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1 Introduction
There is an increasing prevalence of IPSec Virtual Private Networks (VPNs) based around an
approach of inserting a plug-in into the network protocol stack of mainstream operating-systems.
This plug-in typically redirects any incoming or outgoing network packet in order to perform
IPSec-specific processing such as encryption or decryption. This approach is well understood
and has been mentioned in many standard texts, most notably the IETF RFCs for IPSec [2][3].

However, this approach is not without its weaknesses. The important, but often conflicting
design goals of security, performance and robustness often leads to cases where the development
of one goal requires trade-offs in the other. For example, placing IPSec-processing in the kernel
or operating system level is desirable performance-wise because of copy-avoidance of packets
between kernel and user-mode spaces. However, the kernel or operating system can be
compromised if an error occurs in the network protocol stack.

This report attempts to describe another approach that seeks to avoid some of these issues by
compartmentalizing the components of a traditional VPN into isolated, independent processes.
In particular, we aim to show how a more secure version of a conventional VPN can be built to
make use of the security-features present in a trusted operating system and also satisfy the goals
of high-performance and robustness.

The techniques used in designing a more secure VPN will typically introduce performance
degradations that are otherwise not present on a standard VPN-design. For example, the general
principle of reducing a monolithic system to a series of smaller, trusted components involves
added overhead in synchronization between these components. Therefore, the issues of security
and performance have to be considered as inextricably linked. These two issues, together with
robustness, is fundamental to many of the topics presented here.

This report describes the design and operation of the Vaulted VPN, which is a software-based
IPSec VPN built on a slightly modified version of the HP-UX 10.24 Virtual Vault Operating
System. We begin by describing briefly the security-features of HP-UX 10.24 relevant to the
Vaulted VPN and continue by describing the architecture and operation of the Vaulted VPN,
followed by a security analysis of each aspect of VPN’s operation.

We also show how compartmented VPNs such as the Vaulted VPN can take advantage of
parallel processing and how they can continue to function even if some portions fail – not an
unimaginable occurrence given the many well-documented attacks using malformed IP packets
[19] [20]. This represents an unexpected level of robustness considering the monolithic nature of
most network protocol stacks.

Although this report mentions the use of HP-UX 10.24 specifically as a target platform, the
principles shown here could be applied to full-blown CMW platforms [9] such as HP-UX 10.26
or Sun Microsystems’ Trusted Solaris 2.5.

2 Features of the HP-UX 10.24 Virtual Vault Operating System
The target platform of the Vaulted VPN is the HP-UX 10.24 Virtual Vault Operating System.
The HP-UX 10.24 operating system is a UNIX-style Multi-Level Secure (MLS) operating
system that implements additional security-features beyond those normally available on standard
UNIX systems. It is a CMW-derived operating system [6] [9] and features the Mandatory
Access Controls (MAC) and principles of least-privilege found on full CMW-type systems, but
differs in that it lacks the Trusted Windowing and Trusted Networking features of a full CMW-
type system. This section describes the security-features used by the Vaulted VPN.



2.1 Mandatory Access Control
In addition to the standard UNIX-style security features, HP-UX 10.24 also implements a
Mandatory Access Control policy based on the Bell-LaPadula formal model [11]. Mandatory
Access Control (MAC) is a set of rules that govern how data may be accessed on the trusted
system. The policy is called mandatory because users cannot choose which data will be
regulated under this policy – the trusted system enforces MAC consistently. In this model, all
resources or objects in the system are given sensitivity labels, which consists of a classification
and a number of compartments. Access to an object is controlled by its sensitivity label. To have
read-access, a process must have a sensitivity label which ‘dominates’ that of the object being
read. For write-access, the labels must match exactly.

2.2 Discretionary Access Control
HP-UX 10.24 has discretionary access controls (DAC) which are similar to those found on
standard UNIX systems, specifically the read-write-execute mode-bits based on user and group
identities. It is most effective when used in conjunction with Mandatory Access Control, for
example, when used to restrict access to everyone but a special pseudo-user used by specific
trusted processes.

2.3 Least Privilege
On a traditional UNIX system, the ability to override security controls rests entirely within the
root-account. On trusted systems, this all-powerful ability has been broken down into a large
number of individual privileges, each of which confers its holder the ability to perform a specific
action. Every action that could affect security is restricted with a named privilege, and only
processes with the appropriate privileges are allowed to perform these actions. Following the
principle of least privilege, this finer level of granularity allows specific programs to be assigned
with the minimum-required set of privileges in order for them to perform their assigned tasks.

3 Vaulted VPN Architecture
This section gives an overview of the architecture of the Vaulted VPN by describing the purpose
and function of each of its components. An explanation is given on how packets are routed in
and out of the kernel, where IPSec processing takes place and how Internet Key Exchange (IKE)
[1] negotiations are triggered to form IPSec Security-Associations.

3.1 Design of Conventional Bump-in-the-stack VPNs
First, we consider the design of a conventional bump-in-the-stack VPN. Because the kernel on
most operating systems is usually not re-entrant and not directly accessible by user-processes, it
is usually designed in a monolithic fashion. The network protocol stack in such kernels is similar
– packets flowing up or down the stack from various processes (some sensitive, some not) all go
through the same monolithic stack. Therefore, a bump-in-the-stack VPN based on such systems
would naturally share the problems of re-entrancy and lack of segmentation.

However, the nature of the HP-UX 10.24 operating system allows a finer level of granularity
when handling network packets. Since HP-UX 10.24 applies sensitivity-labels to most objects
and resources in the system (including files, processes and network packets), it becomes possible
to segment the data present in such a system based on its sensitivity label.

Since each process is placed at a given sensitivity level, and access to objects at different
sensitivity-levels is controlled strictly by the operating system using MAC controls - one can
imagine that a process at a given sensitivity-level to be in a separate ‘compartment’ from other
processes of differing levels. The term ‘compartment’ is used loosely here to refer to the



segmentation that arises as a result of applying MAC controls to labeled objects, and does not
refer explicitly to the term used in defining sensitivity-labels. This usage is perhaps closer to
what one might intuitively expect when reasoning about isolated groups of processes at different
sensitivity levels.

This feature of segmenting data into different sensitivity levels (referred to from now on as
compartments) can be used to isolate different processes from each other. For example, a
sensitive private-key management agent could be placed in a separate compartment by itself to
isolate it from other less sensitive processes.

3.2 Vaulted VPN: Compartmented Stacks
The principle of compartmentalization mentioned earlier yields an architecture for the Vaulted
VPN where the processing of IPSec packets is broken into separate user-processes, each running
in a separate compartment and handling network packets belonging to the same compartment as
themselves. The traditional monolithic kernel-level IPSec stack has been changed instead to a
series of compartmented, concurrent user-mode processes.

In order to make possible the processing of network packets in compartmented user-mode
processes, the target platform of the Vaulted VPN is a version of HP-UX 10.24 that has been
modified to perform packet redirection by means of a simple kernel-level add-on. The kernel
level add-on is necessary as this particular version of the HP-UX operating system uses a BSD-
style [10] IP stack that needs to be modified to include packet redirectors.

Figure 1 Vaulted VPN architecture showing stacks at different sensitivity levels.

This architecture (see Figure 1) of the Vaulted VPN consists of:

1. a kernel-level add-on for packet redirection from the kernel to a STREAMS [14] device

2. a series of concurrently executing user-mode IPSec stack-processes running in different
compartments. These processes intercept redirected packets from the kernel and perform IP
fragment re-assembly and the actual encryption and decryption of IPSec packets [4] [5].
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3. a user-mode IKE [1] keying-agent, which performs negotiations with its remote peers in
order to derive keying-material in the form of IPSec security-associations for use in
encryption and decryption of IPSec packets. The IKE keying-agent performs the
negotiations needed to derive the keying-material used in IPSec processing. This keying-
material for IPSec security-associations is sent to the various IPSec stacks using a protected
message-queue described later.

3.3 Packet Flow
In the Virtual Vault operating system, each packet travelling up or down the network stack is
labeled with a sensitivity-label. The kernel has been slightly modified to intercept all incoming
and outgoing packets and pass them to a STREAMS-based driver to be queued for further
processing. Once queued at the STREAMS-driver, the packets will eventually be read by a user-
mode IPSec stack and be processed there.

Each IPSec stack is a separate user process linked to the kernel IP-stack via a STREAMS-based
driver. Typically, there is a separate stack for each sensitivity level on the system. Upon startup,
the IPSec stacks send a message to the STREAMS-based driver in the kernel to indicate the
level that the stack is at. Using this message, the kernel demultiplexes the stream of labeled IP
packets to the various user-mode IPSec stacks depending on the value of the label registered
previously.

The ability of HP-UX 10.24 to label network packets within the kernel allows the Vaulted VPN
to distinguish between packets that are destined for different compartments and to route the
packets accordingly. Incoming packets are labeled with the sensitivity-label of the network-
interface from which the packet originated. Outgoing packets obtain their labels from the
security-attributes of the socket that generated the packet. Because all network packets are
labeled internally within the kernel, it is possible to redirect these packets to separate
compartments based on their labels and operate on a compartmented basis.

This implies a use of MAC controls that has not yet been described fully. The notion of handling
and routing packets on a compartmented basis is a logical extension of the segmented nature of
trusted operating systems. Where packets within the kernel used to be processed together
regardless of their labels, there now exists some form of segmentation within the network
protocol stack of the operating system. This notion can be extended to many other system
components, but this report does not explore it any further.

3.4 IPSec Stack - Basic Operation
Each IPSec stack imposes a security-filter on the incoming and outgoing packets. Each time a
packet is received from the kernel, the security policy database [2] internal to the IPSec stack is
consulted to see if the packet should be processed, dropped or bypass IPSec processing. If no
matching entry is found in the policy database, the packet is dropped.

If the policy database specifies that an incoming packet requires IPSec processing, the packet is
then inspected to see if IPSec decryption can take place based on the security-descriptors present
in the packet. If the decryption processing completes successfully, the decoded packet is sent
back to the kernel via the STREAMS-driver to travel up the network protocol stack, usually to a
socket’s receive-buffer.

For outgoing packets, the security policy database is consulted to see if traffic to the destination
specified by the outgoing packet is allowed, and if so, what kind of processing to apply to it. If
the outgoing packet is to be IPSec-encrypted, then the relevant encryption-processing is applied
and the encrypted packet sent back to the kernel to be subsequently sent out the network
interface. Packets banned from transmission by the security policy database are dropped.



3.5 Message Interfaces
The individual IPSec stacks use standard UNIX message-queues to communicate with the IKE
keying-agent. These queues are used to trigger IKE negotiations and to pass keying-material
from the IKE keying-agent to the individual IPSec stacks. The IPSec stacks also use a kernel-to-
user-mode interface in the form of a STREAMS-based driver to send and receive IP packets
from the kernel. These interfaces are protected using methods described later.

4 Compartmented Keying Material
Negotiations to form a new IPSec security-association are normally triggered by an outgoing
packet that does not have a matching entry in the security-policy database. In such a case, a
message is sent to the IKE keying-agent to trigger a new IKE negotiation, which occurs
asynchronously to the processing in the IPSec stacks. The packet in question is queued within
the IPSec stack in anticipation of a successful IKE negotiation. Once the IPSec security-
association is formed, the queued packets are released to be processed internally by the IPSec
stack.

The network packets from IKE negotiations are redirected by the kernel to the IPSec stacks, as it
would do for any normal application. However, the Vaulted VPN is configured to behave as a
pass-through for IKE packets, so that no special IPSec encryption is performed.

4.1 Labeling of IPSec keying material
The keying material derived as a result of an IKE negotiations is labeled according to the
sensitivity-level of the outgoing packet that originally triggered the IKE negotiation. Figure 2
shows how sensitivity-labels of network packets flow through the Vaulted VPN and how they
are used to determine the label of derived keying material.

Figure 2 Determination of sensitivity-level of IPSec keying material
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segmented according to its sensitivity-label (see Figure 3). The keying-material in any given
stack is never duplicated in another, leading to cleanly segmented, non-intersecting subsets of
the original keying-material.

Figure 3 Distribution of labeled IPSec Keying Material
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compartments. Therefore, the safest choice is to place the sensitive components (like the
IKE agent) at the highest sensitivity level possible, assuming that this level is not used by
very many other processes in a properly configured system.

• The chroot UNIX-command is used to place each executable component into a restricted
filesystem to limit the scope of accessible system files should a security breach occur.

As a general rule, the IKE keying-agent is placed into the highest-classification possible to
isolate it from other processes in compartments of a lower classification. The IKE agent
executes with enough privileges to perform certain privileged network operations (such as
binding to the IKE-reserved port number), but is otherwise relatively unprivileged.

The IPSec stacks are given almost no special privileges at all because their activities consist
almost solely of reading and writing to a device file. Therefore, faults in the Vaulted VPN IPSec
stacks do not give root-equivalent access, compared to the situation where a breach in an IPSec
stack situated in the kernel allows access to the entire operating system.

5.2 Compartmented Component Processes
The approach taken here is to compartmentalize the various component processes of the Vaulted
VPN to isolate them from each other and the rest of the system as much as possible.

Figure 4 Crash-isolation between compartments allows a degree of robustness

The individual IPSec stacks are also placed into separate compartments, each at different
sensitivity levels – typically one stack per compartment. By using this approach, a fault in the
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5.4 Protection of component interfaces
There are two main messaging interfaces in the Vaulted VPN which need to be protected:

1. The keying-channel between the IKE keying-agent and the various IPSec stacks

2. The kernel-to-user-mode STREAMS interface between the kernel IP stack and the various
user-mode IPSec stacks

The keying-channel between the IKE keying-agent and the various stacks is a standard message-
queue. Protection of this interface is through a combination of Mandatory and Discretionary
Access Controls. The IKE keying-agent and stacks are launched under a special pseudo-user.
The message-queues are then owned by this pseudo-user by virtue of inheritance and are created
with permissions-bits that disallows access by everyone else. This restricts access to the queue to
the Vaulted VPN components only, since they are the only components on the system that are
configured to use this pseudo-user. In addition, the queue is labeled with the highest
classification possible to protect it from access by processes from lower classifications.

The kernel-to-user-mode STREAMS interface used by the IPSec-stack to send and receive IP
packets utilizes special device-files that also need to be protected. One device-file is created for
each sensitivity level. This ensures that only one interface is accessible at each sensitivity-level.
The other interfaces, which serve to handle IP packets of a different sensitivity-level are not
visible (and hence, not accessible) from processes running at different sensitivity-levels.

The ownership and permissions-bits on each device-file is set to disallow access to everyone but
the special VPN pseudo-user, thereby disallowing access to every other process but the IPSec
stack allocated to this compartment. In addition, the kernel-level STREAMS driver checks the
system-supplied user-context [14] when the device is opened in order to decide if the device is
being opened by a VPN component.

5.5 Preservation of sensitivity-labels across machines
The notion of unauthenticated explicit sensitivity-labels to tag data in labeled IP traffic (e.g.
IPSO/RIPSO [12][13], MaxSix [8]) has given way to cryptographic methods such as those used
in IPSec. However, it would be desirable if the same net effect could be achieved within the
IPSec framework. The solution that IKE provides is the ability to specify security-related
attributes in an IKE quick-mode negotiation [15].

During IKE quick-mode negotiations, sensitivity-labels are passed between the negotiating IKE-
peers to indicate the level of the incoming and outgoing data. This is stored for every security-
association that is formed and is used by the IPSec stack to label processed packets before they
move up the network stack. In this way, data that was labeledsyshion the originating machine is
never “written down” on the receiving end, therefore preserving the sensitivity labels of data
crossing the network.

This occurs without necessarily having to pass sensitivity labels in each transmitted IP packet
because the sensitivity labels are negotiated first with IKE and stored in the corresponding IPSec
security-association used in processing that packet. Packets processed using a particular security
association are checked against the label stored with the security association and relabeled (or
upgraded) as necessary.

5.6 Differences in security with conventional bump-in-the-stack VPNs
The benefits of this architecture are best understood by comparing it against the design of a
conventional bump-in-the-stack IPSec VPN.

• In the Vaulted VPN, the various components and the interfaces between them are protected
by the MAC and DAC controls of the Trusted Operating System. A conventional VPN



running on a mainstream OS lacks the capability to compartmentalize the IPSec stack, and
to isolate keying-material into separate compartments.

• In a conventional VPN, the IPSec stack is usually implemented as a STREAMS-driver or
module (e.g. for Solaris) or as a kernel-level NDIS shim as in Windows NT. A fault in the
stack (possibly caused by the receipt of a malformed packet) could easily lead to corruption
in the kernel and lead the system to crash. In the case of the Vaulted VPN, the IPSec stack
has been pulled from the kernel into user-mode and subsequently split into independent,
compartmented processes. The kernel is less likely to be affected by a user-mode IPSec-
stack crash.

• On a conventional UNIX system, the IKE-daemon has to run as root in order to bind its
socket to privileged port number for IKE [16]. Similarly, in Windows NT, the daemon needs
Administrator privileges to open a similar port. Following the principles of least-privilege,
the keying-agent runs as a relatively unprivileged process. This means that breaking into the
IKE keying-agent does not give root-equivalent access.

The last point mentioned above can be important as the IKE protocol is complex and IKE-
implementations are still relatively new and lack sufficient code maturity to be considered
stable. It is desirable that untrusted IKE daemons not be given root or Administrator access. The
various IPSec stacks also execute as relatively unprivileged processes - reducing the scope of
any damage from break-ins to the stack.

5.7 Other approaches
The choice of IPSec as the network protocol of the Vaulted VPN contrasts with the approach
taken by the HP Praesidium Extranet VPN [17], where the SOCKSv5 protocol [18] is the
choice. IPSec-based VPNs have traditionally been seen to be operating at a much lower level
than SOCKS-based solutions – notions reinforced by the possibility offered by SOCKS to
extract higher-level security-information at the application-level.

This possible advantage is largely negated by the ability of the kernel-component of the Vaulted
VPN to also pass fine-grained kernel security-attributes (derived from the user-processes) to the
IPSec stacks. However, SOCKS-based solutions have the advantage of selectively excluding
non-security sensitive applications from security-related processing, which allows for reduced
overheads.

6 Extensions
This section proposes extensions to the configuration of the Vaulted VPN to increase
performance and robustness. We show how concurrently executing stacks can de-multiplex the
stream of IP packets from the kernel in order to perform IPSec processing in parallel for greater
performance. We also describe how the stacks can be dynamically configured to perform load
balancing and to run in tandem to create multiple, redundant stacks.

6.1 Dynamic Forking for Load-Balancing
IPSec stacks that detect that they are heavily loaded can dynamically fork into two or more
independent stack processes to share the load between them. This mechanism works because of
the way IP packets are de-multiplexed amongst the various stack processes as described in the
previous section. Once the load has dropped to an acceptable level, the stacks can exit and return
to their previous configuration.



6.2 Concurrent Execution of Stacks
Since the IPSec stacks exist as a series of independent user-mode processes, it is possible to
launch as many copies of the stacks as desired. In particular, it is possible to launch two or more
stacks to deal with IP packets for a particular compartment (see Figure 5).

This can be useful when traffic on a particular system is predominantly of a given sensitivity
level. Most mainstream operating-systems feature support for SMP configurations and will
distribute compute-intensive processes to idle CPUs, ensuring that speedups are close to being
linear. Since the IPSec stacks operate by reading and writing packets via a special device-file
tied to a STREAMS-driver [14], it becomes possible to demultiplex the stream of IP packets
from the kernel evenly between any number of stacks.

This happens automatically as a result of processing at the STREAM-head. The stacks
themselves are unaware that they are only receiving a fraction of the normal number of packets
that they would have received if they were the only stack running at that level. A later section
lists some preliminary performance figures.

Figure 5 Configuration illustrating a variable number IPSec stacks per compartment

6.3 Multiple Redundant stacks
If it is assumed that IPSec stacks will suffer from the occasional bug, then the possibility exists
of sending a corrupted packet to the kernel. To help prevent this, it is possible to implement
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Because different implementations will typically have different bugs present, the probability of
any two (or more) implementations having the same bug under the same conditions is very small
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by the kernel then corrupt output can be greatly reduced or even virtually eliminated.
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It is possible to enforce a scheme where remote hosts are accredited with a range of sensitivity-
levels of data that they are allowed to accept. This can be done by encoding the range of
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Figure 6 below shows one such possible encoding for host-accreditation in an X509.v3
certificate. The actual encoding the X509.v3 extension is not described here, although choices
could range from schemes using simple ASCII encoding to using table-lookups.

.... Compartment N

Kernel

Compartment 0 (high load)

IPSec
Stack

STREAMS device

/dev/kpi_N

STREAMS device

IPSec
Stack

IPSec
Stack

IPSec
Stack

IPSec
Stack

/dev/kpi_0



A check can be performed during IKE negotiations to see if the remote host in the negotiations
has been accredited with receiving data of the current sensitivity-level of the packet. If the level
of the packet falls outside the range specified in the certificate, the IKE negotiation can be
programmed to fail. Hence, packets can only travel amongst hosts that have been properly
accredited.

Figure 6 Placement of Host-Accreditation extension in an X509.v3 Certificate

7 Preliminary Performance Measurements
This section lists some preliminary performance figures for configurations of the Vaulted VPN
using multiple stacks per-compartment, as described in the previous section. These figures are
preliminary only and further tests are scheduled to be conducted subject to the future availability
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Configuration Recorded Times (sec) Average Time (sec)

Kernel-mode handling only 9.1, 9.1, 9.1, 9.1 9.1

Kernel-to-user mode transfers 9.5, 9.6, 9.5, 9.5 9.5

Table 1 Transfer times of an 8Mb file using FTP to a HP9000/871 server (unencrypted)

From Table 1, the added overhead is about 0.4 seconds (or about 4% of the original time spent)
which can be considered negligible if the performance gains of subsequently distributing the
load over multiple processors is found to be significantly larger.

7.2 Data transfer rates using multiple concurrent stacks
To show the speedups gained by distributing the IPSec processing across multiple processors,
tests were performed with one user-mode IPSec stack per-compartment versus two stacks per-
compartment. In the latter, the processing of IPSec packets is distributed roughly evenly
between the individual stacks. As above, the test involves two clients each transferring an 8Mb
file from the same HP9000/871 2-CPU SMP server using FTP - this time with Triple-DES and
HMAC-MD5 calculations due to processing IPSec ESP and AH headers. The throughput figures
are shown in the table below.

Configuration Average Throughput per Client (Kb/sec)

1 user-mode IPSec stack per compartment 321

2 user-mode IPSec stacks per compartment 483

Table 2 Transfer rates of single and double-stack configurations

The results show a moderate speedup of about 50% on each client given a 2 CPU system – it is
expected that speedups are similar for a modest increase in the number of CPUs (perhaps up to
4) and clients, although this was not tested due to a lack of time and equipment. A probable
reason why the speedup observed was not linear (in this case, 2X) is the likely saturation of the
single 10Mbits/s Ethernet link. It is expected that significantly better results would be observed
if the tests were carried out using two separate network-interface cards with separate physical
links to each of the two FTP-clients.

Nonetheless, given the potentially larger performance gains of using a multiple-stack
configuration (especially on larger SMP systems with multiple high-speed network interfaces), it
seems reasonable to conclude that the benefits of such scalability outweighs the overheads of a
user-mode design. The Vaulted VPN’s user-mode design offers compartmented processing of
labeled IPSec packets whilst simultaneously allowing for scalable performance gains on
multiple-processor configurations.

8 Summary
Conventional bump-in-the-stack VPNs have well-known security hotspots such as running the
IKE keying agent as root, or placing IPSec processing in the kernel which exposes the kernel to
faults in the IPSec stack. A solution to some of these problems is to remap the design of a
conventional IPSec VPN to a trusted operating system (such as HP-UX 10.24) to take advantage
of the security-features present in such a system. Through the use of a trusted system, further
refinements become possible – the IPSec stack and the associated keying-material can be
compartmented to offer an even greater degree of security and robustness.



The Vaulted VPN architecture features multiple asynchronous user-mode IPSec stacks which
execute concurrently and independently from each other. In HP-UX 10.24, these stacks are
placed in separate compartments and handle only the IP packets that match the compartment that
they’re in. IKE keying-material is distributed to the relevant compartments and not kept in a
single location. Sensitivity-labels of data crossing the network is preserved through the use of
IKE negotiations without requiring the label to be transmitted in each encrypted IPSec packet.

The IKE keying-agent is never run as root to prevent faults in the agent from giving root-access.
Because the relatively unprivileged IPSec stacks are placed in separate compartments, a failure
in one does not necessarily lead to failures or security breaches in another. The Vaulted VPN
IPSec stacks are compartmented, stripped of most privileges and do not possess a complete view
of all the keying material on the system. The various messaging channels between Vaulted VPN
components are protected by a combination of MAC and DAC to offer a higher level of security
than would otherwise be present on a non-MultiLevel Secure operating system.

Because the IPSec stacks are user-mode processes they can be configured dynamically to
execute in parallel for better performance and load balancing. They can also be configured to
form multiple redundant stacks for checking the correctness of processed IPSec packets. Host-
level accreditation in the style of IPSO/MaxSIX can be achieved by reinterpreting the original
mechanisms and performing any needed authentication in the IKE negotiation phase. The failure
or success of forming a security-association is directly tied to IKE negotiations that can be
expanded to encompass other security-models extant.
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