
Formsheets and the XML
Forms Language

Anders Kristensen
Extended Enterprise Laboratory
HP Laboratories Bristol
HPL-1999-41
March, 1999

E-mail:ak@hplb.hpl.hp.com

XML, form,
formsheet,
XForm, XSL

This paper presents XForm – a proposal for a general
and powerful mechanism for handling forms in XML.
XForm defines form-related constructs independent of
any particular XML language and set of form controls.
It defines the notion of formsheets as a mechanism for
computing form values on the client, form values being
arbitrary, typed XML documents. This enables a
symmetrical exchange of data between clients and
servers which is useful for example for database and
workflow applications. Formsheets can be written in a
variety of languages – we argue that the document
transformation capabilities of XSL stylesheets make
them an elegant choice.

 Copyright Hewlett-Packard Company 1999

Internal Accession Date Only

Formsheets and the XML Forms Language
Anders Kristensen

HP Labs (Bristol), Filton Road, Bristol, BS34 8QZ, U.K.
ak@hplb.hpl.hp.com

Abstract
This paper presents XForm— a proposal for a general and powerful mechanism for handling forms
in XML. XForm defines form-related constructs independent of any particular XML language and
set of form controls. It defines the notion of formsheets as a mechanism for computing form values
on the client, form values being arbitrary, typed XML documents. This enables a symmetrical
exchange of data between clients and servers which is useful for example for database and workflow
applications. Formsheets can be written in a variety of languages— we argue that the document
transformation capabilities of XSL stylesheets make them an elegant choice.

Keywords: XML; form; formsheet; XForm; XSL

1. Introduction
HTML defines a number of elements which taken together allows authors to construct forms— elements
which can be used to solicit input from a user [13]. HTML forms have proven themselves extremely
useful and after hyperlinking must be said to be the most important way of performing user interaction on
the Web. With XML becoming the standard format for data exchanged between applications on the Web
it is interesting to reconsider what forms are and how they might work in the context of XML [6]. This
paper proposes a notion of XML forms which is quite different from HTML forms which we shall call
XForms.

1.1 HTML Forms
The following brief description of HTML forms is largely taken from [13]. A form in HTML is an
instance of the form element. It is a part of a document which contains normal markup as well as a set of
special elements called form controls (text fields, checkboxes, menus, etc.). Users interact with the form
through its controls, completing the form before submitting it to a remote entity, typically a Web server,
for processing.

Controls have a name, an initial value, and a current value, each of which is a text string. The name is
given by the name attribute while the initial value of most controls may be specified with the control
element's value attribute. The current value is first set to that of the initial value but may thereafter be
modified through user interaction and scripts. The form value or form data set is a set of name-value pairs
corresponding to the names and current values of some of its controls. This is what is sent to the server
when a form is submitted for processing.

Formsheets and the XML Forms Language

Page 2

1.2 XML Forms
Where HTML defines a specific vocabulary for forms, e.g. form, input, button, etc. elements, XML is
a general syntax— a language for defining languages— and as such doesn't have a built-in notion of forms.
As XML works at a different level than HTML it is not surprising to find that XML forms should operate
differently from HTML forms, in particular it would be nice if the abstract notion of what a form is could
be made to apply to different concrete applications of XML. The forthcoming XML based version of
HTML ([12]) is an important such application but by no means not the only one.

The proposal in this paper is to define a generic mechanism for how to do forms in XML. There are
several parts to the proposal:

Form recognition:
Has to do with how form elements are recognized. We define the syntax used to assert form
existence and to describe form characteristics in documents. This mechanism is similar in style
to that used by the XML Linking Language [10] in that it doesn't define an XML language per
se but rather syntax which can be used in conjunction with a variety of languages (in SGML
parlance the form definition is like an architectural form).

Form values:
Form values are themselves XML data sets. In the simplest case a form value is just an XML
encoded set of name-value pairs. This differs from HTML form data sets mainly in allowing for
form fields with structured values. More interesting, we introduce the notion of formsheets to
denote the specification of how to construct the value of a form upon submission. The
formsheet has access to the document and form state, or current value, and controls the
construction of the corresponding form value. The proposal allows for multiple formsheet
languages to be used. We show how the document transformation capabilities of the Extensible
Stylesheet Language (XSL) makes it a prime candidate [7], but using traditional programming
languages is also an option.

Form submission:
Works much like for HTML forms, but is defined in terms of XLink and hence is more general.

Typed input fields:
it would be very useful for forms to be more intelligent about the kind of data they are
soliciting. We discuss what sort of typing system could be associated with form input fields,
and present the XForm use of XML namespaces to allow user agents to provide a form with
client-specific default values.

The XForms proposal doesn't define the actual elements making up a form— the form controls— neither
does it specify the user interaction behaviour and semantics of such elements. This is left to XForm
compatible XML languages. Examples are given in a (hypothetical) "wellformed HTML" application of
XML, using the HTML form elements but in an XForm compliant manner.

We believe that specifying the core properties of forms independently of specific data and layout
elements is a big advantage as it means that the same basic mechanism can be used regardless of the exact
nature of the XML language at hand. This is analagous to how linking, stylesheets, and scripting are
defined independently of the languages that use them, and this approach generally leads to better and
more modular standards.

The rest of this paper is organized as follows. The XForm subjects mentioned above: form recognition,
data set construction, submission, and typed form controls, are discussed in sections 2-5. Section 6 shows

Formsheets and the XML Forms Language

Page 3

how workflow-like applications can be built using XForms and other XML technologies, and section 7
discusses related work.

2. Form Recognition
Analogous to the workings of XLink, the existence of a form is asserted by the presence of a form
element. An XForm aware processor recognizes an element as asserting the existence of a form, by
looking for the presence of a designated attribute named xf:form, where xf denotes the XForm
namespace identified in this paper by the URL http://www.w3.org/TR/XForm (XML namespaces are
defined in [5]). Any element can be used to assert form presence by including this attribute. However, a
particular XForms compliant XML language may choose to single out certain elements as being form
elements, e.g. by defining fixed or default attribute values in a document type definition, thus avoiding
having to list them in document instances themselves.

The XForm attributes are defined as a set of parameter entities which can be included in custom DTDs:

<!ENTITY % xform-core.att
 "form CDATA #REQUIRED
 attributes CDATA #IMPLIED"
 >

The xf:form attribute has three defined values:

global
indicates that the element is a form element and that the form value is computed by executing a
formsheet on the entire document at the time of submission.

scoped
also indicates presence of a form, but one for which the value is computed using the form
element as the root, i.e. rather than executing the formsheet on the whole document it is
executed only on the form element. This makes for simpler formsheets and corresponds to how
HTML forms work.

submit
this value is used to signal that the element acts as an implicit reference to a containing scoped
form element. Activating the element implies submitting the corresponding enclosing form.

So the difference between scoped and global forms is that the former gets its value only from
descendant elements and its own attributes whereas the entire document can contribute to the value of the
latter. Submit elements are allowed only within a lexically enclosing scoped form element and its effect
is to trigger submission of that enclosing form. It is provided primarily as a mechanism for enabling a
modular XML based version of HTML to be defined to be in conformance with XForms.

The typical use of forms as we know them from HTML is to gather input from a user, submit it to a
server, and getting a reply back with a response document. In other words a form behaves exactly like a
hyperlink except that it allows for the collection and submission of data from the user agent, and it allows
for the use of HTTP request methods other than GET [9]. Hence we define a form to be an XML link with
additional attributes specifying form-specific properties. In XLink terminology forms are usually inline
links, i.e. the form element serves as one of its own resources (as does both links and forms in HTML),
but we don't rule out the use of out-of-line forms. Similarly forms can be either simple or extended links.

Formsheets and the XML Forms Language

Page 4

The HTML form element corresponds to a simple, inline link. Allowing forms to be extended links
permits functionality such as multi-ended links with additional information such as titles and roles. This
enriches the notion of forms but has little impact on how they are defined or how they operate. Hence this
is not discussed further.

2.1 Attribute Remapping
Problems may occur with attribute names as XForm is applied to existing XML languages. An XForm
compliant DTD may choose to remap XForm attribute names in the manner of XLink. The attribute
xf:attributes consists of an even number of tokens. This list is interpreted as a set of pairs where the
first element is the name of an XForms attribute and the second is the name it is mapped to. For example,
to map action to link one would have:

<!ATTLIST form
 xf:form CDATA #FIXED "scoped"
 xf:attributes CDATA #FIXED "action link">

3. Constructing Form Values
When submitting a form to a processing agent the user agent must first build the form value. XForm
values are either sets of name-value pairs in some representation or they are arbitrary XML documents
constructed by a formsheet. For name-value data sets we allow the representations defined for use in
HTML and add an XML encoding. The second class of form values is much more general and flexible,
and can be used to construct form values in any XML language.

Form value construction is effected by the following form element attributes:

<!ENTITY % xform-value.att
 "enctype CDATA #IMPLIED
 charset CDATA #IMPLIED
 formsheet CDATA #IMPLIED
 form-lang CDATA #IMPLIED
 result-ns CDATA #IMPLIED"
 >

The enctype attribute specifies the MIME type of the form data set. For MIME-like transport protocols,
this will appear in the Content-Type header of the form submission. If the formsheet attribute is not
specified form value construction depends only on the enctype attribute, which MUST then be defined
and take on one of the following defined values:

l application/x-www-form-urlencoded

l multipart/form-data

l text/xml

l application/xml

The first two are as defined for use in HTML [13, 11] and the xml variants are described below.

Formsheets and the XML Forms Language

Page 5

3.1 Form Values in a Generic XML Encoding
The MIME types text/xml and application/xml are defined as generic types for carrying XML
encoded data [14]. The application subtype is defined to overcome constraints placed on character set
encodings for text top-level MIME types. The two types are otherwise identical.

When a form doesn't specify a formsheet the corresponding data set is a set of name-value pairs. When
enctype is one of the two xml subtypes this set is represented as a map element which consists of a
sequence of named item elements, each of which represents a single form field:

XML DTD for Encoding of Name-Value Pairs

<!ELEMENT map (item*)>
<!ELEMENT item ANY>
<!ATTLIST item name CDATA #REQUIRED>
<!ATTLIST item href CDATA #IMPLIED>
<!ATTLIST item type CDATA #IMPLIED>

The name of the form field is given by the mandatory name attribute of item elements. The value of a
form field is either available "inline" as the contents of the corresponding item element or, if the href
attribute is defined, "out-of-line" as the contents of the resource identified by that URI. The resource may
be transported as part of the same data unit, e.g. as a separate MIME bodypart, or may be remote.

Map items are considered unordered and there is no requirement that they have unique names. We shall
refer to such data sets as being XForm-map encoded. This DTD has an XML namespace identified by the
URL http://www.ietf.org/XML/NS/map .

An HTML form with input fields for name, tel, and email might then result in a XForm-map value of

<?xml version="1.0"?>
<map xmlns="http://www.ietf.org/XML/NS/map">
 <item name="name">Joe Bloggs</item>
 <item name="tel">+1-222-333-4444</item>
 <item name="email">joe@example.com</item>
</map>

The XForm charset attribute specifies the character set used in the XML encoded "document" but field
values can contain any characters whatsoever as long as the generating user agent obeys standard XML
encoding rules.

When carried over a MIME-like transport, e.g. HTTP or Internet email, the Content-Type header field
takes the value of the forms enctype attribute. When used with HTTP XForm-map encoded data sets are
always carried in the request body, i.e. method="GET" which places data in the request-URI is not
allowed.

3.1.1 Structured Values

Field values are not limited to being simple text strings but can be any arbitrarily complex, but well-
formed, XML structure. The following data set contains an XML encoded digital business card [8]
together with other data items, all of which possibly originate from an online form:

<?xml version="1.0" encoding="utf-8"?>
<xm:map xmlns:xm="http://www.ietf.org/XML/NS/map"

Formsheets and the XML Forms Language

Page 6

 xmlns:vc="http://www.ietf.org/XML/NS/vCard">
 <item name="vcard">
 <vc:vCard version="3.0">
 <fn>Joe Bloggs</fn>
 <n><family>Bloggs</family><given>Joe</given></n>
 <tel>+1-22-333-4444</tel>
 <email>bloggs@example.com</email>
 </vc:vCard>
 </item>
 <item name="notify">yes</item>
 <item name="org-type">Software Development</item>
 <item name="heard-of">From a friend.</item>
</xm:map>

When a map associates a name with a value which is itself an XML element this element may be typed by
giving it an XML namespace attribute. The vCard namespace identifier used in this example is fictional -
none is currently specified. Namespaces are more suitable as a typing mechanism than DTDs or formal
public identifiers as they were designed to apply to individual elements of a larger XML document, not
necessarily to the document as a whole.

3.2 Constructing Form Values Using Formsheets
The encoding schemes discussed above are provided primarily for simplicity and backwards compatibility
with HTML forms. The "native" XForms method of constructing form values is the much more general
idea of using formsheets. A formsheet specifies how to transform the source document into a form value.
It is denoted by the formsheet attribute which is a URL. The form-lang attribute specifies the MIME
type of the formsheet language and can be omitted when it can be inferred from the context, e.g. from an
HTTP Content-Type header field.

The major advantage of formsheets is that they allow us to construct the form value as being any sort of
XML document. This means it becomes possible to submit typed data rather than using "stupid", generic
encodings of form values. The typing mechanism used is that of MIME and XML namespaces. Form data
is assigned a namespace identifier by the generating formsheet and the MIME type is given in the
enctype attribute.

Figure 1 illustrates how formsheets would typically be used in Web applications.

Figure 1: Typical use of formsheets to produce XML form data.

Formsheets and the XML Forms Language

Page 7

The client retrieves an XML document from a Web server and has it rendered using a stylesheet. The
document contains a number of form input elements whose values changes in response to user input.
When the form is submitted the formsheet executes on the "current value" of the source document. This
results in a "data" XML document which is then submitted to the server.

In the situation where a stylesheet has been applied to the original document in order to construct a
renderable XML flow-object tree (as is the case for XSL stylesheets), the formsheet operates on the
formatting object tree rather than the original tree. This is so because form controls wouldn't necessarily
be present in the original document, but would often be added by the XSL tree transformation step. This
is not an issue with stylesheet languages such as CSS which doesn't have transformational capabilites.

3.2.1 Example: Using XSL as the Formsheet Language

The following example illustrates form value construction and submission behaviour for forms with
formsheets expressed in XSL. XSL consists of two parts: a general-purpose transformation language
which is used to map an XML source document into an XML target document, and a formatting
vocabulary--itself an XML language--which is used to visually render a document. We use the
transformation part to transform a document containing an XForm into the data document. The elements
of the source document that contributes to the form data document are, by definition, the forms set of
controls.

Suppose a server wishes to prompt a client for a user ID and a password. It can do this by using an HTML
like form:

<form xf:form="scoped" action="/cgi-bin/logon" method="post"
 enctype="text/x-userid"
 formsheet="userid.xfl"
 form-lang="text/xsl">
 User ID: <input type="text" name="userid"/>

 Password: <input type="text" name="passwd"/>

 <button xf:form="submit">
</form>

Suppose we want to generate form data sets of the form

<user>
 <id>aladdin</id>
 <password>open sesame</password>
</user>

The "userid.xfl" XSL formsheet could then be defined as follows (boldface text is passed through to the
output uninterpreted by the XSL transformation engine):

<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl">
 <xsl:template match="/">
 <user>
 <id>
 <xsl:value-of
 expr="/form/input[attribute(name)='userid']/attribute(value)"/>
 </id>
 <password>
 <xsl:value-of

Formsheets and the XML Forms Language

Page 8

 expr="/form/input[attribute(name)='passwd']/attribute(value)"/>
 </password>
 </user>
 </xsl:template>
</xsl:stylesheet>

This XSL formsheet consists of a single template rule whose pattern matches the form element of the
source document. The result is the contents of the template element with the xsl:value-of elements
substituted for the current values of the userid and passwd input fields. The form value is submitted
with an HTTP Content-Type header of text/x-userid. The XML form data may have a namespace
identifier associated with it, although in this case it doesn't.

If for whatever reason we wanted the form value to be encoded as

<user id="aladdin" password="open sesame"/>

doing so would be a simple matter of changing the userid.xfl formsheet. No changes are needed for
the document itself.

When, as in this example, the form is declared to be scoped, the formsheet executes on the form element
only, i.e. for the purpose of computing the form value this element is the document root. In contrast forms
declared global executes on the whole document. This reflects the requirement that scoped forms
contain all its constituent controls.

As is the case for stylesheets formsheets will typically be held as complete resources separate from the
XML data they are applied to, but may also be embedded directly in documents. Embedded formsheets
would have an ID attribute and would be referenced from form elements using '#' fragment identifiers in
the href URL.

3.2.2 Using JavaScript as the Formsheet Language

An obvious alternative to using XSL transformations for computing form values is to use a scripting
language together with the Document Object Model [1]. JavaScript, for example, is popular and is often
present in Web user agents. Which language is preferred is largely a matter of taste. XSL is designed to
do XML to XML conversions and hence is quite elegant for this type of application, whereas scripting
languages are computationally complete, i.e. more powerful, and has the larger number of devotees at this
time.

3.2.3 Benefits of Formsheets

Using formsheets to control the encoding of form values has some significant benefits over the simple
name-value data sets of HTML.

3.2.4 Symmetry

With HTML based Web applications servers send data to clients in HTML pages which contain both
semantic and presentational markup. Clients passes form data to servers either as URL-encoded strings in
the request URI or in the body of HTTP requests or as a MIME encoded multipart. With XML and XSL it
is now possible for the server to send XML encoded data to the client without any presentational markup.
XForms allows us to use the same data encoding to be used in the other direction— from client to server.
What's more the data is typed using MIME media types and XML namespace information. A client can
edit a database table record by record and have data shipped in identical formats in both directions.

Formsheets and the XML Forms Language

Page 9

Being able to pass data around using a single (semantic) encoding is not just a theoretical nicety, it means
that we don't have to rely on special-purpose server-side processing in the form of CGI programs to make
sense of the data. Standard components can make sense of it a priori. This makes it easier to string
together applications (Web based or otherwise) as the data is self-describing. In a sense it helps dissolve
the client-server distinction as content can flow in both directions using identical representations.

3.2.5 Generality

Formsheets operate on the source XML document and can construct arbitrary data sets. The generality of
formsheets means that it is possible (and even straightforward) to construct a formsheet that performs the
task of encoding the value of a form using the XForm-map encoding. In other words, the formsheet
mechanism has the appealing property of having this other form data set encoding as a special case and
the XForm-map representation can be formally defined as a specific XSL formsheet.

The power of formsheets doesn't come for free. Writing XSL transformation scripts is not trivial and it is
not realistic to expect everyone to master it. The definition of form elements in a specific XML language
might therefore choose to define the formsheet to have some default or fixed value.

4. Form Submission
As in HTML a constructed form value is submitted to the processing agent using the protocol defined by
the method attribute. The action attribute is the same as the href attribute in XLink and is the URI of
the server side resource to which the form value gets submitted.

<!ENTITY % xform-submission.att
 "action CDATA #IMPLIED
 method CDATA 'post'"
 >

5. Typed Form Controls
It is desirable to support some sort of typed data entry, i.e. to be able to specify certain types of
constraints on data to be entered into forms. This would have at least two applications: it would allow
user agents (UA) to check the validity of data entered before submitting it to a server, thus providing
immediate feedback and generating less network traffic, and secondly it would potentially enable the UA
to fill in known values automatically. A good example of this, as anyone who has spent much time on the
Web will testify to, is name and address information prompted for by many Web sites as part of a
registration procedure. Rather than having to repeatedly type in this information it would be convenient if
browsers stored it and simply filled in the right form fields with this information as the default value,
without ever submitting anything without explicit consent, of course, and only for form controls without a
default value of their own. This is maybe particularly useful for information which is not easily entered
via a keyboard, such as base64 encoded digital signatures or images; vCards, for example, optionally
carries photos.

These two applications may require different kinds of typing mechanism. The former is much like types
found in programming languages (strings, integers, booleans, etc.). Checking conformance to such
datatypes could be done using scripting languages in conjunction with forms but relying on procedural

Formsheets and the XML Forms Language

Page 10

verification for a problem that essentially calls for a declarative approach is not very elegant. Also it
doesn't allow UAs to use specialized user interfaces for types such as dates.

The approach taken in XForm is to use the datatypes specified in the Document Content Description
framework for denoting "basic" datatypes [4]. The DCD also allows constraints like maximum and
minimum values to be specified. The following is an example of an input field using the DCD dt
attribute (short for datatype) for requesting an integer value between 0 and 100:

<input name="interest" DCD:dt="int" DCD:min="0" DCD:max="100" />

The other application— filling in default values for frequently used data— must in some way deal with
application semantics. Again we use namespaces, but now rather than referring to datatypes defined by a
single XML language we need to be able to refer to elements of any language. We define an XForm dt
attribute for this purpose. The value of this attribute consists of a namespace identifier followed by the
name of an element in the corresponding XML language.

<!ENTITY % xform-types.att
 "dt CDATA #IMPLIED"
 >

So to continue the example of a server soliciting contact information from a UA, we note that digital
business card information is addressed by the vCard specification which has defined an XML encoding
[8]. A form requesting individual elements of a vCard structure might look like:

<h:html xmlns:h="http://www.w3.org/TR/REC-html40"
 xmlns:xf="http://www.w3.org/TR/XForm"
 xmlns:vc="http://www.ietf.org/Schemas/XML/vCard">
 <body>
 <form xf:form="scoped" action="/cgi-bin/vCard" method="post">
 <input name="firstname" xf:dt="vc:given"/>
 <input name="lastname" xf:dt="vc:family"/>
 <input name="tel" xf:dt="vc:tel" vc:tel.type="WORK"/>
 ...
 </form>
 </body>
</h:html>

while a form prompting for an entire vCard might look like this:

<form xf:form="scoped" action="/cgi-bin/payment" method="post">
 <input name="person" xf:dt="vc:vCard"/>
 <input name="credit-card" type="text"/>
 <input name="exp-mnth" DCD:dt="int" min="1" max="12">
 <input name="exp-year" DCD:dt="int" min="1998" max="2010">
 ...
 </form>

The former example is fairly simple to deal with for a UA as the specified datatypes, i.e. the given,
family, and tel vCard elements, are defined to contain flat textual data only, i.e. they cannot have child
elements of their own. This means that a UA which "knows about" vCards and is configured with vCard
information for its user can initialize those form fields with the appropriate values, while UAs which
doesn't know about vCards will just ignore the dt datatype specifications and thus degrade gracefully to
their usual untyped behaviour. Note that the form author may include further attributes from the target

Formsheets and the XML Forms Language

Page 11

datatype namespace. An example of this is the vc:tel.type attribute in the example. Within a tel
element of a vCard the tel.type attribute further qualifies the content of that element. The UA may
wish to take notice of such extra information but the semantics of these attributes are, of course,
determined by the target datatype, not the XForm specification.

In the case where the form is requesting a complete vCard or any other element with its own internal
structure, there is no simple way to degrade service gracefully in case the UA doesn't know the specified
type, and "knowing" the type may involve writing custom code to handle the user-interface for forms
requesting those datatypes anyway, and so is more work. One idea would be to use the namespace
identifier of unknown datatypes to attempt to retrieve a DTD or a DCD which could then be interpreted to
construct a UI which would allow editing complex structures of that type. Another idea would be to
define alternative input elements for UAs which does not support a particular datatype (in the style of the
HTML NOFRAME element for use by UAs not supporting frames). Neither of these ideas seem very
attractive and it may be better to rule out the use of structured datatypes, at least initially.

6. Workflow Applications
The generality of formsheets means we have a lot of flexibility in how form values are constructed. In
particular it is possible to reconstruct the original document completely or partially. This has some
interesting and maybe surprising applications. One such application area is workflow-like messaging
systems. Consider the following scenario.

Jack composes a memo and wants to send it to a number of people in turn. Each recipient gets to read it,
add comments, and forward it to the next person in the chain. This can be accomplished using XForms in
an XML document representing the memo. The memo has some text (plain or marked up) representing
the actual message content. In addition it has a list of recipient names and email addresses and a list of
comments made so far together with the names of the persons making them. Figure 2 shows the XML
encoded memo as it might look by the time it reaches Joe.

<?xml version="1.0"?>
<?xml:stylesheet type="text/xsl"
 href="http://example.com/workflow/memo.xsl"?>

<memo xmlns="http://example.com/workflow/memo.dtd">
 <head>
 <title>My Beautiful Memo</title>
 <author>Jack</author>
 <recipients>
 <to>ed@example.com</to>
 <to current="true">joe@example.com</to>
 <to>ann@example.com</to>
 <to>jack@example.com</to>
 </recipients>
 </head>

 <body>This is the body of the text. This is what the recipients
will see in turn and have a chance to add their comments to. A comment

Formsheets and the XML Forms Language

Page 12

in this example is some unformatted text along with an identification
of who made the comment.</body>

 <comments>
 <comment by="ed@example.com">This is really good, Jack!</comment>
 </comments>
</memo>

Figure 2: The memo document by the time it reaches Joe.

Joe's user agent will render the memo according to the stylesheet referenced in the document. It will
display the title, author, and to elements along with the body and existing comments, and will add a
form element at the bottom of the page where Joe can add his own comments. The action attribute of
the form element contains a mailto URL which is the email address of the next recipient (Ann in this
case). The formsheet associated with the form reconstructs the original structure shown in Figure 2, only
now marked with a new "current" recipient and with an additional comment element. Form submission in
this case means emailing the memo to the next recipient in the list. As jack is himself the last recipient the
memo will end up with him.

This example can be extended in a variety of ways. For example, the document could be an acquisition
form retrieved from a Web server with a bunch of information to be filled out and a link for submitting it.
When the submit link is traversed the document is send to a list of managers in turn for them to add
comments and their (authenticated) sign-off. When the last signature has been added the request goes to
the purchasing department and from there to an online order tracking system. In this example the
formsheet may change underway, i.e. at some point the formsheet used to transition to the next step
generates a document which will contain a form which uses a different formsheet.

All this can be achieved using just standard XML technologies: XML, XLink, XSL, and XForm together
with standard transports such as HTTP and email. The construction of the formsheets that accomplishes it
is not trivial but not hopelessly complicated either. Luckily it is not something everyone would have to
do. Standard communication patterns like the ones above can be codified once and for all, but it's worth
noting that as long as user agents implement the standard XML technologies listed above they will be
able to take part in any new "communication pattern" of this sort that anyone can come up with.

7. Related Work

7.1 HTML
Earlier sections have already discussed some of the differences between HTML forms and XForms, the
most important ones being the "computability" and typing of XForm values. Here are some more.

Decoupling forms from form controls
HTML defines a set of form controls. These are the UI elements (widgets) which interacts with
the user in order to accept values. Hence form controls always have a "current value" which
changes dynamically in accordance with user input. The addition of scripting to HTML
potentially makes all elements dynamic, as a script may change content and attribute values of
elements. HTML forms are still limited to submitting the value of form controls, though.
XForms doesn't make the same distinction between form controls and other elements. The
formsheet mechanism is general enough to allow submitted data to be assembled from all parts

Formsheets and the XML Forms Language

Page 13

of a document. One could even imagine having XML documents with XForms without having
any form controls in the HTML sense but still be able to capture (part of) the state of the
document at some point in time and submit it.

Hidden fields
This means, for example, that there is no need for special hidden fields (a form control which is
not rendered and which contributes a fixed value to the form data set). This is so because any
element can effectively act as a hidden field. The stylesheet in this case is written so as not to
render the element while the formsheet will use its value. This is an improvement on HTML
hidden fields as XForm hidden fields can be structured XML, i.e. they can have arbitrary
attributes and child nodes of their own!

Controls need not be named
Another consequence of using formsheets is that form controls need not have names, as form
values are not necessarily name-value pairs.

Forms as links
The fact that global forms are not associated with its form controls through lexical scoping
means that the same set of form controls can be used by several forms. And any linking element
can be extended to be a form element, so whereas HTML submit elements are buttons (or, less
commonly, image maps), with XForms we can allow any element to trigger form submission.
For example, wellformed HTML might allow A links to act as forms, a stylesheet language
defining a tabbed pane element could submit an XForm data value when the user changed pane
etc.

The following DTD approximates an XForm compliant definition of HTML forms. The parameter entities
are defined in the HTML specification and some details (like scripting related attributes) have been left
out for simplicity.

<!ELEMENT FORM (%block;)+>
<!ATTLIST FORM
 xf:form CDATA #FIXED "scoped"
 xml:link CDATA #FIXED "simple"
 action %URI; #REQUIRED
 method (GET|POST) GET
 enctype CDATA "application/x-www-form-urlencoded"
 formsheet CDATA #IMPLIED
 form-lang CDATA #IMPLIED
 charset CDATA #IMPLIED
 result-ns CDATA #IMPLIED
 additional XLink atributes
>

<!ELEMENT INPUT EMPTY>
<!ATTLIST INPUT
 xf:attributes CDATA #FIXED "form type"
 type %InputType; #CDATA
 name CDATA #IMPLIED
 value CDATA #IMPLIED
>

Formsheets and the XML Forms Language

Page 14

This definition largely allows backwards compatibility with HTML4.0 while allowing the use of
formsheets and XForm-map encoded form values.

7.2 XFDL
A number of companies offer products in the area of digital, networked forms processing, but to our
knowledge only one proposal exists for a standardized XML form language for use on the Web: the
Extensible Forms Description Language [3].

The approach taken in XFDL is very different from that of XForms. XFDL is an XML application and
defines a fixed set of form elements, structural markup, GUI display elements, and scripting capabilities
all within the same language. The emphasis seems to be on defining a markup language (form controls
and other markup) which allows for the construction of visually pleasing on-line forms and which is
powerful enough to faithfully reproduce their paper-based equivalents. Additionally XFDL adds scripting
functionality (for checking form values on clients) through it's own scripting language. It doesn't seem to
address form value construction or typing.

In contrast the approach taken in designing XForms was to define forms processing separate from other
pieces of the XML puzzle such as stylesheets, linking and scripting and make it as modular and generic as
possible. XForms and XFDL operates at different levels of abstraction, and it would be possible to define
an XForm compliant XML form language using the XFDL form controls and standard XML stylesheet
and scripting support.

8. Conclusion
This paper has presented XForms— a proposal for what forms could be taken to mean in XML. The
proposal is a radical rethinking of HTML forms and generalizes those, while ensuring the possibility of
defining a "wellformed" HTML DTD which is XForm compliant. The main contributions of this paper
are the idea of using "formsheets" to compute form values, the proposal for how to specify typed input
fields, and the definition of a forms framework for XML which dissociates intrinsic properties of Web
forms from any specific markup language and in particular from any specific set of form controls. This
broadens the scope of XForms and makes the basic mechanisms applicable to input devices other than
keyboards and mice.

Designing protocols to be modular and single-function has been a very successful design principle on the
Internet. XForms is intended to address fundamental aspects of XML based forms processing and to fit in
well with other XML technologies such as XML itself, XML namespaces, XSL, XLink, action sheets,
and scripting languages.

9. References
[1] Vidur Apparao et al., Document Object Model (DOM) Level 1 Specification, W3C

Recommendation, 1 October, 1998. http://www.w3.org/TR/REC-DOM-Level-1/

[2] Vidur Apparao, Brendan Eich, Ramanathan Guha, Nisheeth Ranjan, Action Sheets: A Modular
Way of Defining Behavior for XML and HTML, W3C Note, 19 June 1998.
http://www.w3.org/TR/NOTE-AS

Formsheets and the XML Forms Language

Page 15

[3] John Boyer, Tim Bray, Maureen Gordon, Extensible Forms Description Language (XFDL) 4.0,
W3C Note, 2 September 1998. http://www.w3.org/TR/NOTE-XFDL

[4] Tim Bray, Charles Frankston, Ashok Malhotra (eds.), Document Content Description for XML,
W3C Note, 31 July 1998. http://www.w3.org/TR/NOTE-dcd

[5] Tim Bray, Dave Hollander, Andrew Layman (eds.), Namespaces in XML, W3C
Recommendation, 14 January 1999. http://www.w3.org/TR/REC-xml-names/

[6] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen (eds.), Extensible Markup Language (XML) 1.0,
W3C Recommendation, 10 February 1998. http://www.w3.org/TR/REC-xml

[7] James Clark, Stephen Deach (eds.), Extensible Stylesheet Language (XSL), W3C Working Draft,
18 August 1998. http://www.w3.org/TR/WD-xsl

[8] Frank Dawson, Paul Hoffman, The vCard v3.0 XML DTD, Work in Progress, 15 November
1998, <draft-dawson-vcard-xml-dtd-02.txt>

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, T. Berners-Lee, Hypertext Transfer Protocol —
HTTP/1.1, RFC 2068, January 1997.

[10] Eve Maler, Steve DeRose (eds.), XML Linking Language (XLink), W3C Working Draft, 3 March
1998. http://www.w3.org/TR/WD-xml-link

[11] L. Masinter, Returning Values from Forms: multipart/form-data, RFC 2388, August 1998.

[12] Steven Pemberton et al., XHTML 1.0: The Extensible HyperText Markup Language, W3C
Working Draft 24th February 1999. http://www.w3.org/TR/WD-html-in-xml/

[13] Dave Raggett, Arnaud Le Hors, Ian Jacobs (eds.), HTML 4.0 Specification, W3C
Recommendation, 24 April 1998. http://www.w3.org/TR/REC-html40

[14] E. Whitehead, M. Murata, XML Media Types, RFC 2376, July 1998.

10. Vitae
Anders Kristensen is a member of the research staff at Hewlett-Packard
Laboratories in Bristol, U.K. His interests includes an array of WWW and
Internet technologies, distributed systems, object-orientation, software
development, design patterns, and framework design. Anders holds an M.Sc.
degree in computer science and a B.Sc. in mathematics from Aarhus
University, Denmark. Home page: http://www-uk.hpl.hp.com/people/ak/.

