
Optimizing Random Patterns for
Invariants-Based Identification

Maurizio Pilu
Personal Systems Laboratory
HP Laboratories Bristol
HPL-1999-45
March, 1999

E-mail: mp@hplb.hpl.hp.com

random point
patterns,
invariants,
optimization

This paper addresses the optimization of pseudo-random
planar point patterns for invariant-based identification
or indexing.  This is a novel problem and is formulated
here as the maximization of the spacing of all the
invariants when considered as points in a space. The
task is of formidable complexity and a stochastic
approximation strategy is proposed that yields
interesting results.

  Copyright Hewlett-Packard Company 1999

Internal Accession Date Only



Optimizing Random Patterns for

Invariants-Based Identi�cation

Maurizio Pilu

Digital Media Department

Hewlett-Packard Laboratories

Bristol BS12 6QZ, UK

mp@hplb.hpl.hp.com

March 8, 1999

Abstract

This paper addresses the optimization of pseudo-random planar point patterns

for invariant-based identi�cation or indexing. This is a novel problem and is

formulated here as the maximization of the spacing of all the invariants when

considered as points in a space. The task is of formidable complexity and a

stochastic approximation strategy is proposed that yields interesting results.

1 Introduction

Pseudo-random point con�gurations can be used for many vision tasks, both
active and passive.

An example is the projection of a pseudo-random light pattern onto an
arbitrary object to easily perform stereo matching [15] or depth estimation by
triangulation [12]; random patterns have several advantages over time/color
coded patterns in that they are much easier to generate and tends to be
more robustly detected. Another example is robot navigation, where pseudo
random robust landmarks are placed in the environment as beacons or ref-
erence points. The use of the arrangement of the random points for labeling
is attractive in some situations because it can be performed more robustly
than by proliferating the landmark types (such as di�erent shapes, colors,
etc). [12]. Random patterns are also applied to motion tracking from laser
speckle, (which has recently found some exotic applications such as a digital



microphone [6]) and employed in some products such as the Logitech Marble
mouse.

In most cases, pseudo-random patterns are used to identify and label a
particular image region through their various, yet unique, local structures.
Methods for matching random local structures include syntactic techniques
(such as graph matching), cumulative (such as correlation), etc.

Alternatively, or in addition, to these methods, the use of projective in-
variants provides either an classi�cation measure or an indexing tool which is
insensitive to surface position and camera geometry; invariants have proven
invaluable to curb the complexity of the search by order of magnitudes [7, 10].

This paper is concerned with a new problem, namely the generation of op-
timum pseudo random point patterns for invariant-based identi�cation and
investigate the problem for the particular case of the 5-point projective in-
variants [13].

The aim is to �nd con�gurations of planar points, each con�ned within
a bound, that maximally space the distance between all the invariants com-
puted with a given neighborhood structure.

Besides application to the aforementioned domains, this problem is per

se of theoretical interest and its analytic solution would be extremely chal-
lenging, if not impossible. In this paper the optimization is achieved through
stochastic approximation that iteratively adjusts the position of the points
in the pattern while trying to maximize a spacing measure between the in-
variants.

In the rest of the paper, we �rst review some previous work in pseudo-
random pattern optimization. Next we describe the �ve point invariants and
explain the nature of the problem. Then the task is formalized and details
to the solution are given. Finally, some results are presented for two speci�c
cases that validate the method.

2 Previous works in pattern optimization

The use of projected pseudo-random patterns for active stereo or monocular
triangulation has been subject to frequent investigations, of which we can
cite just a few [15, 12, 14, 4].

Despite their intrinsic practical justi�cations, interesting theoretical prob-
lems were spun o� by some authors on how to generate patterns that were
optimal in some sense. In [12], for instance, a set of distinct landmarks are
arranged as a regular grid but the types are shu�ed such as to maximize the
Hamming distance between neighboring windows. In [4] a methods is pro-
posed to generate a pseudo-random colored pattern to make labeling local
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and easier. Some other works are concerned with optimizing spatial-temporal
pseudo-random patterns. For instance [5] uses Hilbert space �lling curves to
generate sub-optimal patterns layers whose local structures could be more
robustly discriminated.

The present work is the �rst to address the optimization of random point
patterns in order to make invariant based identi�cation or indexing easier.

3 Planar projective invariants and their use

In general, an invariant is a property of a geometric structure that remains
unchanged under some transformation. In this paper we are concerned with
one of the most useful invariants for computer vision, the so called �ve-point

invariants.
Given �ve coplanar points pi1

;pi2 ;pi3 ;pi4;pi5 , with pk = [xk yk 1]
T , two

functionally independent invariants can be derived from the properties of the
cross-ratio as the ratios of the following determinants:

�0 =
jm431jjm521j

jm421jjm531j
�00 =

jm421jjm532j

jm432jjm521j

where mlmn = [pi
l
j pim j pin ] and jmj is the determinant of m.

The invariants of �ve coplanar points and their �ve-lines duals (hence-
forth called just invariants) have been used in numerous occasions in object
recognition and indexing (e.g. [7]), texture analysis [2], robot navigation [11]
and more.

4 Origin of the problem

Given a random point pattern and a particular way of computing invariants,
one has to wonder whether these invariants are distinctive enough to allow
safe discrimination of local unique con�gurations.

In Figure 1-top-left we show a random point pattern generated by per-
turbing the nodes of a planar, regular lattice with uniform isotropic noise.
Let us use a 4-neighborhood structure (more in Section 5) to compute the
invariants. We can map all the invariants �0 and �00 thus calculated onto a
invariant plane and have a visual feeling of how spaced they are (Figure
1-top-right).

It can be noticed that some lie very close to others and, given the par-
ticular chosen neighborhood structure (with the �rst point arranged at the
center of the other four), the points are distributed in a buttery-like cloud,
with high density near the (1,1) point. However, they never coincide.

3



0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4

0.5

1

1.5

2

2.5

3

3.5

4

i’

i’’

0 0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

3.5

4

4.5

i’

i’’

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

i’

i’’

Figure 1: Top-Left: Random point pattern. Top-Right: Invariants. Bottom-
Left: Noise propagated to the invariants. Bottom-Right: Blow-up around
the (1,1) area.

The picture changes if we consider the points in the con�guration with
some positional uncertainty. By using a Monte Carlo technique, we can simu-
late what happens in the invariant plane to the invariants. In all experiments,
the noise given to the points was equivalent to �1=4 pixel in a 512x512 image.
Figure 1-bottom-left shows that when the uncertainty envelopes are taken
into account, the points cannot be considered separated any more and the
classi�cation could now be troublesome. Note that the noise envelopes are
elongated and point to (1; 1), reecting, again, the particular neighborhood
structure utilized for the experiment.

Not much work has been dedicated to the study of the noise properties
of projective invariants. Forsyth et al. [3] proposed a simple linearized error
propagation formula and performed stability testing for their recognition
system. The classi�cation problem in presence of noise has been well explored
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by Meer et al. [10] who proposed several techniques reduce misclassi�cation
with uncertain data, and Maybank [9], where trade-o�s in the use of the
cross-ratio for model based visions were analyzed to avoid degenerate cases.

5 Problem de�nition

Let P = fp1:::png a set of n points in the real plane de�ned as pk = fxk; yk 2
<g.

We can de�ne a neighborhood structures of each point to compute the
�ve-point invariants N de�ned as:

N (pk) = fpi1(k)=k ::: pi5(k)g

Note that for an arbitrary N , in general for j 6= k it is fi1(j):::i5(j)g \
fi1(k):::i5(k)g 6= �, that is 5-tuples could have points in common or, in
topology terms, N is not necessarily a Hausdor� neighborhood structure.

Let us now de�ne the set of m distinct neighborhoods T over the set P
de�ned recursively as

T = T [ fTj = N (pk) : Tj: 2 Tg; k = 1::n

Each neighborhood is used to compute the two �ve-point invariants �0

and �00 which we map onto a invariant plane as a point that henceforth will
be just called invariant point ij = f�0(Tj); �00(Tj)g. Let also de�ne the set of
all the m invariants I = fi1 ::: img.

We should now de�ne a measure E of I that reects the "spacing" of the
ijs in the invariant plane.

A straightforward solution would be to use the sum of distances or some
form of system energy using a electrical particle analogy. However, simula-
tions showed that these global metrics does not reect the spacing between
single particles in sub-optimal situations1.

One of the possibilities is to use the sum of nearest-neighbor distances:

E(P ) =
mX

k=1

k ik � ic(k) k
2

where c(k) 2 f1::mg is the index of the closest invariant point to any given ik.
Later we will refer also to the same metric applied to the q% of the invariant
points that are the closest to others and will be referred as Eq.

1In particular, clusters of invariant points tend to form and act as a single entity while

retaining similar global energy, as it happens in some real particle systems.
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Once the neighborhood structure is chosen the measure E depends only
on the point con�guration P .

The optimization problem can then be expressed as

P̂ = argmax
P

E(P )

subject to
pk 2 Bk; k = 1::N

that is we seek a con�guration of points that maximizes the spacing in the
dual invariant plane while keeping the points themselves within given bounds
Bk.

6 The approximation method

In this section we describe the approximation method we have utilized to
achieve a (sub-)optimum pattern in the E sense.

This is a multivariate, constrained optimization problem where the maxi-
mizer functional is in general a non-analytic function of the variables p1:::pn

(due to the closest neighbor spacing measure).
After some experimentation with general purpose optimizers (such as

simulated annealing) we have tailored a greedy approximation method that
combines simultaneous stochastic perturbations of the pattern points and
local gradient ascent.

The algorithm is summarized in the following. Starting from the initial
point con�guration, gradient ascent (Section 6.1) is applied until there is
no improvement in E. At this point we simultaneously perturb the point
con�guration (Section 6.2) and repeat until the situation improves. If the E
increases, then we start hill climbing again. If there is no improvement after
100 repetitions, the procedure stops.

In the implementation, a state is accepted only if E25 (Section 5) has
improved and the minimum distance between two invariant points has not
diminished. In fact, random perturbations that turn out good in \jammed"
regions might move relatively isolated invariants closer to others which would
cause a decrease in E and if this precaution was not taken many fruitful
transitions would be wrongly rejected.

6.1 Local Gradient Ascent

Once a random perturbation has been accepted, gradient ascent is performed
in order to improve the estimate.
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The point con�guration is updated according to the following rule:

pk  pk + wk

@E

@pk

(1)

or more speci�cally for each coordinate:

xk  xk + wk

@E

@xk

yk  yk + wk

@E

@yk

where the wk are weights that will be discussed later.

From Equation 5 we have

E =
mX
k=1

(�0k � �0c(k))
2 +

mX
k=1

(�00k � �00c(k))
2

and thus (equivalently for the yk)

@E

@xk
=

X
8j:pk2N (pj)

2
�
�0j � �0c(j)

� @�0j
@xj
�

@�0c(j)

@xj

!
+

X
8j:pk2N (pj)

2
�
�00j � �00c(j)

� @�00j
@xj
�

@�00c(j)

@xj

!
:

Note that the above sums are extended to all invariant points calculated

with a neighborhood of which pk was part.

The invariants �0 and �00 are rational polynomial in ten variables and

their derivatives are exceedingly cumbersome to extract so the math package

Mathematica was used for their computation. They are omitted here for

reason of space.

Given the non-convexity of these invariant functions, it is important that

the wk are chosen carefully in order to avoid over-relaxation. Classic opti-

mization literature (see also [1]) suggests that wk be equal to w=@
2E

@p2
k

, where

0 < w < 2 to ensure convergence. In our case the second derivatives have

such horrendous form that they are computed numerically using the deriva-

tives from the previous iteration. At the �rst iteration of a hill climbing

phase, all wk are set to a very small value (10�6).

Note that during this phase, the c(i) are not changed, that is there is

no ipping of the closest point to any given ij. This shrewdness allows a

meaningful computation of the second derivatives and ensure continuity in

the approximation.
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In particular situations an application of Equation 2 could make one or

more points fall outside the bounds Bk. If this happens, point movements

are clipped at the boundaries.

6.2 Random perturbations

In order not to get away from local maxima, the coordinate of each pk in the

point plane are perturbed with random Gaussian noise of variance uxk and

u
y
k.

We found that the success of random perturbations depend on the number

ns of points perturbed, which is normally rather small. The ns points are

randomly chosen such that points that are the closest to others are given

higher probability of being selected.

The entity of the perturbation of a chosen point pk is determined by how

close to other invariant points the invariants computed with the point pk are

and by how many iterations have been carried out.

The empirical rule used is:

uxk = u
y
k = exp

�
�

t

K

� 
�

dmin

k ik � ic(k) k2

!

where t is the number of successful iterations, K is a cooling time constant, �

controls the amount of initial noise and dmin is minimum Euclidean distance

between two invariant points in I.

Hence, the noise is made decrease with t (or temperature), very simply

simulating the behavior of multi particles systems. The dependence on the

distance has been introduced to encourage invariants jammed in tight sub-

con�gurations to jump out with higher probability than points in relatively

sparser regions of the invariant plane. Note that care is taken so as to make

the perturbation of the points fall inside their bounds Bk.

The \random walks" and the cooling are inspired by those of Simulated

Annealing [8] but note that we never accept worse states and we also change

the level of perturbation according to the point position and the temperature

(t).

This method for generating random walks for this particular problem has

been re�ned over several experiments but it is quite possible that there are,

as for most optimization methods, other alternatives that are as e�ective if

not better.
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Figure 2: The two neighborhood structures analyzed. See text for details.

7 Cases analyzed

In this section experimental results are presented that show the e�ects of the

optimization procedure.

Experiments have been carried out for two di�erent neighborhood struc-

tures, which are shown in Figure 2.

Case A (left) is a Hausdor� structure Na where the neighborhoods do not

intersect; by de�nition, this case could be analyzed by having all the 5-tuples

expressed with respect to canonical or Bookstein coordinates2 but they are

arranged on a plane for the sake of visual clarity. The second case B (right)

is a non-Hausdor� structure Nb and �ve invariant points are computed for

each point (as opposed to just one for Na). In both cases, points are free to

move in square bounds but cannot trespass them.

It can be easily seen that the case of Nb is more complicated and inter-

esting because a change in a point a�ects �ve invariants, which are now cor-

related; as we shall see, this makes the optimization problem all the harder.

Other structures could have been investigated and those illustrated here

are by no mean intended to be the best ones for recognition tasks. However,

once a neighborhood structure is chosen, the present method could be applied

2
A convenient system of shape coordinates consisting of the coordinates of the points

3, 4 and 5 after the 5-tuple is rescaled and repositioned so that point 1 is �xed at (0,0)

and point 2 is �xed at (1,0) in a Cartesian coordinate system.
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straight away.

In the experiments that follow we used the following common values for

these constants: � = 0:01, K = 300 and w = 0:5.

Note that in order to make the situation more realistic, the position of

the pattern points were rounded o� to simulated a 1/4 pixel sub-resolution

of a 512x512 image.

Figure 3 shows an example of a random grid of 39 by 39 points with

a Na structure. The top row shows the initial and the optimized pattern,

the second row the central densest region of the invariant plane before and

after the optimization. The graphs show the evolution of the average of the

bottom 25% d25 inter distances between invariants (left) and the minimum

distance dmin(right). As it can also be seen visually, the d25 is about 2000%

bigger and dmin has increased by 3 order of magnitudes. The �nal result was

obtained in 1500 true iterations.

Figure 4 shows an example of another random grid of 20 by 20 points, this

time with the more complex and interesting Nb structure. The optimization

took much longer (5000 iterations) and predictably so, since local interactions

cause good isolated changes to take several iterations to a�ect the global

con�guration [1]. Random perturbations of points are also less probable to

be good, as they a�ect several invariants at the same time, and not always

with concomitant increase in their inter-distance to the respective nearest

neighbors. Having said so, the results are nonetheless good, with d25 up

900% and dmin up 2000%.

Several runs on the initial data con�rmed that the results are always

di�erent and hence suboptimal, which could also be suspected by the non-

asymptotic look of the graphs. The quality of the results is greatly a�ected

by the choice of � as well as the cooling schedule and the average number of

simultaneous random perturbations. In the �rst case ns of 4-6 were perfectly

acceptable, whereas for the second case, perturbations with more of 3 changes

were rarely successful.

8 Conclusion

This paper proposes the problem of optimizing pseudo-random point pat-

terns such that all invariants computed locally are maximally spaced and a

stochastic approximation algorithm is described to do so.

The method could �nd applications wherever arti�cial patterns are pro-

jected or placed to uniquely identify a particular local neighborhood.

Future work could account for the uncertainty envelopes, rather than

just distance of the invariants, as it is the uncertainty envelopes we would
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like to space apart. Another interesting avenue would be to integrate the

error measure based on invariant distance with other discriminant, such as

correlation scores, in order to generate patterns that are (sub)optimal in

several senses.
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Figure 3: Case A: Top row: initial and optimised patterns; Mid row: initial

and �nal blow up of the densest areas of the invariant plane displayed at the

same scale; Bottom row: convergence graphs showing the bottom 25% and

the minimum distances between invariants versus the number of succesful

iterations.
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Figure 4: Case B: Top row: initial and �nal optimised patterns; Mid row:

Initial and �nal blow up of the densest areas of the invariant plane displayed

at the same scale; Bottom row: convergence graphs showing the bottom

25% and the minimum of distances between invariants versus the number of

succesful iterations.
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