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Abstract

We present our framework for monitoring and diag-

nosis. The framework is based on interaction between

a qualitative diagnosis engine and a monitoring com-

ponent that performs a signal to symbol transformation

on the signals. We have applied the methodology to a

real system, the cooling system of an automobile engine

on which we have installed thermocouples and pressure

sensors. Faults can be introduced into the cooling sys-

tem in a controlled manner. We show that a combi-

nation of linear approximation techniques and statisti-

cal signal processing can provide robust symbolic signal

values for the diagnosis algorithms.

1 Introduction

Diagnosis in engineering systems is the process of
detecting anomalous system behavior and then isolat-
ing the cause for this behavior, The problem may be a
faulty control setting or a faulty sensor or component
in the system. Diagnosis typically requires a model
of normal operation of the system and a number of
observable variables. The model relates functionally
redundant observed variables and hypothesizes model
changes when inconsistencies arise. The model changes
may correspond to a fault. We distinguish three types
of faults, intermittent faults, incipient (gradually evolv-
ing) faults and abrupt faults. Our work concentrates
on the detection and isolation of abrupt faults in sys-
tem components.

The occurrence of an abrupt fault results in tran-
sients caused by system dynamics. These transients
contain important discriminating information about
which fault may have occurred. Due to feedback e�ects

of the system, a fault manifestation may not persist, so
we must track and analyze system behavior before the
transient e�ects disappear. Additionally, a fault that is
not detected and acted upon in a timely manner may
lead to catastrophic failure before the system reaches
a new steady state. Therefore, the ability to identify
faults based on transients may be crucial in dynamic
systems.

However, transients are di�cult to analyze and re-
quire complex dynamic models. Several di�culties can
be observed here. The model may contain modeling
de�ciencies such as signi�cant higher order phenom-
ena and system parameters may not be estimated ac-
curately enough. This makes it di�cult to interpret
system behavior. In Addition, quantitative techniques
such as parameter estimation may not work well for
complex systems because it is di�cult to invert func-
tions either by analytic or numeric methods. Finally,
measured signals are typically noisy and sensor re-
sponse is a function of environmental conditions and
characteristics which may drift over time.

Our model-based diagnosis group at Vanderbilt Uni-
versity has developed a comprehensive framework for
monitoring and diagnosis of physical systems that at-
tempts to overcome the di�culties associated with such
quantitative techniques. So far, the emphasis has
been on the diagnosis algorithms and system model-
ing. A number of di�erent simulations using lumped
parameter models have been built to evaluate the ap-
proach [7, 8, 9].

This paper focuses on the monitoring aspects. We
discuss critical signal analysis issues that must be ad-
dressed to make the methodology work with real world
signals and actual systems. We also describe our
testbed, which has been built around an internal com-
bustion engine as the device under test. We are cur-
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Figure 1. Diagnosis of dynamic systems.

rently focusing on the cooling system for this engine.
The testbed allows us to demonstrate the feasibility of
our framework operating on a real system.

The organization of this paper is as follows. In sec-
tion 2 we review the monitoring and diagnosis frame-
work and then discuss the signal analysis aspects in
more detail. In section 3 we describe the real world
experiment we have designed and the testbed we have
built. Section 4 shows results based on faults intro-
duced in our engine. We close with a discussion and
conclusions in section 5.

2 Method

2.1 Framework for monitoring and diag-
nosis

Figure 1 illustrates a generic model based approach
to fault detection and isolation [3, 4]. A set of variables,
called measurements, are monitored at frequent inter-
vals during normal operation. Dynamic behaviors from
system models are utilized to predict operating values
for a chosen set of system variables in a given mode of
operation. The diagnosis system maps these measure-
ments, y, that deviate from predicted normal behav-
ior, ŷ, onto a system model. Analysis of discrepancies
or residuals, r, in the context of the model helps to
generate one or more hypothesized root-causes, f, that
explain the measured deviations. Hypothesized faults
suggest modi�cations to the system models which are
then employed to predict future system behavior. The
goal is to continue the monitoring, comparison, and re-
�nement process until the set of faults occurring in the
system is isolated.

Our framework for monitoring and diagnosis uses
bond-graphs as the modeling paradigm. We exploit
systematic methods for generating temporal causal
graphs for behavior propagation from the bond-graph
representation. Bond-graphs are suited for both quan-
titative and qualitative analysis. Our diagnosis algo-
rithms process system parameter values based on their
qualitative behavior, that is, magnitude and temporal
e�ect. Magnitude deviations are predicted in terms
of low (-) or high (+) values with respect to normal

operating values. The temporal e�ect is introduced by
energy storing elements (related to state variables) and
is applied to predict �rst order behavior, whether sig-
nal slope is positive (+) or negative (-). If the behavior
of multiple energy storage elements accumulates, the
prediction may be in terms of higher order derivatives.
Because in time these higher order derivatives propa-
gate into lower order e�ects, their qualitative predic-
tion may overrule nondeviating predictions of lower or-
der time derivatives and even magnitude predictions.
This is referred to as progressive monitoring [6].

Predictions of magnitude deviations that have a high
or low value before progressive monitoring is applied
indicate abrupt changes, which correspond to discon-
tinuities in the model. A discontinuity must not be
confused with a magnitude deviation. A magnitude
deviation emerges over time and is identi�ed by the
progressive monitoring scheme. As mentioned earlier,
the diagnosis is enhanced if they can be reliably de-
tected.

Therefore, the primary functionality of the monitor-
ing component is the extraction of qualitative magni-
tude and slope values and to detect abrupt changes.
We view this as a signal interpretation problem, and
we usually refer to as the signal to symbol transforma-
tion.

2.2 Signal to symbol transformation

2.2.1 The realities of real data

There are two signi�cant issues in dealing with real
data in monitoring and fault isolation tasks: contami-
nation of signals by noise, and the discrete time repre-
sentation of signals.

Noise in data leads to a fundamental tradeo� be-
tween speed and con�dence in analytic results. On
the one hand, additional measurement points lead to
higher reliability in estimates made on the data. On
the other hand, using additional measurement samples
leads to delay before feature values become available
to the diagnostic algorithms. The attenuation of noise
with an FIR �lter thus should be considered in the light
of this tradeo�.

Since the signal to symbol transformation is con-
cerned with extracting features from the data the na-
ture of any noise attenuation also needs to be taken into
account. A linear low pass �lter distorts the signal the
least, but will also a�ect the location of features in the
data. The objective in signal analysis is to preserve the
features of interest, not necessarily to minimize possible
distortion. A Nonlinear �lter may provide a solution if
we wish to preserve high bandwidth features while at
the same time attenuate noise. Statistical order �lters



(the median �lter being the most familiar example) and
morphological �lters are well known examples.

Continuous time signals must be discretized before
we can apply any analysis or processing. The Nyquist
theorem de�nes the sampling rate required to recon-
struct a signal from its samples. However, this is a
theoretical lower bound, that cannot be used in a real
system. In addition, it only applies to signal recon-
structing. When we wish to do signal analysis, the
sampling theorem can at best be a starting point for
selecting a sampling rate. Typically we must use over-
sampling, that is, sampling at a rate that exceeds the
Nyquist rate. This results in a more robust description
of the signal in causal systems.

2.2.2 Discrepancy detection and Slope estima-

tion

Discrepancy detection is a crucial component of the
monitoring system. We trade sensitivity to changes in
the signal for robustness to reach a compromise be-
tween false alarms and missed alarms. The detection
process implies the use of a threshold to make the de-
cision whether a change has occurred or not. A naive
approach is to compare the measured signal value to
the nominal value directly. This, however, would give
a poor performance in the presence of noise, and re-
quires further analysis to label the nature of the change
as well. So usually a normal band that is a multiple of
the standard deviation is set around the data.

The second component of signature derivation is
estimation of the slope of the signal after the initial
change. The simplest way to do this is a discrete ap-
proximation using a di�erence operator. This approach
is extremely sensitive to signal noise because the di�er-
ence operator acts as a high pass �lter (e.g., see [2]). In
the presence of noisy signals, it is unrealistic to assume
that successful diagnosis using �rst order derivatives
can be based on two samples in time. Moreover, the use
of higher order derivatives is almost always impossible
(unless dedicated transducers such as accelerometers
are available). A more reliable method for estimating
derivatives is to use statistical model �tting methods.
A simple example of this is to apply piece wise linear
approximation of the signal.

2.2.3 Abrupt change detection

As we have indicated, the ability to detect abrupt
changes in the data contributes greatly to the discrim-
inative powers of the fault identi�cation scheme. We
have investigated three sophisticated approaches for
the detection of abrupt changes: signal reconstruction

using splines, statistical signal processing, and the dis-
crete wavelet transform [10]. Here we discuss only the
statistical signal processing approach because it is most
relevant to the results discussed later.
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Figure 2. Abrupt change detection in a unit step
function with Gaussian noise (� = 0.3). The
step occurs at x = 100

The statistical signal processing method is based on
hypothesis testing and the notion of likelihood ratio.
The detection process computes an innovation function
based on the likelihood ratio between several hypothe-
ses, each corresponding with a di�erent signal model.
The detector used here is called the Generalized Likeli-
hood Ratio (GLR) which makes no assumption about
the magnitude of the change. The decision function is
made by applying a threshold on the innovation func-
tion. Much work has been done in developing a system-
atic framework using this method and it can be shown
to be the optimal detector [1]. However, it does require
a statistical model of the data.

3 Experiment Design and Testbed Im-

plementation

3.1 Selection of the device under test

A suitable 'device under test' should satisfy the fol-
lowing requirements: 1) it should exhibit dynamic be-
haviors, 2) there should be a well de�ned dynamic
model of the system based on energy exchange between
components that captures behaviors of interest, 3) we
must be able to introduce faults that do not damage
the testbed, and 4) sensors can be introduced where
needed without a�ecting operation. We have selected
an internal combustion engine from an automobile as
the device under test. As the initial project, we have
taken on the task of modeling, monitoring and fault
isolation of the engine cooling system.

An automotive cooling system uses a liquid coolant
that circulates through the engine block and radiator at



Figure 3. Engine schematic with suggested sen-
sor placement

pressures that can reach 15 (psi). The temperature of
the coolant can exceed 100 (�C). A detailed description
of the cooling system and corresponding bond-graph
model is presented in [5]. Since we are dealing with
a combined thermal and 
uid 
ow problem it is im-
portant to collect temperature and pressure values at
various points in the cooling system circuit.

Several faults can be introduced into the cooling sys-
tem without damaging the engine, provided the tem-
perature of the engine block does not exceed certain
limits.

� The thermostat may fail. This causes a mode
switch to happen or not. Failure may occur ei-
ther in the open or closed position.

� The belt may fail. This results in the fan and
pump no longer being driven in which case the
coolant becomes too hot.

� A hose may get punctured, causing coolant to leak
quickly.

� The radiator may start leaking. This is typically
a slow leak.

� Metal deposits in the coolant may clog the radiator
outlet.

� The water pump may fail, either catastrophically
or gradually through wear.

3.2 Experimental Setup

The actual engine is a Chevrolet V-8. We selected
this because of available expertise as well as readily
available peripheral components. It also o�ers several
subsystems for experimentation. The testbed consists
of the engine, bolted on a steel frame, and a PC based
instrumentation system.

The instrumentation system consists of an Intel Pen-
tium microprocessor based computer running the Mi-
crosoft Windows NT operating system. This machine
is equipped with a PCI bus data acquisition board from
Data Translation (DT3001-PGL) with 8 di�erential in-
puts, and a maximum acquisition rate of 333kS/s. An
external enclosure houses a screw terminal interface to
the data acquisition board and is �tted with connec-
tors for the sensors. The enclosure can also house ad-
ditional signal conditioning, although none is in place
at this time. The screw terminal itself provides cold
junction compensation (CJC) for thermocouples. All
wiring from the sensors to the enclosure is shielded.

We have installed sensors at expert selected mea-
surement points. The selection was made based on the
discriminating ability and the possibilities for ease of
installation on the engine. Figure 3 shows the location
of these measurement points on the engine and Table 1
relates them to the list of faults.

Figure 4 shows a detail of the engine with the in-
stalled sensors. Thermocouples are used for tempera-
ture measurements. A probe style thermocouple (T1)
has been installed in the thermostat housing, imme-
diately downstream from the thermostat. A second
probe style thermocouple (T3) is just upstream from
the thermostat in the intake manifold. This location
is very close to the cylinder heads, where the coolant
reaches its maximum temperature. The sensor is in-
stalled in an existing opening in the intake manifold,
normally used for the coolant loop that is connected
to the car heat exchanger. Both probe style thermo-
couples are immersed in engine coolant. A 'bolt-on'
type thermocouple (T2) is �xed to the cast iron engine
block but the measurement is not currently used in the
model or diagnosis. One ampli�ed voltage output pres-
sure transducer (P1) is directly installed in the intake
manifold, in an existing opening next to the thermo-
stat housing. This places the pressure measurement
immediately downstream of the thermostat. A second
pressure transducer (P2) of the same type is installed

Thermostat failure: open T1

Thermostat failure: closed T3, P1

Belt failure T3, T1

Punctured hose (fast leak) P1, P2

Radiator leak (slow leak) T1, T3, P1

Radiator obstruction P1, P2

Waterpump failure: gradual T1, T3, P1

Waterpump failure: abrupt T3, T1

Table 1. Faults in the cooling system and im-
plicated transducers.



Figure 4. Engine detail with sensors. The fan is
on the bottom left, the carburetor on the top
right (the air cleaner has been removed)

in the lower radiator hose, where pressure is close to
the pressure at the radiator outlet.

3.3 Introducing Faults

At the present time we are investigating coolant
leakage faults. In order to simulate a leak we have
inserted a T-split coupling in the lower radiator hose
which makes allows us to drain coolant from the system
by attaching a valve to the open end of the coupling.
The coupling has a large inner diameter to enable high
out
ow.

To simulate a large hose puncture a lever operated
gate valve is attached to the coupling. This valve
can be switched from closed to open almost instan-
taneously. We do not drain all the coolant from the
engine but instead close the valve again. This helps
prevent damage to the engine. As a result we also see
some spurious transients, but they can be ignored in
the analysis.

To create smaller and more controlled leaks we use
a di�erent valve type with control of the out
ow. A
small leak in the lower radiator hose is very close in
behavior to a small leak in the radiator.

4 Results

Figure 5 shows an example of a hose puncture exper-
iment. The engine is running stationary and the sys-
tem has reached steady state (actually, a tiny amount
of temperature gradient is still noticeable in the tem-
perature data). The sampling time is 0.02 (s). All sig-
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Figure 5. Abrupt loss of coolant through punc-
tured lower radiator hose

nals are �ltered with a median �lter of length 5. This
removes the few outliers that can be seen in the oth-
erwise very clean temperature data. From the �gure
it can be seen that the steady state pressure is quite
low. this is caused by the fact that the gate valve is
leaking slightly, even when closed. The valve is opened
at t = 5(s) and remains open for several seconds. In
this interval a large amount of coolant is drained from
the system. The closing of the valve gives results in
transients in both pressure and temperature data that
will be ignored. The very fast transients in the pres-
sure signals and slower transients in the temperature
signals can clearly be seen.

We compute the symbolic signatures every second,
using 50 samples for the least squares linear approxi-
mation of the signal to determine the slope. A moni-
toring diagnosis step is thus made every second. Note
that the monitoring component computes the signal
slope at every step, but the diagnosis algorithm uses
this only after a magnitude deviation occurs. Abrupt
change detection using the GLR algorithm is applied to
the pressure signals only. We use the fact that we know
that abrupt changes cannot occur in the temperature
data. This type of domain knowledge can and will be
built into the framework in a structured manner.

Table 2 shows the results from step 3 to step 8 (the
fault occurs at step 5). the format for the signatures
is an '+/{/0' pair for magnitude deviation and slope,
and a '?' to indicate if an abrupt change was detected
during a step.

We cannot show the complete simulation results in
this paper, but the prediction for the punctured hose



Step T1 T3 P1 P2

4 (0,+) (0,{) (0,+) (0,0)

5 (0,+) (0,0) (0,+) (0,+)

6 (+,+) (0,{) ({,{,?) ({,{,?)

7 (+,+) (+,+) ({,{) ({,+)

8 (+,+) (+,+) ({,{) ({,0)

Table 2. Results of the signal to symbol trans-
formation on the data around the occurrence
of the fault

Meas magn. 1st 2nd 3rd

T1 0 0 0 +

T2 0 + { +

P1 0 { + {

P2 { + { +

Table 3. First prediction step after fault intro-
duction for the hypothesized punctured hose
fault.

fault is shown in Table 3. It is the output of the pre-
diction algorithm one step after the fault is introduced
in the model. The parameter that is altered for this
fault is the resistance value for the lower radiator hose.

The prediction step is computed up to the 3rd or-
der e�ects. with a lower order prediction, no change in
behavior in T1 is predicted for this fault. As discussed
in section two, the sign of higher order derivatives is
propagated to lower order derivatives. From this we
can see that the algorithm predicts that the tempera-
ture will rise on both T1 and T2. We can also see that
the model predicts that P1 and P2 will drop, and in
fact the model predicts and abrupt change for P2 (mag-
nitude deviation without a previously predicted slope
change). The model does not predict an abrupt change
for P1 which believe we can attribute to a known mod-
eling de�ciency (there is a secondary coolant 
ow path
within the engine block that is not modeled yet, which
would contribute dynamics in this fault).

5 Conclusions

The development of a suitable testbed is vital to
demonstrate utility of research results in the �eld of
monitoring and diagnosis on real systems. The com-
parisons of signatures computed from the real data
with the predictions generated by the model lead to
new insights on the model building as well as provide
guidelines on the type of signal analysis algorithms to
use. The results so far indicate that the combination
of qualitative diagnosis with with sophisticated signal

to symbol transformation methods is promising.
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