_ ' appropriate. We address both of these issues in a
,,,,,,,,,,, it Validation T Dynaic Requests separate paper [3].

Many of the characteristics we observed in this
proxy workload were similar to those found in dif-
ferent environments by other researchers. We
believe that some of these similarities are influ-
enced by the current design of Web sites. We spec-
Figure 8 compares the median achieved bandwidthlate that as content providers redesign their sites
for the different cache actions when transferring ato target users with high-speed Web access, charac-
response of a given size. Unfortunately theteristics like the file type, file size and transfer size
recorded response time is missing the time to sendistribution will also change, and may vary more
the last TCP window (32 KB or®? bytes on the substantially between users with high access
proxy we examined). This causes our results tespeeds (e.g., cable modems, DSL) and those with
overestimate the actual bandwidth for files lesdower speed access (e.g., dialup modems, wireless
than 32 KB, particularly for the cache hits. Sincedevices).

the response time for cache misses is dominate_d bl¥1 order for caching to be a viable long-term solu-
the time it takes to get the response from the oNgin. o for the scalability problems of the Web the

server, these results are not affected as mUCh'a'orit of client requests must be for cacheable
Despite these problems, Figure 8 still indic:atesthaf.nJ y 9

S . iles. During our study we observed that the per-
the proxy cache was able to significantly improve .
: . ., centage of cacheable responses increased over
the “user experience” (at least for large transfers)

as the achieved bandwidths for cache hits are Z_Hme, albeit relatively slowly. Feldmaret al. [15],

. i . Hsing traces of HTTP request and response head-
times higher than for cache misses. As expecte : -
ers, have shown that in addition to responses that

the bandwidths for uncacheable responses are the .

. afe dynamically generated (those that were deemed
lowest of all the cache actions. These responses . .
. L Uncacheable in this study) many other responses
incur an extra penalty as the origin server must cre-

: . are also uncacheable at proxy caches due to the
ate the response rather than just return a static meheaders issued by either the client or the origin

5 Summary and Conclusions server. Obviously this trend, should it proceed
unchecked, could severely limit the usefulness of

This paper has presented a detailed workload chafuep, caching. We believe that there are two major
acterization study of a busy Web proxy server. OUle, 65 for this trend: the failure of the existing
results suggest that user access patterns changg hing architecture to provide the functionality
when the client’s connection to the Internet is not &, .o ded by users, ISPs and content providers, and a
bottleneck. In particular, users appear to be more, | o understanding regarding how to properly

willing to request extremely large files (e.g., tens or ;sa  the existing technologies. Much effort is
hundreds of MB in size) when access bandWidth%quired to address both of these issues.

are increased substantially. This behaviour places

even more load on Web servers and Internet backAcknowledgments
bones. The importance of proxy caching increase
under such circumstances.

Figure 8  Achieved Bandwidth for Various Cache Actions

lated by dividing the response size by the total
response time recorded in the access log.

Fhe authors would like to thank Mike Rodriquez of
Hewlett-Packard Laboratories and all the people in
The results of this workload characterization studyHP’s Telecommunication Platforms Division who
revealed numerous characteristics that couldupplied us with the access logs used in this
impact the performance of a Web cache. Several ofesearch.
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