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1 Introduction

A comparison between linear processing (LP; see for e.g., [1, 2]) and mathematical mor-

phology (MM) [3] shows two theories that lie on di�erent mathematical fundaments. LP is

based on vector spaces, and uses addition as fundamental operation, whereas MM is based

on complete lattices and uses in�mum and supremum as basic operations. LP is closely

related to Fourier analysis, whereas MM has a strong geometric nature. Finally, they di�er

also on their processing results; LP deals mainly with smooth spatial variations, whereas

MM usually deals with abrupt edges.

On the other hand, algebraic similarities between the two theories have been pointed out

in the past years. Marago's work [4] �nds analogies to many linear processing concepts in

MM, including translation invariant systems, impulse response, and transforms based on

eigen-functions (Fourier transform, in the linear theory, and slope transform in the morpho-

logical one). In [5, chapter 9], structural similarities between the (linear) Laplacian pyramid

and the morphological skeleton were presented. Also, correspondence between the linear

and morphological approaches to inverse problems was drawn. Finally, Heijmans and Gout-

sias [6] have recently extended the concept of pyramids and Wavelets, and proposed new

morphological versions of these structures.

Despite all the structural and algebraic similarities between LP and MM, the two theories

are widely considered unconnected and independent. I.e., none \contains" the other.

Correlations between MM and other signal processing theories and techniques have also

been reported. Dilations and erosions are particular cases of order-statistics �lters [8], a

category to which the well-known median �lter also belongs. In [9, 10], binary dilations

and erosions are shown to be particular cases of curve evolution. In [5, chapter 5], quadtree

and bit-plane decomposions are shown to be particular cases of morphological skeletons on

complete semilattices. However, similarly to LP, no widely accepted uni�cation of all the

above concepts currently exists.

In summary, MM is usually considered as yet another signal processing theory, besides LP,

order-statistics �ltering, curve evolution, etc.

The results presented in this work, however, encourages us to contradict the above per-

ception. Following the extension of MM's theory to complete inf-semilattices (in [7]), and

further extension to partial ordered sets (posets) presented in this paper, we demonstrate

that many key tasks in traditional signal processing are morphological operations on speci�c

posets. For example, linear translation-invariant �ltering is shown here to be an erosion

on a complete inf-semilattice. Ideal (idempotent) linear �lters are morphological openings

on the same inf-semilattice. Quantization, decimation, and coding are erosions on speci�c

posets, whereas dequantization, interpolation, and decoding are their adjoint dilations, re-

spectively. Also, the structural similarity between Laplacian pyramids and morphological
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skeletons mentioned above is shown to be of a deeper nature { the Laplacian pyramid is

indeed a skeleton on the appropriate poset. Other examples are considered throughout the

paper.

In our opinion, the above observations are more than just curious remarks. We believe

that the very nature of MM constitutes a suitable framework for signal processing in gen-

eral, as explained through the following arguments (and detailed in Section 4). Typically,

the aim of a signal processing task is to address (e.g., to produce, reconstruct from, etc.)

\simpler versions" of a given signal. The concept of simplicity varies with the application

and approach, and is associated to a partial ordering on the set of signals. This partial

ordering is usually closely related to some signal measure, like energy, entropy, noise, error,

variance, information, smoothness, compressibility, etc. In the resulting signal poset, ideal

�lters become algebraic openings, and operator/pseudo-inverse pairs become morphological

adjunctions, i.e. erosion/dilation pairs.

In several situations, one can �nd a signal that is the \simplest" one, according to some

given measure. E.g., the signal with least energy is the null function, which is also the

signal with the greatest compressibility. However, there does not seem to exist one single

signal that corresponds to the greatest energy or the lowest compressibility. In this case, the

corresponding partial ordering usually induces a complete semilattice structure to the signal

poset (where either a least or greatest element exists, but not both).

In this report, we address the nature of common signal processing tasks, seen from the

theoretical point of view of MM on posets, and on complete semilattices, in particular.

We �rst extend the basic concepts of MM to posets (Section 2), and show some examples

of traditional LP tasks as morphological operations (Section 3). Then, we address signal

processing in general (Section 4), and some of its basic traditional tasks (Section 5), from

the point of view of MM.

2 Morphology on Posets

In this section, we review basic notions of mathematical morphology, with two main exten-

sions: i) The fundamental framework is now posets, instead of complete lattices, and ii) the

domain and range of the operators may now be distinct. The proofs to some of the proposi-

tions in this section are straightforward extensions of their well-known lattice counterparts

(see e.g., [3, 11]), and are given in this article only for the completeness of the theory. The

proofs for all the propositions of these section are given in the appendix.

2.1 Posets, Semilattices, and Lattices

A partially ordered set (poset) A is a set associated to a binary operator �, satisfying the

following properties for any X; Y; Z 2 A: reexivity (X � X), anti-symmetry (X � Y; Y �
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X ) X = Y ), and transitivity (X � Y; Y � Z ) X � Z).

In a poset A, the greatest minorant ^X (also called in�mum) of a subset X � A is de�ned

as an element X0 2 A, such that: i) X � X0; 8X 2 X , and ii) if Y 2 A satis�es X � Y for

all X 2 X , then Y � X0. One de�nes the least majorant _X (also called supremum) of X ,

dually.

A poset S is an inf semilattice (resp. sup semilattice) if every two-element subset fX1; X2g
in S has an in�mum X1 ^X2 (resp., a supremum X1 _X2) in S. An inf semilattice (resp.,

sup semilattice) is complete when every non-empty subset B � S has an in�mum ^B (resp.

supremum _B). In this case, there exists in the semilattice an unique element 0, called zero

element, (resp., U , called universe), such that, for any X 2 S, 0^X = 0 (resp. U _X = U).

A complete lattice is a lattice which is both a complete inf and a complete sup semilattice.

2.1.1 Increasing Operators

Increasing operators preserve the partial ordering, by de�nition.

De�nition 1 An operator T : A 7! B is increasing i�:

Y1
A

� Y2 ) T (Y1)
B

� T (Y2); (1)

for all Y1; Y2 2 A.

2.2 Adjunctions

The concept of adjunction is de�ned for complete lattices by Heijmans and Ronse in [11,

page 264] (see, alternatively, the concept of morphological duality in [12, Chapter 1]). We

consider here the following extended version of that de�nition.

De�nition 2 Consider two posets A and B, with corresponding partial orders
A

� and
B

�, and

two operators � : A 7! B and � : B 7! A. The pair (�; �) is an adjunction between

�
A;

A

�
�

and

�
B;

B

�
�
i�, for all X 2 B; Y 2 A:

X
B

� �(Y ), �(X)
A

� Y: (2)

The operator � is then called the upper adjoint of �, and � is the lower adjoint of �. If

A = B and
A

��
B

�, then we say that (�; �) is an adjunction in

�
A;

A

�
�
.
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The concept of adjoint can be viewed as an extension of that of inverse. This is because of the

similarity between equation (2) and the equation X = T (Y ) , T �1(X) = Y , which char-

acterizes the inverse T �1 of a given operator T . Notice, however, a pair of operator/inverse
is an adjunction i� they are increasing.

Proposition 1 If (�; �) is an adjunction, then:

1. ��(Y )
A

� Y , 8Y 2 A, and X
B

� ��(X), 8X 2 B.

2. ��� = � and ��� = �.

3. � and � are increasing.

4. �(X) =
A
^ fY 2 A j X

B

� �(Y )g, 8X 2 B.

5. �(Y ) =
B
_ fX 2 B j Y

A

� �(X)g, 8Y 2 A.

2.2.1 Erosions and Dilations

In traditional morphology on complete lattices, erosion is de�ned as any operator that dis-

tributes over the in�mum, and preserves the universe. Similarly, a dilation is any operator

that distributes over the supremum, and preserves the zero element. We extend its de�nition

to posets in a similar manner, except that no element preservation is required. The details

of the extension are presented in the Appendix A, section 8.1.

As on posets, there is a one-to-one relationship between adjunctions and pairs of dila-

tions/erosions. I.e., if (�; �) is an adjunction, then � is an erosion, and � is a dilation.

Conversely, for every erosion � (resp. dilation �), there is a dilation � (resp. erosion �), for

which (�; �) is an adjunction. Pairs of erosion/dilation forming an adjunction are called

adjoint.

2.3 Openings

De�nition 3 (Algebraic Opening): An operator  in a poset (A;�) is an algebraic

opening i� it is idempotent ( = ), increasing (X � Y ) (X) � (Y )), and anti-

extensive ((X) � X).

The above de�nition is a direct extension of the concept of algebraic openings on lattices.

As discussed in the sequel (Section 4.1.2), openings are considered ideal �lters.

The extension of morphological openings is as follows:
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De�nition 4 (Morphological Opening): The morphological opening " associated to an

erosion (upper adjoint) between posets " : A 7! B is de�ned, for any X 2 A, by:

"(X)
4
=
Â �

Y 2 A j "(X)
B

� "(Y )

�
: (3)

Remark: Equation (3) is a well-known i�-property of morphological openings on complete

lattices. The lattice property is therefore used here as a de�nition for the poset counterpart.

Proposition 2 Given any erosion between posets

�
A;

A

�
�
and

�
B;

B

�
�
, the associated mor-

phological opening "(X) of any element X 2 A exists in A and is unique. Moreover, " is

an algebraic opening, and satis�es:

1. "" = ",

2. " = �"".

3 Some Traditional Approaches Viewed as Morpholog-

ical Operations

In this section, we demonstrate that some key traditional approaches for image processing

can be seen as particular cases of morphological operations. The methodology is as follows:

To each example of traditional image processing operation, we associate a partial ordering

that provides the set of signals with a complete inf-semilattice structure. Then we show that

the operation in consideration is an erosion in that complete inf-semilattice. We also consider

the corresponding adjoint dilation, and sometimes the associated morphological opening. In

the case of down-scaling, we show that the corresponding skeleton decomposition is the

well-known Laplacian pyramid.

3.1 Linear Filtering

Let us de�ne the partial ordering
�

� on the set PD
f of continuous D-dimensional signals as

follows. For all f; g 2 PD:

f
�

� g , 8
 2 IRD;(
jF (
)j � jG(
)j; and
phase fF (
)g = phase fG(
)g ;

(4)

where F (
) and G(
) are the D-dimensional Fourier transforms of f(x) and g(x), respec-

tively.
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The poset (PD;
�

�) is actually a complete inf semilattice, where the least element is the null

function. The in�mum operation is given by the following relation:

(f
�
^ g)(x) = F�1fWg(x); (5)

where F�1 denotes inverse D-dimensional Fourier transform, and W (
) is de�ned by:

W (
)
4
=

8><
>:

minfjF (
)j; jG(
)jg exp (j � phase fF (
)g) ;
if phase fF (
)g = phase fG(
)g ;

0; otherwise:

(6)

Proposition 3 Linear �ltering (convolution by a given D-dimensional kernel) is an erosion

in (PD;
�

�).

Proof Consider the linear �ltering Lh(f) of a signal f(x) by a given kernel h(x), given by

the convolution:

Lh(f)
4
= f � h: (7)

We have to prove that Lh

�
f

�
^ g

�
= Lh (f)

�
^ Lh (g), for any pair of signals f and g in PD

f .

It is well known that linear �ltering can be performed in the Fourier domain as follows:

Lh(f) = F�1 fF (
)H(
)g : (8)

Therefore:

F
�
Lh

�
f

�
^ g

��
= W (
)H(
)

=

8><
>:

minfjF (
)j; jG(
)jg exp (j � phase fF (
)g)H(
);

if phase fF (
)g = phase fG(
)g ;
0; otherwise:

=

8><
>:

minfjF (
)H(
)j; jG(
)H(
)jg exp (j � phase fF (
)H(
)g) ;
if phase fF (
)H(
)g = phase fG(
)H(
)g ;

0; otherwise:

= F

�
Lh (f)

�
^ Lh (g)

�
; (9)

which proves the proposition. 2

Proposition 4 The adjoint dilation of a linear �ltering operation is its pseudo-inverse (also

called generalized-inverse) �ltering operation.
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Proof The pseudo-inverse L�h of a linear �ltering operator Lh is given by: L�h(f)
4
=

F�1 fF (
)H�(
)g, where

H�(
)
4
=

(
1=H(
); jH(
)j > 0;

0; otherwise:
(10)

We have to show that L�h is the adjoint dilation of Lh. One can verify that L�h is increasing

in

�
PD;

�

�
�
.

According to Proposition 19, the adjoint dilation � of Lh satis�es: �(f) =
�V
ALhf , 8f 2 PD,

where

ALhf
4
=

�
g 2 PD j f

�

� Lh(g)

�
: (11)

Notice that L�h(f) belongs to A
Lh
f , since LhL

�
h(f) = f .

And L�h(f) is the in�mum of ALhf , because for every g 2 ALhf : f
�

� Lh(g) ) L�h(f)
�

�

L�hLh(g)
�

� g. 2

Corollary 1 The morphological opening associated to a given linear �ltering operation in

(PD;
�

�) is an ideal (idempotent) linear �ltering operation.

3.2 Quantization and JPEG Coding

Consider the complete inf-semilattice

�
IR;

T

�
�
of real numbers with the partial ordering:

x
T

� y , 0 � x � y or y � x � 0; (12)

where � in the right-hand side denotes the standard scalar ordering. The in�mum operation
T

^ associated to
T

� is given by: x
T

^ y = medianfx; y; 0g.

Now, consider the quantization by truncation with step q > 0, Q(T )
q , de�ned by:

Q(T )
q (x) =

(
bx=qc ; if x � 0;

dx=qe ; if x < 0:
(13)

Proposition 5 For any q > 0, Q(T )
q is an erosion in

�
IR;

T

�
�
. The adjoint dilation of Q(T )

q

is the dequantization D(T )
q given by:

D(T )
q (x)

4
=

(
q dxe ; if x � 0;

q bxc ; if x < 0:
(14)
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The proof is given in the appendix.

Consider now the quantization by rounding, Q(R)
q , de�ned by:

Q(R)
q (x) =

(
bx=q + 0:5c ; if x � 0;

dx=q + 0:5e ; if x < 0:
(15)

And assume a dequantization operation, D(R)
q , identical to the dequantization for truncation,

i.e., D(R)
q � D(T )

q .

Proposition 6 Q(R)
q is an erosion in the complete inf-semilattice

 
IR;

R;q

�

!
, where the partial

ordering
R;q

� is given by:

x
R;q

� y ,

8>><
>>:
Q(R)
q (x)

T

� Q(R)
q (y); if Q(R)

q (x) 6= Q(R)
q (y);

x� q �Q(R)
q (x)

T

� y � q �Q(R)
q (y); if Q(R)

q (x) = Q(R)
q (y):

(16)

D(R)
q is the adjoint dilation of Q(R)

q in

 
IR;

R;q

�

!
.

Although more labourous, the proof of Proposition 6 is similar to that of Proposition 5, and

therefore is omitted.

Let us consider now the Joint Photography Experts Group (JPEG) baseline image coding

standard [18]. We argue next that it can be considered as an erosion operation between

complete inf-semilattices. Moreover, its adjoint dilation is the JPEG decoding procedure.

Therefore, the decoding of a coded JPEG �le returns the corresponding morphological open-

ing of the original image.

The JPEG coding consists of three main steps: i) Discrete cosine transform (DCT) of 8� 8-

pixel disjoint blocks of the input image, ii) quantization (by rounding) in the DCT domain

using a quantization matrix Q, and iii) a Hu�man coding of the zig-zag stream of the

resulting DCT coe�cients.

Let us denote the 8�8 DCT blocks of an image f by Fmn, m;n 2 ZZ, and de�ne the following

partial ordering between images:

f
JPEG

� g , for all m;n;

Fmn(i; j)
R;qij

� Gmn(i; j); 8i; j = 0; : : : ; 7; (17)
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where the quantization steps fqijg consist of the elements of Q. In addition, denote by B
the set of all possible binary sequences.

Now, consider the complete inf-semilattices

�
P2
f ;

JPEG

�
�
of 2D images, and

�
B;

JPEG

�
�
of binary

sequences, where the JPEG ordering on binary sequences corresponds to the ordering of the

images that they represent after JPEG decoding.

Proposition 7 The JPEG coding procedure is an erosion between

�
P2
f ;

JPEG

�
�
and

�
B;

JPEG

�
�
.

The JPEG decoding procedure is the adjoint dilation of the JPEG coding procedure.

The proof is given in the appendix.

3.3 Scaling and Pyramids

Consider the sets PRM�RN of all R �M � R � N discrete images and PM�N of all M � N

discrete images. The R : 1 decimation operation fd = DR(f), mapping PRM�RN into PM�N ,

is characterized by:

fd(m;n) =
M�1X
i=0

N�1X
j=0

hi;j � f(R �m� i; R � n� j); (18)

where fhi;jg is the set of coe�cients of the ideal �=R-cuto� low-pass �lter.

Consider also a discrete version of
�

� (de�ned in (4)):

f
�

� g , 8k; `;(
jF (k; `)j � jG(k; `)j; and
phase fF (k; `)g = phase fG(k; `)g ;

(19)

where F and G are the discrete Fourier transforms (DFT) of f and g, respectively.

Proposition 8 DR is an erosion between the complete inf-semilattices

�
PRM�RN ;

�

�
�
and�

PM�N ;
�

�
�
. The adjoint dilation of DR is the the interpolation operation IR : PM�N 7!

PRM�RN , given by the up-sampling of fd, followed by �ltering with the same ideal �=R-cuto�

low-pass �lter fhi;jg as above.

The proof is similar to that of Propositions 3 and 4, and is omitted.

Corollary 2 The corresponding morphological opening is the �ltering by fhi;jg.
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Proposition 9 The laplacian pyramid, calculated with the decimation and interpolation op-

erations D2 and I2, is a morphological skeleton in the complete inf-semilattices

�
P2i�2i ;

�

�

�
,

i = 0; : : : ; imax.

Proof Consider the image f 2 P2imax�2imax . The laplacian pyramid f`ig associated to f is

given by:

`i = fi � I2 (fi+1) (20)

= fi � I2D2 (fi) ; (21)

where ffig characterizes the gaussian pyramid:

fi =

(
f; i = 0;

D2(fi�1); i = 1; 2; : : :
(22)

By comparing (57) with (21) and (58) with (22), one concludes that these pairs of equations

are identical, once one replaces Si(X) by fi, "i by D2, and �i by I2 for all i (thus i becomes

I2D2).

It should also be noted that the corresponding supremum operation
i
_ for all i becomes a stan-

dard summation when the signals involved in the supremum operation have disjoint Fourier

spectra. For this reason, [fi � I2D2(fi)]
i
_ I2D2(fi) = [fi � I2D2(fi)] + I2D2(fi) = fi, which

means that standard subtraction operation � assumes the rôle of
i
� (as characterized in

Section 8.2) in this case. 2

4 Signal Processing on Posets

The various examples in Section 3 motivates us to look at MM theoretical fundaments

as a possible, appropriate framework for signal processing in general. In this section, we

investigate signal processing from the point of view of MM on posets.

4.1 Hierarchy and Morphological Operations

4.1.1 Partial Orders

Typically, the aim of a signal processing operation is to address a simpli�ed version of a given

signal. By \address a simpli�ed version" we mean either to produce a simpli�ed version of a

given signal, to recover a signal from a simpli�ed version of it, or to transform the signal in

order to ultimately assess simpli�ed versions of it.

The term \simpli�ed version" implies the existence of a partial ordering � on the set of

signals S, where a signal f 2 S is a simpli�ed version of another g 2 S i� f � g. This

partial order constitutes a hierarchy in S.
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Often (but not necessarily), one can also associate to this hierarchy a simplicity measure �,

which is a non-negative real function that quanti�es the simplicity of each signal. Examples

of useful simplicity measures of signals include energy, entropy, the inverse of smoothness

(roughness), variance, error, area, length, etc. The measure and the partial ordering should

be related as follows: f � g ) �(f) � �(g)1. Notice that �(f) < �(g) 6) f � g, which

means that being simpler than another signal does not necessarily means being a simpler

version of it.

4.1.2 Ideal Filters and Openings

One conceptually important way to produce a simpli�ed version of a given signal is by using

a �lter. J. Serra compares the functionality of a �lter with hand washing [13]: i) It does

not add dirt to the hands, ii) once the hands are clean, further cleaning produces nothing,

and iii) washing only one hand cleans less than washing both. The above features are

mathematically described as anti-extensivity, idempotence, and increasingness, respectively.

Serra also points out that these correspond exactly to the de�nition of algebraic opening.

The conclusion is that �ltering is performing an algebraic opening, and vice-versa.

A �lter is conceptually important because it de�nes components of a signal: A component

is the output of a given �lter. If \subtraction" is also de�ned on the poset, then the dif-

ference between the original signal and a component can also be considered a component.

The concept of component is the basis of most signal processing tasks. For instance, �l-

tering, quantization, dimensionality/resolution reduction, and lossy compression correspond

to component removal; detection is component extraction; classi�cation and recognition are

component analysis; enhancement is di�erent processing of each component followed by signal

reconstruction; synthesis is component fusion, etc.

4.1.3 Generalized Inverse and Adjunctions

De�nition 5 (Generalized Inverse): Let T be an operator de�ned in (S;�). We say

that T has a generalized-inverse (also called pseudo-inverse) operator, denoted ~T�1, if:

1. T ~T�1(f) = f , 8f 2 T (S), where T (S) is the image of S under T .

2. ~T�1T (f) � f , 8f 2 S.

Proposition 10 If T has a generalized-inverse ~T�1, then:

~T�1(f) =
^
fg 2 S j f = T (g)g ; 8f 2 T (S); (23)

where ^ denotes the in�mum operation associated to the given partial ordering �.

1If S is discrete, or if the signals f and g are \regular," then f � g) �(f) < �(g)
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In other words, the generalized-inverse of a signal f is the \simplest" signal g among all

those having f as their image under T .

Proof (Proposition 10) Consider the set Tf
4
= fg 2 S j f = T (g)g. One can see that

~T�1(f) 2 Tf , because T ~T�1(f) = f (item 1 in De�nition 5). Moreover, because of item 2 in

De�nition 5, 8g 2 Tf : f = T (g)) ~T�1(f) = ~T�1T (g) � g, which proves that ~T�1(f) is the

in�mum of Tf . 2

It is our opinion that sound and meaningful signal processing schemes are related to operators

T that:

1. preserve the structure of S, i.e., are increasing,

2. have an increasing generalized-inverse ~T�1.

The reason is: To each such operator T corresponds a �lter, obtained by the composition

of the operator with its generalized inverse: ~T�1T (see Corollary 3 below). I.e., each such

operator T is associated to signal simpli�cation by removal of a well de�ned component.

For instance, pairs of simpli�cation and generalized-inverse operators are given by down-

scaling/up-scaling, quantization/dequantization, coding/decoding, �ltering/pseudo-�ltering,

decomposition/representation, etc, where each task might take place in a di�erent signal

hierarchy.

Proposition 11 If the generalized-inverse ~T�1 of a given increasing operator T exists and

is increasing, then the pair (T; ~T�1) is an adjunction between (S;�) and (T (S);�).

Proof On one hand, f � T (g) ) ~T�1(f) � ~T�1T (g) � g. On the other hand, ~T�1(f) �
g ) T ~T�1(f) � T (g)) f � T (g). 2

Corollary 3 If the generalized-inverse ~T�1 of a given increasing operator T exists and is

increasing, then T is an erosion between (S;�) and (T (S);�), ~T�1 is its adjoint dilation,

and ~T�1T is the associated morphological opening.

In the above framework, the closing operator (dilation followed by erosion) has no intrinsic

meaning or function. The composition T ~T�1 coincides by de�nition with the identity oper-

ator, when applied to eroded elements, and is sometimes not well de�ned otherwise. In this

context, the classical closing on a complete lattice, which usually does have a meaning and

function, is seen as an opening in the dual complete lattice. This is because such closing is

used for �ltering, and therefore functions as an opening.
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4.1.4 Erosions as Simplifying Operators

There is a one-to-one correspondence between the subsets T (S) and the �lter ~T�1T (S),
because the function ~T�1 : T (S) 7! ~T�1T (S) is invertible, the inverse being T : ~T�1T (S) 7!
T (S).

Conceptually, the above bijective correspondenc means that the information removed by an

increasing operator T having an increasing pseudo-inverse is identical to the information

removed by a �lter ( ~T�1T ). The di�erence lies only on the \format" assumed by the infor-

mation that remains. It is often correct to say that the eroded signal is a compact, lossless

representation of the opened one.

Notice also that every opening has a generalized inverse, which is given by the identity

operator I. Therefore, the openings themselves are particular cases of erosions. Those

readers that are familiar with the traditional theory of MM may �nd the above sentence

incongruent, since it seems to contradict common knowledge. Nevertheless, there is no

contradiction. Indeed, an opening  in (S;�) is usually not an erosion in (S;�), however it
is an erosion between (S;�) and ((S);�). As a corollary, we get that the adjoint dilation

of an opening is the identity operation.

Finally, notice that the generalized inverse of an invertible operator is obviously the corre-

sponding inverse operator. In this case, the associated morphological opening is the identity,

which means that invertible operators do not remove information from a signal. This includes

transforms, translations, rotations, and group operations in general, etc.

4.1.5 Adjoint Dilations and its Rôles

One motivation for using the generalized inverse ~T�1 might be to reconstruct, approximate or

predict a signal from its eroded version (which, as we stressed, does not add new information

to the signal). We also mentioned that it may serve as a representation scheme of the �ltered

signal (more about that in Section 5). In all of the above cases, the corresponding dilation
~T�1 is de�ned only on T (S).

In other cases, one might be interested in extending the dilation domain to signals outside

the set T (S). For example, for enhancement, interpolation, super-resolution, etc. Part2 of

the extrapolation can be done by using the de�nition of adjoint dilation:

~T�1(f)
4
=
^
fg 2 S j f � T (g)g ; (24)

instead of the more restricted formula in (23).

2The signals that still have no well-de�ned image under ~T�1 after the modi�cation should be heuristically assigned.
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4.1.6 Signal Processing Between Di�erent Sets

For simplicity, the above discussion assumed that the signal set S and its image T (S) by an

erosion T share the same partial ordering �. In several cases, however, the image domain

T (S) may be of a di�erent nature, and � is not de�ned in it. In this case, we consider a

second partial ordering v, de�ned in T (S), and require that T and its pseudo-inverse form

an adjunction between (S;�) and (T (S);v). All concepts and propositions presented above

are then extended to the pair of posets (S;�) and (T (S);v).

4.1.7 Summary

In this subsection, we pondered that signal processing consists of accessing simple versions

of signals, or equivalently, manipulating signal components. The concept of simple version

is equivalent to the de�nition of a partial ordering between signals, and the concept of signal

components assumes the existence of ideal �lters (openings) on the corresponding poset. In

general, signal processing operators that deal with signal components are those having an

increasing generalized inverse on the poset.

In the remaining of this section, we consider the construction of partial orderings.

4.2 Partial Ordering Construction

In [17, Section 2.8], Cover and Thomas demonstrate that, through data processing, informa-

tion can only decrease or be preserved; never increase. The following proposition could be

seen as an MM counterpart of the above.

Proposition 12 Let A and B be arbitrary sets. For every operator ' : A
onto
7! B, there exists

a pair of partial orderings
A

� and
B

�, for which ' is an erosion between

�
A;

A

�
�
and

�
B;

B

�
�
.

In other words, every data processing is an erosion, which is bijectively associated to an

opening, i.e., to information loss, or preservation at most. The proof of the proposition is

given in the appendix.

Another interesting aspect of information decrease is given by the following proposition.

Proposition 13 Let A be an arbitrary set. For every idempotent operator ' : A 7! A, there
exists a partial ordering �, such that ' is an opening in (A;�).

I.e., any idempotent operator can be seen as a �lter. Proposition 13 is also proven in the

appendix.
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Despite the above propositions, it is obvious that not every existing operator is appropriate

for signal processing. Actually, most possible operators are not. An appropriate signal

processing approach requires that the underlying partial ordering matches one's intuition

of what \simpler version" means. For instance, one could say that one reason for linear

�ltering (convolution) being usually regarded as an appropriate signal processing operation

is because its underlying partial ordering (4) is associated to signal energy3, which is often

recognized a good measure of signal complexity. On the other hand, in many applications

(e.g., segmentation), signal energy is not an appropriate measure, and other (non-linear)

methods are usually invoked.

In this subsection we address a few ways to produce meaningful partial orders, or to derive

such orders from given operators, measures, or adjunctions.

4.2.1 Partial Ordering on Transformed Spaces

In the case of traditional MM, the partial ordering is de�ned on the canonical representation

of the signal, in a point-wise fashion. Note that the quantization orderings
T

� [de�ned in

(12)] and
R;q

� [de�ned in (16)] are also de�ned on the canonical representation of the signal.

However, this is not true for other signal processing schemes. On the other hand, some signal

processing schemes have their underlining partial ordering de�ned also in a point-wise basis,

but on a representation other than the canonical one. I.e., the signal is �rst transformed into

a di�erent space, where point-to-point comparisons are then performed. This is the case of
�

� [de�ned by eq. (4), in the Fourier domain] and
JPEG

� [de�ned in (17), in the DCT domain)].

Other several linear processing schemes, including Wavelets, can be considered to belong to

this category. But this is not restricted to linear transformation.

A particularly important partial ordering, which one can recognize as a basic component of

most of the partial orderings presented in Section 3, is de�ned as follows:

x � y , jxj � jyj and phasefxg = phasefyg; (25)

where x and y are complex numbers. Notice that this ordering is present in the de�nition of
�

�. Moreover, if x and y are real, then � becomes identical to
T

�, which is a basic component

of
R;q

� and
JPEG

� .

Composite partial orderings can be constructed by using �, as de�ned in (25), in a point-wise
manner.

In general, if an operator A is diagonalized by a certain linear transform T , then A is an

erosion in the complete inf-semilattice de�ned by the point-wise application of � in the

3The partial order de�nition in terms of absolute value of the frequency components in (4) is equivalent to a de�nition in
terms of the energy (square of absolute value) of the frequency components.
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transform domain of T . For instance, let A and T be N �N matrices, T unitary, satisfying:

T � A � T t = �; (26)

where � is a diagonal matrix. Consider the operator "(x) = A�x, where x is anN -dimensional

vector. Then, " is an erosion is the complete inf semilattice characterized by the following

partial ordering ~�:
x~�y, Xi � Yi; 8i; (27)

where X = (X0; X1; � � � ; XN�1) = T � x, Y = (Y0; Y1; � � � ; YN�1) = T � y, and � is as de�ned

in (25).

4.2.2 Measures

In some cases, one can identify an appropriate measure � of the signal to work with. On

the other hand, as stressed before, a measure by itself is not enough to characterize \simple

versions" of signals; additional criterions/constraints have to be added, in order to turn the

measure into a partial ordering.

For instance, consider the basic partial ordering �, de�ned in (25). One can say that it

consists of a complementation of the intensity (absolute value) measure. That is, a signal a

is smaller than b if the measure of intensity of a is smaller than that of b (jaj � jbj), and, in
addition, they have the same phase. In this case, the phase criterion is a complementation

of the intensity measure.

Measure Complementation with an Operator

Let �(�) be a measure on the set of signals S, and ' be an arbitrary operator, with domain

S and range R
4
= '(S). Let S'r be the set of all signals in S that have r 2 R as their image

by ', i.e., S'r
4
= ff 2 S j '(f) = rg. Finally, let us de�ne m'

r as the smallest measurement

in S'r , i.e., m
'
r

4
= inff2S'r �(f).

Proposition 14 If, for all r 2 R, the set S'r has exactly one element with measure m"
r,

then there exists a pair of partial orderings

�
S

�;
R

�
�
, for which:

1. ' is an erosion between

�
S;

S

�
�
and

�
R;

R

�
�
,

2. f
S

� g ) �(f) � �(g).
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Several combinations measure/operator in signal processing satisfy the hypothesis of Propo-

sition 14. To state a few examples4: Energy with linear �ltering, area with binary Minskowski

erosion, and quantization error with quantization.

The proof of the proposition, presented next, provides a constructive way of generating the

partial orderings
S

� and
R

�.

Proof Assuming that the hypothesis of Proposition 14 holds, let us de�ne the operator '�

as follows:

'�(r) = arg inf
f2S

'
r

�(f): (28)

De�ne then the partial ordering �:

f � g , 9n � 0 j f = ('�)
n
'n(g); (29)

where 'n denotes the n-fold recursive operation by ', and similarly to ('�)
n
. The symbols

'0 and ('�)
0
refer both to the identity operator.

We set
S

�=
R

�=�. Notice that, if R 6� S (i.e., if ' is not de�ned in R), then the greatest

possible value for n in

�
S;

S

�

�
is one, while the possible greatest value for n in

�
R;

R

�

�
is

zero. This means that, if R 6� S, then:

f
S

� g , f = g or f = '�'(g); (30)

r1
R

� r2 , r1 = r2: (31)

According to the proof of Proposition 12 (shown in the appendix), ('; '�) is an adjunction.

Therefore, ' is an erosion. Moreover, by de�nition of '� and
S

�, one obtains f
S

� g )
�(f) � �(g). 2

4.2.3 Adjunctions

Another approach for inducing partial orderings in signal processing is to start with two

functions � and ", satisfying "�" = ".

Proposition 15 For every pair ("; �), de�ned between two sets S and R, for which "�" = ",

there is a pair of partial orderings

�
S

�;
R

�
�
, for which ("; �) is an adjunction between

�
S;

S

�
�

and

�
R;

R

�
�
.

4We assume either regular (e.g., continuous functions, topologically open sets, etc.) or discrete signals.
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Pairs of adjunctions include down-scaling/up-scaling, quantization/dequantization,

coding/decoding, �ltering/inverse-�ltering, and more.

Proof The same partial ordering de�ned in (29) serves as well here for
S

� and
R

�, with '

replaced by ", and '� replaced by �.

Now, "� is the identity in "(S), because "�" = ", and �" is anti-extensive, by de�nition of �.
Therefore, � is the generalized-inverse of ". We obtain that " and � are increasing, in the

exactly same way we obtained that ' and '� are increasing in the proof of Proposition 12

(shown in the appendix). Therefore, according to Proposition 11, ("; �) is an adjunction. 2

5 Signal Processing Tasks

In the previous section, we pondered about the morphological aspects of signal processing

in general. In this section, we proceed the analysis by considering several speci�c signal

processing tasks.

The analysis in this section is neither deeply detailed, nor does it intend to cover all the

signal processing �eld. It serves only as a �rst look at signal processing tasks from the MM

point of view.

5.1 Filtering

The importance of �ltering to signal processing, and its connection to MM, have already

been discussed in Section 4.1.2. In this section, we discuss an additional practical aspect.

It is widely common in signal processing to use linear �lters, which at their vast majority are

not idempotent, and therefore do not match the morphological description of a �lter (�lter =

opening). On the other hand, J. Serra writes in [3, page 102]: \(...) it is common practice to

consider these �lters as band-pass devices, even if this is not exactly true". In other words,

linear �lters were historically intended to be idempotent, but practical reasons lead us to

use approximations of ideal �lters instead. Semantically, the �lter approximations became

known simply as �lters, and this denomination was extended also to any linear translation-

invariant operator, even if its rôle does not exactly consist of �ltering. According to the

theory presented in Section 4, linear \�lters" (i.e., linear translation-invariant operators) are

erosions, and not openings (except for ideal linear �lters), which means that they are not

exactly �lters, but they are related to a �lter by means of their generalized inverse.

5.2 Projections

Linear idempotent operators are usually called projection operators. They map their domain

into a linear sub-space, and the projection of an element x is the closest element to x in that
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sub-space.

We extend the above concept to posets. Any opening in a poset can be referred to as a

projection operator, and we call its range as a \sub-space", in analogy to the linear case.

More speci�cally, if S is a poset, then any set of the form f(s) j s 2 Sg is a \sub-space" of
S, when  is an opening. A sub-space S is partially closed with respect to the supremum, in

the sense that, if x and y belong to S, and x_ y exists in the poset, then x_ y belongs to S.

Proposition 16 For all f 2 S, (f) =
W
fg 2 (S) j g � fg.

The proof is given in the appendix.

According to Proposition 16, the projection (x) of an element x is the largest element in

the sub-space de�ned by  that is smaller than x. If there is a metric d(�; �) in S satisfying

x � y � z ) d(x; y) � d(x; z) and d(y; z) � d(x; z), then the projection  maps x to the

closest element in the sub-space that is smaller than x.

If the projection  is a morphological opening associated to an erosion " : S 7! D, then every

element of the sub-space is of the form �(q) for some q 2 D, where � is the adjoint dilation
of ", and � is called the generator of the sub-space.

A Linear Example

Let u be an M � N matrix, M < N , satisfying uuT = IM , where IM denotes the identity

square matrix of size M �M . Moreover, the matrix U
4
= uTu is an N �N diagonal matrix,

where the �rst M diagonal elements are equal to one, and the rest are null.

The operator U(x)
4
= U � x, where x is an N -dimensional vector, which can be recognized as

a linear projection, is an opening in the complete inf-semilattice (IRN ;
�

�), where
�

� is de�ned

as follows: x
�

� y , x̂i � ŷi; 8i = 1; : : : ;M , where x̂i is the i-th component of the vector

u � x (and similarly for y), and � is de�ned in (25).

In this context, the operator u(y)
4
= u � y, where y is an N -dimensional vector, is an erosion

between (IRN ;
�

�) and (IRM ;
�

�), and ~u(y)
4
= uT � y is the adjoint dilation. The projection

U(�) is the associated morphological opening, and the dilation u(�) is the generator of the
subspace.

5.3 Representation

Let S and D be posets, and � : D 7! S be the adjoint dilation of some erosion " : S 7! D.
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Now consider the sub-space generated by �: S
4
= fx 2 S j x = �(d); d 2 Dg. Then every

element x in S is of the form:

x = (x) = �(d); (32)

where  is the associated opening, and d 2 D. We call D the parameter poset, and we say

that d is a representation of x. The dilation � is called representation operator.

Given an element x 2 S, there might be more than one representation d in D. The erosion
" provides the largest among them. I.e., if x 2 S, then "(x) =

W
fd 2 D j �(d) = xg.

For a given element x 2 S, the operation:

d = "(x); (33)

is called parameter extraction.

5.4 Quantization & Dequantization

Quantization/dequantization is a particular case of extraction/representation.

Let A and B be any two sets, and de�ne the function " : A 7! B. We call B the set of region

labels, and " the neighboring rule. The function " groups the elements of A in regions that

are labeled by some element in B.

Now de�ne the function � : B 7! A, which we call representation rule, such that "�" = ".

The function � assigns for each region label in B a representation point in A.

As seen in Section 4.2.3, ("; �) is an adjunction, for some pair of partial orderings. We call the

partial ordering of A the quantization-error criterion. Now, each representation point given

by the function (dilation) � is the smallest element within the region to which it belongs,

i.e., the one that is associated to the smallest quantization error.

Alternatively, the error criterion or the partial orderings can be de�ned �rst, and then an

erosion chosen as neighboring rule. In this case, the representation rule is the corresponding

adjoint dilation.

5.5 Parameter Estimation and Reconstruction

In parameter estimation and reconstruction problems, one wishes to solve the equation:

x = A(d) + n; (34)

where A is some given representation operator, d is an unknown parameter element (\vector")

in a parameter set D, x is the \measured" signal in S, and n is noise \added," by some

\adding" operation +, to the signal A(d) represented by d.
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A classical way to solve (34) is to perform the minimization:

d̂ = argmin
d

dist[A(d); x]; (35)

where dist(�; �) is some distance measure. When A is a linear operator and the distance is

Euclidean, the solution is called least squared error, or simply least squares.

If the operator A is not invertible, then the set S(x) of all solutions of (35) has more than

one element. In this case, it is common to choose the minimum-energy solution:

�d
4
= ~A(x) = argmind̂ kd̂k;

s.t. d̂ 2 S(x);
(36)

where k � k is some \energy" measure. We assume that �d is unique.

We wish to regard the above solution from the morphological point of view. For this purpose,

de�ne the following partial ordering in S:

x
S

� y , dist[x;A(D)] = dist[y; A(D)] + dist(x; y); (37)

where dist[x;A(D)] denotes the distance of x to the range of A, i.e.:

dist[x;A(D)] = min
y2A(D)

dist(x; y): (38)

In D, we de�ne the following partial ordering:

d1
D

� d2 , d1 = d2 or

(
A(d1) = A(d2); and

d1 = argmind2S(x) kdk:
(39)

Now, notice that (35) and (36) can be summarized into the following equation5:

~A(x) =
D_ �

d 2 D j x
S

� A(d)

�
; (40)

which means that, if A is a dilation, then ~A is its adjoint erosion.

Let us show now that A is a dilation between

�
D;

D

�
�

and

�
S;

S

�
�
. Suppose that the

supremum d1
D
_ d2 exists in D; therefore, A(d1) = A(d2). It follows:

A

�
d1

D
_ d2

�
= A(d1) = A(d2) = A(d1)

S
_ A(d2): (41)

The associated morphological opening A ~A acts as a projection. It projects a \noisy" signal

x onto the range of \valid signals" A(D).

5The symbol
DW

denotes the supremum associated to
D

�.
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5.6 Feature Detection and Extraction by Template Matching

A solid theoretical basis for template matching in binary images has already been developed

based on MM [14, 15]. In our opinion, general template matching could be seen as an

extrapolation of that theory to posets.

Actually, feature (or pattern) detection consists of a particular case of parameter extraction,

where the parameter element (\vector") returned by an erosion " includes information about

the position of features that are \similar enough" to some given template. The adjoint

dilation � composes a superposition of versions of the given template, which are \placed at"

the positions indicated by the eroded (detected) image. The resulting morphological opening

�" is actually the feature extraction operation. The whole process is illustrated in Figure 1.

5.7 Enhancement

As seen above, image simpli�cation can usually be described by an erosion between posets.

The adjoint dilation of such erosion could be considered as enhancement.

If a signal x has its resolution reduced by some erosion ", than the enhancement of "(x)

by the adjoint dilation � produces the opening of x (a �ltered version of x). Notice that

usually x can not be reconstructed from its eroded version; instead, the �ltered version �"(x)

is selected.

Sometimes, we wish to perform the enhancement of some signal x that is not necessarily the

result of some previous simpli�cation. Notice however that, according to Proposition 19, only

the signals in the set B̂", de�ned in (54)-(53), belong to the domain of the adjoint dilation �.

Therefore, theoretically, only these signals can be properly enhanced. In practice, one would

arti�tially extend the domain of � to all signals, losing some of the properties of adjunctions.

On the other hand, one can certify that for traditional linear resolution-reduction operators

(e.g., decimation, non-ideal low-pass �ltering), the associated domain B̂" is identical to the

whole signal space, i.e., any signal can be enhanced by the corresponding adjoint dilations

(e.g., interpolation, high-pass �ltering).

5.8 Coding

Coding is a particular case of representation, where the encoding procedure is an erosion ",

and the corresponding decoding procedure is its adjoint dilation �.

If the associated opening  = �" is the identity, then we say that this coding scheme is

lossless.

If  is not the identity, we have a lossy scheme, and the signal obtained by decoding of

an encoded �le is a \�ltered" version (x) of the original signal x. This �ltered version
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Figure 1: Feature detection and extraction by template matching, from the morphological point of

view. The feature detection operator " and the corresponding reconstruction � form an adjunction.

The corresponding morphological opening represents the feature extraction operation.
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is therefore \smaller" than the original signal, according to a underlying partial ordering,

induced by the adjunction ("; �).

5.9 Segmentation

Segmentation is a particular case of quantization. To segment a signal f : D 7! R is to

generate an erosion " : D 7! L that associates each domain point x in D to a label in the

label set L. Usually, " is not invertible, so more than one domain point are associated to the

same label. The set of points associated to the same label is called a segment.

In the remaining of this subsection, we discuss segmentation by watersheds [16], as an ex-

ample.

Usually, there is an underlying measure � associated to a segmentation scheme. For wa-

tershed segmentation, this measure is characterized by the topographic distance, de�ned by

Meyer in [16], which returns the smallest amount of grayscale variation among all paths that

link two points.

More speci�cally, �(x) is given in this case by:

�(x) = inf
m2M

D(x;m); (42)

where D is the topographic distance6, and M is the set of local minima of the gradient

function associated to f .

A segmentation function " can be then de�ned as follows:

"(x) = arg inf
m2M

D(x;m); (43)

which can be obtained by a gradient descent operation on the function �. The setM serves

then as the label set, i.e., M� L.

If we de�ne the partial ordering: x � y ,

D[y; "(y)] = D[x; "(x)] +D(x; y); (44)

then " is an erosion, and also an opening, between the domain D and the set of local minima

M. In this case, the adjoint dilation is the identity.

6 Discussion and Conclusion

In this work, some traditional signal processing tasks are shown to be morphological opera-

tions in speci�c posets. An investigation of signal processing fundaments from the point of

6We assume that the topographic distance is complemented by the Euclidean distance inside plateaux, as suggested in [16].
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view of MM is presented, and it seems to indicate that MM could serve as a mathematical

framework for signal processing in general.

What are the bene�ts of the above results? Will we be able to design better signal processing

algorithms or improve existing ones, based on this work? Will we get new approaches or

applications? The answers to these questions are still unclear, and further research is required

in order to fully address them. However, we consider the following points as pontential

bene�ts:

1. This work expands the understanding of morphological fundaments and their relation

to other signal processing approaches. It also provides a di�erent point-of-view for

further understanding of well-known signal processing tasks and approaches.

2. The results presented here suggest that an appropriate approach for designing signal

processing operations/algorithms/systems could be: First, de�ne a partial ordering

that matches one's intuition of what \simple version" is, regarding a speci�c appli-

cation. Then, select/design operators making sure that they satisfy morphological

properties on the resulting poset (i.e., they are erosions, openings, etc.). In summary,

�rst select a criterion, and then search for an operator that matches that criterion. This

approach may ensure that the processing results correspond to one's expectations.

3. By unifying di�erent approaches, one could interchange methods and concepts between

the approaches. For instance, suppose the well-known median �lter is considered an

erosion in some speci�c poset, it would be interesting to discover what is its adjoint

dilation, and its corresponding morphological opening (which is an idempotent �lter,

as stressed before). The same would be true for other operators, like the curvature

ow. As for now, the above questions stand as open problems.
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8 Appendix A { Erosions, Dilations, and Skeletons on

Posets

8.1 Erosions and Dilations

De�nition 6 (Erosion): An operator " : A 7! B is called an erosion between the posets�
A;

A

�
�
and

�
B;

B

�
�
i� for all fYig � A:

� 9
BV
i " (Yi) 2 B , 9

AV
i Yi 2 A,

� If 9
AV
i Yi 2 A, then:

B̂

i
" (Yi) = "

 
Â

i
Yi

!
: (45)

De�nition 7 (Dilation): An operator � : B 7! A is called a dilation between

�
B;

B

�
�
and�

A;
A

�
�
i� for all fXig � B:

� 9
AW
i � (Xi) 2 A , 9

BW
i Xi 2 B,

� If 9
BW
i Xi 2 B, then:

A_
i
� (Xi) = �

 
B_
i
Xi

!
: (46)

Notice that, if A and B are complete inf semilattices, then the in�ma
AV
and

BV
exist for any

subset of A and B, respectively. Therefore, if A and B are complete inf semilattices, then

" : A 7! B is an erosion i�
BV
i " (Yi) = "

 
AV
i Yi

!
. Similarly, if A and B are complete sup

semilattices, then � : B 7! A is a dilation i�
AW
i � (Xi) = �

 
BW
i Xi

!
.

Proposition 17 Erosions and dilations are increasing, i.e., if " : A 7! B is an erosion and

� : B 7! A is a dilation, then

Y1
A

� Y2 ) "(Y1)
B

� "(Y2); (47)

X1

B

� X2 ) �(X1)
A

� �(X2): (48)
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Proof Y1
A

� Y2 ) Y1
A
^ Y2 = Y1 ) "

�
Y1

A
^ Y2

�
= "(Y1) ) " (Y1)

B
^ " (Y2) = "(Y1) )

"(Y1)
B

� "(Y2). Similarly, X1

B

� X2 ) X1

B
_ X2 = X2 ) �

�
X1

B
_ X2

�
= �(X2) ) � (X1)

A
_

� (X2) = �(X2)) �(X1)
A

� �(X2). 2

Proposition 18 If (�; �) is an adjunction between

�
A;

A

�

�
and

�
B;

B

�

�
, then � is an erosion

between

�
A;

A

�
�
and

�
B;

B

�
�
, and � is a dilation between

�
B;

B

�
�
and

�
A;

A

�
�
.

Proof Let us �rst show that, if
BV
i "(Yi) exists, then

AV
i Yi also exists. It holds:

BV
i "(Yi)

B

�
"(Yi), for all i, then

�

"
B̂

i
"(Yi)

#
A

� Yi; 8i: (49)

On the other hand, for any Z 2 A such that Z
A

� Yi, 8i, we get: "(Z)
B

� "(Yi)) "(Z)
B

�
B
^i

"(Yi), which leads to:

Z
A

� �

�
B
^i "(Yi)

�
; 8Z

A

� Yi; 8i: (50)

From (49) and (50), we conclude that
A
^i Yi exists (it is equal to �

"
BV
i "(Yi)

#
).

Now, we show that, if
AV
i Yi exists, then

BV
i "(Yi) exists, and is equal to "

 
AV
i Yi

!
. We have:

AV
i Yi

A

� Yi, for all i. Therefore:

"

 
Â

i
Yi

!
B

� "(Yi): (51)

On the other hand, for any W 2 B such that W
B

� "(Yi), 8i, we get: �(W )
A

� Yi ) �(W )
A

�
A
^i

Yi, which leads to:

W
B

� "

�
A
^i Yi

�
; 8Z

B

� "(Yi); 8i: (52)

From (51) and (52), we conclude that
B
^i "(Yi) exists, and is equal to "

�
A
^i Yi

�
.

We have proven, therefore, that " is an erosion. The proof that � is a dilation is dual. 2

For an adjunction (�; �), we call � the adjoint dilation of �, and � the adjoint erosion of �.
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We show next that every erosion has an adjoint dilation. In order to state that with precision,

we de�ne �rst the sets:

A"
X

4
= fY 2 A j X

B

� "(Y )g; (53)

and

B̂"
4
=

�
X 2 B j 9

A
^ A"

X

�
: (54)

Proposition 19 If " is an erosion between

�
A;

A

�
�
and

�
B;

B

�
�
, then the operator

�"(X)
4
=
Â

A"
X ; 8X 2 B̂"; (55)

is such that ("; �") is an adjunction between

�
A;

A

�
�
and

�
B̂";

B

�
�
.

Proof First, X
B

� "(Y )) Y 2 A"
X )

A
^ A"

X

A

� Y ) �"(X)
A

� Y .

On the other hand, �"(X)
A

� Y )
A
^ A"

X

A

� Y )
B
^ " (A"

X)
B

� "(Y ). Therefore,
B
^
�
"(Y ); Y 2 A j X

B

� "(Y )

�
B

� "(Y ). But, notice that X
B

�
B
^
�
"(Y ); Y 2 A j X

B

� "(Y )

�
.

Therefore, X
B

� "(Y ). 2

Corollary 4 If A is a complete inf semilattice, then:

B̂" = fX 2 B j A"
X 6= ;g : (56)

Corollary 5 If A and B are complete lattices, and "(UA) = UB, where UA and UB are the

universes of A and B, respectively, then B̂" = B.

As usual, a dual proposition and dual corollaries involving dilation instead of erosions exist.

8.2 Skeleton Representation

Let

��
Ai;

i

�
��

, i = 0; 1; : : :, be a series of posets, with suprema denoted by
i
_. Assume that

there exists a subtraction operation in Ai, denoted
i
�, satisfying, for all a; b 2 Ai, b

i

� a:�
a

i
� b

�
i
_ b = a.

Consider also the series of erosions f"i : Ai 7! Ai+1g de�ned on the series of posets

�
Ai;

i

�
�
.
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The skeleton representation of an element X 2 A0 is given by the series of elements Si(X),

de�ned as follows:

Si(X)
4
= Xi

i
� i(Xi); (57)

where i is the morphological opening associated to "i, and

Xi
4
=

(
"i�1(Xi�1); i > 0;

X; i = 0:
(58)

The set of elements fSi(X)g are regarded as a decomposition/representation of the element

X.

Let us de�ne the erosions "̂i : A0 7! Ai+1 as follows:

"̂i
4
=

(
"0"1 � � � "i�1; i > 0

identity; otherwise:
(59)

One can notice that (57) can be rewritten in terms of f"̂ig as follows:

Si(X) = "̂i(X)
i
� i["̂i(X)]: (60)

The reconstruction of the original signal X from its skeleton representation is given by:

X =
0_ n

�̂i[Si(X)]
o
; (61)

where �̂i is the adjoint dilation of "̂i.

9 Appendix B { Proofs

Proof (Proposition 1)

1.

�(Y ) = �(Y ) ) �(Y )
B

� �(Y )) ��(Y )
A

� Y:

�(X) = �(X) ) �(X)
A

� �(X)) X
B

� ��(X):

2.

��(Y )
A

� ��(Y )) �(Y )
B

� ���(Y )

����(Y )
A

� ��(Y )
A

� Y ) ���(Y )
B

� �(Y )

9>=
>;) �(Y ) = ���(Y ): (62)

��� = � is proved dually.
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3. X1

B

� X2 ) X1

B

� ��(X2) ) �(X1)
A

� �(X2). Similarly, Y1
A

� Y2 ) ��(Y1)
A

� Y2 )

�(Y1)
B

� �(Y2).

4. Notice that �(X) 2 A�
X, since X

B

� ��(X). Moreover, Y 2 A�
X ) X

B

� �(Y ) )

�(X)
A

� Y , which proves that �(X) is the in�mum of A�
X.

5. This item is proved dually to the previous one.

2

Proof (Proposition 2) Throughout this proof we simplify the notation by writting  instead

of ", and � instead of �".

Let us show �rst that the opening exists and is unique.

One can observe that X 2

�
Y 2 A j "(X)

B

� "(Y )

�
. For this reason, and because " is

increasing, one can write: (X) =
AV
fY 2 A j "(X) = "(Y )g. Consider then the set CX

4
=

fY 2 A j "(X) = "(Y )g. For all X 2 CX, "(X) is a constant and, therefore, if we write

fXig = CX , then
B
^ "(Xi) exists (and is equal to that constant). Therefore, since " is an

erosion,
A
^ Xi exists and is unique in A, which proves the proposition.

Let us show now that " = ". If " : A 7! B, then for all X in A:

"(X) = "

 
Â �

Y 2 A j "(X)
B

� "(Y )

�!

=
Â �

"(Y ) j "(X)
B

� "(Y )

�
= "(X):

We proceed now to show that the morphological opening is an algebraic opening. We have to

prove that  is idempotent, increasing, and anti-extensive.

Idempotent:

(X) =
^
fY j "(X) � "(Y )g

=
^
fY j "(X) � "(Y )g = (X):

Increasing:

X � Y ) "(X) � "(Y )

) fZ j "(X) � "(Z)g � fZ j "(Y ) � "(Z)g

)
^
fZ j "(X) � "(Z)g �

^
fZ j "(Y ) � "(Z)g

) (X) � (Y ):
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Anti-extensive:

fZ j "(X) � "(Z)g � fXg

)
V
fZ j "(X) � "(Z)g �

V
fXg

) (X) � X:

Proof of property 2: �["(X)] =
AV
fZ j "(X)

B

� "(Z)g = (X): 2

Proof (Proposition 5)

Q(T )
q (x)

T

^ Q(T )
q (y) = medianfa; b; 0g; (63)

where

a
4
=

(
bx=qc ; x � 0;

dx=qe ; x < 0:
b
4
=

(
by=qc ; y � 0;

dy=qe ; y < 0:
(64)

Hence,

Q(T )
q (x)

T

^ Q(T )
q (y) =

8>>><
>>>:

median fbx=qc ; by=qc ; 0g ; (x � 0) and (y � 0);

median fdx=qe ; dy=qe ; 0g ; (x < 0) and (y < 0);

median fbx=qc ; dy=qe ; 0g ; (x � 0) and (y < 0);

median fdx=qe ; by=qc ; 0g ; (x < 0) and (y � 0):

(65)

=

8><
>:
bmedian fx; y; 0gc =q; (x � 0) and (y � 0);

dmedian fx; y; 0ge =q; (x < 0) and (y < 0);

0; otherwise:

(66)

=

(
bmedian fx; y; 0gc =q; medianfx; y; 0g � 0;

dmedian fx; y; 0ge =q; medianfx; y; 0g < 0:
(67)

= Q(T )
q (x

T

^ y): (68)

It remains to prove that D(T )
q is the adjoint dilation of Q(T )

q . The steps of the proof are

identical to those of Proposition 4:

1. De�ne the set

AQ
(T )
q

x

4
=

�
y 2 IR j x

T

� Q(T )
q (y)

�
: (69)

2. Verify that D(T )
q is increasing in

�
IR;

T

�
�
.

3. Notice that D(T )
q (x) 2 A

Q
(T )
q

x for all x 2 IR, because x
T

� Q(T )
q D(T )

q (x).
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4. Show that D(T )
q (x) is the in�mum (according to

T

�) of A
Q
(T )
q

x , because for all y 2 A
Q
(T )
q

x :

x
T

� Q(T )
q (y)) D(T )

q (x)
T

� D(T )
q Q(T )

q (y)
T

� y.

2

Proof (Proposition 7) Let us make use of the following lemma:

Lemma 1 If A : A 7! B, B : B 7! C, and C : C 7! D are three erosions, then CBA : A 7! D
is also an erosion.

The proof is as follows:

CBA(x ^ y) = CB [A(x) ^ A(y)]

= C [BA(x) ^ BA(y)] = CBA(x) ^ CBA(y): (70)

Now, JPEG encoding can be divided in three steps: DCT transform (�t), quantization (�q),

and zigzag-Hufman coding (�h). The �rst and the third steps are invertible and increasing,

and, therefore, they are erosions. The second step (�q) can be shown to be also an erosion

almost directly from Proposition 6. Therefore, according to the above lemma, the whole JPEG

encoding algorithm is an erosion.

To prove the second part of the proposition, consider the following lemma:

Lemma 2 If A, B, and C are erosions, then the adjoint dilation (CBA)� of CBA is equal

to A�B�C�, where A�, B�, and C� are the adjoint dilations of A, B, and C, respectively.

This lemma is proved as follows:

x � CBA(y) ) C�(x) � C�CBA(y) � BA(y)

) B�C�(x) � B�BA(y) � A(y)

) A�B�C�(x) � A�A(y) � y: (71)

y � A�B�C�(x) ) A(y) � AA�B�C�(x) � B�C�(x)

) BA(y) � BB�C�(x) � C�(x)

) CBA(y) � CC�(x) � x: (72)

The second part is then proved, once one notice that the components of the JPEG decoding

algorithm are the corresponding adjoint dilations of those of the JPEG encoding algorithm.

Proposition 6 states that dequantization is indeed the adjoint dilation of quantization, whereas

the adjoint dilation of the other two (invertible) components are their respective inverse

operators. 2
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Proof (Proposition 12) Let us construct an example of such pair of partial orderings,

where we consider the two cases: B 6� A and B � A.

First, for every b 2 B, consider the set A'
b

4
= fa 2 A j b = '(a)g. Construct an operator

'�, by assigning an arbitrary element of A'
b to '�(b), for each b. Notice that any such

construction satis�es ''�' = '.

Assume �rst that B 6� A. In this case, de�ne
A

� by: a1
A

� a2 , a1 = a2 or a1 = '�'(a2).

De�ne
B

� as the trivial partial ordering: b1
B

� b2 , b1 = b2.

In this case, we have ''�(b) = b, 8b 2 B, by de�nition of '�. And '�'(a)
A

� a, 8a 2 A,

by de�nition of
A

�. Therefore, '� is the generalized-inverse of '. Moreover, ' is increasing,

since a1
A

� a2 ) '(a1) = '(a2) ) '(a1)
B

� '(a2). And '� is increasing, since b1
B

� b2 )

b1 = b2 ) '�(b1) = '�(b2) ) '�(b1)
A

� '�(b2). Therefore, according to Proposition 11,

('; '�) is an adjunction.

Assume now that B � A. In this case, de�ne a single partial ordering ��
A

��
B

� as follows:

a1 � a2 , 9n � 0 j a1 = ('�)
n
'n(a2): (73)

where 'n and ('�)
n
denote the n-fold operation by ' and '�, respectively. For n = 0, we

have '0 = ('�)
0
= identity.

Now, we still have that '� is the generalized-inverse of '. It remains only to check increas-

ingness.

By de�nition of �, a1 � a2 ) a1 = ('�)
n
'n(a2) for some n. Then, using that ''� is

identity, a1 � a2 ) '(a1) = ('�)
n�1

'n�1['(a2)] ) '(a1) � '(a2), and therefore ' is

increasing. And �nally, a1 � a2 ) a1 = ('�)
n
'n(a2) ) '�(a1) = '� ('�)

n
'n(a2) =

'� ('�)
n
'n'['�(a2)] = ('�)

n+1
'n+1['�(a2)]) '�(a1) � '�(a2), which means that '� is also

increasing. 2

Proof (Proposition 13) De�ne � as follows: a1 � a2 , a1 = a2 or a1 = '(a2).

In this case, ' is increasing, since a1 � a2 ) '(a1) = '(a2) ) '(a1) � '(a2). Moreover,

' is idempotent by de�nition, and anti-extensive, by de�nition of �. Therefore, ' is an

opening. 2

Proof (Proposition 16) De�ne A
f

4
= fg 2 (S) j g � fg. Obviously, (f) 2 A

f . More-

over, for all g 2 A
f : g � f ) (g) � (f). And since (g) = g, g � (f), which makes

(f) the supremum of A
f . 2
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