
Control CPR: A Branch Height
Reduction Optimization for
EPIC Architectures

Michael Schlansker, Scott Mahlke, Richard Johnson
HP Laboratories Palo Alto
HPL-1999-34
February, 1999

E-mail: [schlansk,mahlke]@hpl.hp.com
rjohnson@transmeta.com

ILP, critical path
reduction,
compilers

The challenge of exploiting high degrees of instruction-
level parallelism is often hampered by frequent
branching. Both exposed branch latency and low branch
throughput can restrict parallelism. Control critical
path reduction (control CPR) is a compilation technique
to address these problems. Control CPR can reduce the
dependence height of critical paths through branch
operations as well as decrease the number of executed
branches. In this paper, we present an approach to
control CPR that recognizes sequences of branches using
profiling statistics. The control CPR transformation is
applied to the predominant path through this sequence.
Our approach, its implementation, and experimental
results are presented. This work demonstrates that
control CPR enhances instruction-level parallelism for a
variety of application programs and improves their
performance across a range of processors.

 Copyright Hewlett-Packard Company 1999

Internal Accession Date Only

Control CPR: A Branch Height Reduction Optimization
for EPIC Architectures

Michael Schlansker Scott Mahlke Richard Johnson
Hewlett-Packard Laboratories Transmeta Corporation

Palo Alto, CA 94304 Santa Clara, CA 95054
fschlansk,mahlkeg@hpl.hp.com rjohnson@transmeta.com

Abstract

The challenge of exploiting high degrees of instruction-level
parallelism is often hampered by frequent branching. Both ex-
posed branch latency and low branch throughput can restrict par-
allelism. Control critical path reduction(control CPR) is a com-
pilation technique to address these problems. Control CPR can
reduce the dependence height of critical paths through branch op-
erations as well as decrease the number of executed branches. In
this paper, we present an approach to control CPR that recog-
nizes sequences of branches using profiling statistics. The control
CPR transformation is applied to the predominant path through
this sequence. Our approach, its implementation, and experimen-
tal results are presented. This work demonstrates that control CPR
enhances instruction-level parallelism for a variety of application
programs and improves their performance across a range of pro-
cessors.

1 Introduction

Increases in microprocessor performance are driven by both in-
creased clock speed and the use of hardware parallelism to exploit
instruction-level parallelism. Explicitly Parallel Instruction Com-
puting (EPIC) architectures, as exemplified by Intel's recently an-
nounced IA64, represent an emerging class of processors which
support higher levels of instruction-level parallelism by enabling
additional parallelization to be performed at compile time. EPIC
architectures use three major features to facilitate compile-time
parallelization: explicit parallel issue, speculation, and predica-
tion. To fully exploit EPIC processors, compilers must also trans-
form and schedule application programs to make more parallelism
available at run time.

There is significant concern regarding the amount of available
instruction-level parallelism in important applications. Applica-
tions with insufficient parallelism fail to exploit hardware paral-
lelism and suffer substantial performance penalties on EPIC pro-
cessors. Limits on application parallelism come in two basic

0

forms: data dependences and branch dependences. Either type
of dependence limits performance by requiring the sequential ex-
ecution of dependent operations. Rather than accept dependences
as hard limits to achieved performance, compiler researchers need
to develop techniques to alleviate their limiting effects.

While traditional optimizations focus only on minimizing oper-
ation count,critical path reduction(CPR) is a family of techniques
for transforming programs to reduce branch and data dependence
height in order to enhance parallelism. CPR techniques generally
face tradeoffs between the need to reduce path length versus the
cost of introduced redundant operations.

In this work, we focus on control critical path reduction (con-
trol CPR) to reduce branch dependence height. We define a new
control CPR technique referred to as theirredundant consecutive
branch method(ICBM). ICBM reduces height without executing
redundant operations. In fact, ICBM can greatly reduce the num-
ber of executed branches thus improving performance on proces-
sors with exposed branch latency or inadequate branch throughput.
The approach is suitable for processors with substantial hardware
parallelism as well as for processors with minimal hardware par-
allelism. While control CPR is broadly applicable to both EPIC as
well as superscalar architectures, our implementation focuses on
EPIC processors.

This paper makes several important contributions. First, our
implementation of an approach for control CPR, ICBM, is pre-
sented. While previous papers discussed a conceptual framework
for control CPR, this paper describes a working implementation of
ICBM within our experimental compiler. We have extended pre-
vious control CPR techniques to treat input programs containing
arbitrary uses of predicated code including both conventional if-
converted code as well as other more complex uses of predicates.
ICBM also generalizes previous control CPR techniques to pro-
vide more efficient treatment for predicted taken branches. This
paper presents effective heuristics to utilize branch profile data to
control the application of control CPR. Finally, the paper presents
experimental results demonstrating the effectiveness of ICBM for
enhancing performance in a variety of applications. For instance,
a geometric mean speedup across all the benchmarks of 18% is
observed for an EPIC processor with modest hardware resources.

2 Background

Researchers have developed compiler techniques to allevi-
ate the performance limiting effects of data dependences. Tree
height reduction has been used to parallelize arithmetic compu-
tations [Kuc78]. Optimization techniques such as renaming, re-

association, and expression simplification have been used to re-
duce data dependence height. Height reduction has also been ap-
plied to loop data recurrences [DT93] [SK93].

There has also been prior work in reducing the performance
limiting effects of branch dependences. Speculative execution
reduces height by moving operations above a previous guarding
branch. Speculative execution has been used to accelerate pro-
gram regions such as traces [LFK+93], superblocks [H+93], soft-
ware pipelined loops [TLS90], and global regions [ME92]. Pred-
icated execution uses an additional boolean operand as a guard
which conditionally nullifies each operation. Operations execute
to completion when their predicate is true and are nullified when
their predicate is false. If-conversion using predicated execution
has been used to eliminate branches associated with if-then-else
constructs [AKPW83] [DT93] [MLC+92].

Compiler optimization techniques have been developed to re-
duce the height of critical paths threading through branches and the
number of executed branches in application programs. Loop un-
rolling has been used to reduce the number of executed branches
in counted do-loops [LFK+93]. The height and number of ex-
ecuted branches has also been reduced for while loops [SK95].
Optimizations for very specific code patterns have been used to
eliminate conditional branches [GK92]. The number of executed
conditional branches can also be reduced using code duplica-
tion [MW92] [MW95] [BGS95]. Finally, the number of executed
branches can be reduced by reordering multi-way switch state-
ments so commonly executed cases appear first [YUW98].

Scalar control CPR provides the potential for a compiler to
more systematically treat a broader variety of scalar program
branches [SK95]. Prior work outlines an approach for scalar con-
trol CPR which identifies new avenues for enhancing program par-
allelism. This paper is based on a working implementation of con-
trol CPR which provides a more detailed understanding of the is-
sues surrounding the design and implementation of control CPR
technology within a working compiler. In order to accomplish
control CPR without redundant code, our approach utilizes branch
profile information to expedite common program paths at the ex-
pense of rare program paths. Prior work has shown that branch
profiles are relatively consistent across multiple data sets [FF92].

3 PlayDoh: An example EPIC architecture

PlayDoh, an EPIC architecture intended to support publicly
available research, supports our experiments [KSR93]. Two cen-
tral features of PlayDoh are important in our discussion and imple-
mentation of control CPR: the parallel execution model and pred-
icated execution.

Parallel execution. PlayDoh exposes hardware parallelism
directly to the compiler. Parallelism is exposed in two forms: si-
multaneous wide issue, and visible latency. While exposed paral-
lelism is commonly seen in specialized signal and media proces-
sors, most general-purpose processors utilize a strictly sequential
computational model. Explicit parallelism introduces a number
of architectural issues surrounding branches. PlayDoh assumes
that branch operations have one or more cycles of exposed latency.
This allows the construction of simpler branch units without pre-
dictive hardware and which do not stall on a branch mis-predict.
On the other hand, this places a substantial burden on the compiler

input result of
predicate compare un uc on oc an ac

0 0 0 0 - - - -
0 1 0 0 - - - -
1 0 0 1 - 1 0 -
1 1 1 0 1 - - 0

Table 1. Behavior of compare operations

to efficiently utilize the delay slots of exposed latency branches.
The execution of a taken branch does not nullify arithmetic op-

erations within its delay slots, and PlayDoh assumes that branches
are treated in a like fashion. Hardware branch priority has been
previously used to nullify lower priority branches when branches
are concurrently executed. This concept can be extended to nul-
lify lower priority branches (and just branches) within the exposed
delay slots of a taken branch. This extension is considered to be
awkward, and difficult to implement in hardware. Instead, Play-
Doh assumes that all branches are naturally pipelined and take
effect at their visible latency. When multiple branches take si-
multaneously, execution semantics is indeterminate. To simplify
overlapped branch treatment, our compiler ensures that no branch
takes when it is located within a delay slot of another taken branch.
Branches can be statically overlapped only when the compiler
guarantees that their guarding predicates are not simultaneously
true.

Predicated execution. The PlayDoh predicate architecture is
based on that of the Cydra 5 [DT93]. Predicated execution uses
boolean predicates to represent information about flow-of-control
within the program. For each execution of the program, a predi-
cate's value is true when control flow reaches a specific point in
the control flow graph for the program; the predicate's value is
false when control flow does not reach the specified point in the
control flow graph. PlayDoh has a number of enhancements over
the Cydra 5 which allow a more general and efficient computation
of predicates. These enhancements include the definition of com-
pares which compute a pair of predicates in a single operation as
well as compares which streamline the evaluation of multi-input
logical operations needed for control CPR. A predicate computing
compare operation has the form:

p,q = cmpp.<x>.<y> cond(a,b) if r ,

The compare operation is interpreted as follows:p, q are desti-
nation predicate registers;cmpp is the generic compare opcode;
<x> , <y> are two-letter action specifiers for each compare desti-
nation;cond(a,b) is the comparison itself;r is a source predi-
cate register.

PlayDoh action specifiers allowed for each result include the
following: unconditionally set (UN or UC), wired-or (ON or OC),
or wired-and (AN or AC). The first character (U, O or A) indi-
cates the action type (”unconditional”, ”or”, ”and”), while the sec-
ond character (N or C) indicates the action mode (”normal mode”,
or ”complemented mode”). When an action executes in comple-
mented mode, the compare condition is complemented before per-
forming the action on the target predicate.

Table 1 shows the execution behavior of these compare opera-
tions in normal and complement modes. Each entry describes the
result on the destination predicate; note that the destination may
be assigned a value or may be left untouched (denoted as “-”).

From the table, we see that an unconditional compare opera-
tion always writes a value into its destination register. The value
written is the logical and of the guarding predicate and the com-
parison result (or its complement). The unconditional compare
is commonly used to compute predicates for taken and not-taken
successor blocks after a program branch.

The wired-or operation conditionally sets its destination pred-
icate true if both its guarding predicate and its comparison result
are true. This form can be used to efficiently compute disjunc-
tions by accumulating terms into a single predicate register that
was initially cleared. Since all operations that write the same reg-
ister conditionally write the same value (true), they can execute in
any order. After all conditional writes have completed, a final cor-
rect value is left in the target of the wired-or operation. Wired-or
writes to a common location are not treated as output dependences
and are considered as unordered by the scheduler. Further, in an
EPIC architecture like PlayDoh, simultaneous wired-or writes to
a common register are well-defined and readily-implemented in
hardware.

Similarly, the wired-and compare operation writes the value
false if its guarding predicate is true and its comparison result is
false. The conjunction of multiple compare conditions is com-
puted by first setting a predicate register to true, then “accumu-
lating” the and-ed terms into this predicate register, possibly in
parallel. The use of the wired-and and wired-or predicates to ac-
cumulate terms in a conjunction or disjunction is used extensively
in the control CPR transformation discussed in this paper.

4 Approach to Control CPR

This section presents an overview of control CPR and defines
a specific approach called the ”Irredundant Consecutive Branch
Method” (ICBM). Some approaches to control CPR are redun-
dant like full CPR [SK95] which aggressively accelerates all paths
within a region at the cost of a quadratic growth in the number of
compares. The use of profile data allows us to expedite some pro-
gram paths at the expense of others; ICBM reduces code growth
by accelerating only a single, statically predicted, program path.
While the static number of operations typically increases, the dy-
namic number of executed operations does not. Thus, ICBM
is attractive for processors with limited parallelism. Approaches
that accelerate multiple paths can further improve performance for
highly parallel processors or where static prediction is difficult.

4.1 Basic approach

Control CPR is introduced by considering a single-entry, linear
sequence of operations containing one or more branches, referred
to as asuperblock. A superblock, consisting of three branches,
is given in Figure 1(a). Each branch has a condition computa-
tion to determine if it is taken,ai < bi in the figure. We assume
the preferred execution path in the superblock (theon-tracepath)
is traversed by falling through each successive branch. Anoff-
tracepath is traversed when any of the exit branches take. Non-
speculative operations are guarded by scheduling them below (and
outside delay slots of) previous branches. Store operations are
used in Figure 1(a) to represent generic non-speculative opera-
tions. Branches are sequentially ordered; a chain of dependences
exists between branches that exposes all branch latencies.

FRP conversion.With traditional control flow, operations are
guarded by confining them to basic blocks guarded by branches.
Predicates can be used to guard operations without confining
them to sequentially executed basic blocks. In prior work, if-
conversion was primarily used to eliminate branches within single-
entry single-exit program regions [DT93] [MLC+92]. Dependent
chains of branches (e.g., those found in superblocks) were not
treated and remained dependent during program scheduling. With
predicates, dependent chains of branches found in superblocks
may be transformed using a variant of traditional if-conversion.
The program is first partitioned into single entry acyclic regions
and a predicate is associated with each basic block. The predicate
is used as a guard for operations within the block. The computa-
tion of these predicates and their use as guards eliminates depen-
dences between non-speculative operations (including branches)
and previous branches upon which they are dependent. These
predicates are referred to asfully-resolved predicates(FRPs).

FRPs for both basic blocks and branches within a single en-
try acyclic region can be defined recursively as follows. The FRP
for the entry block has value true. The FRP for any selected non-
entry block can be computed by oring a term for each control-
flow edge entering the block. The term for each edge is com-
puted by conjoining the FRP for the block from which the edge
originates with the branch condition that causes flow of control to
traverse the edge and enter the selected block. The FRP for a con-
ditional branch can be calculated as the conjunction of the FRP
for the block in which the branch resides and the branch condi-
tion that causes the branch to take. Control dependence analysis
and boolean expression manipulation are used to optimize FRP
expressions.

Our compiler transforms regions by inserting code to compute
FRPs for each basic block and for each conditional branch. Opera-
tions are guarded by referencing these FRPs as predicate operands.
This process is calledFRP conversionChains of branch depen-
dences are converted into chains of data dependences through op-
erations that evaluate predicates.

The FRP-converted superblock corresponding to Figure 1(a) is
shown in Figure 1(b). Each rectangle provides the functionality of
a single PlayDoh compare with UC left-hand and UN right-hand
outputs (see Table 1). Each compare computes both an FRP for
a basic block as well as an FRP for a branch. The UC output
computes a new block FRP by conjoining the previous block FRP
with the complement of the branch condition. Analogously, the
UN output computes the branch FRP using the branch condition
itself. Block FRPs guard non-speculative operations that are no
longer dependent upon prior branches.

When any branch FRP in the sequence is true, all other branch
FRPs are false. As a result, the branches are mutually exclusive;
they may be reordered during scheduling and they may execute in
parallel. In Figure 1(b), the fall-through successor ”E4” is reached
after all three FRP-converted branches execute and fall-through.
The conventional superblock in Figure 1(a) is limited by branch
dependences, while the FRP-converted superblock in Figure 1(b)
is limited by data dependence height through a sequence of com-
pares. Boolean expression optimization can be used to height
reduce data dependences through the sequences of conjunctions
needed to compute FRPs for dependent branches.

Transformation. Figure 2 illustrates a transformation that

E1
branch

store 1

E2
branch

E3
branch

store 2

store 0

E4

a0 b0

a1 b1

a2 b2

<

<

<

a0 b0

a1 b1

a2 b2

store 1

store 2

store 0

E2 E1
branch

E3
branch branch

<

<

<

E4

a) original superblock, sequential branches b) FRP-converted superblock, independent branches

Figure 1. FRP conversion process

both height-reduces dependences through sequences of branches
as well as height-reducing dependences through expressions that
compute requisite FRPs. Note that in this Figure the branch con-
ditions are now simply expressed asci. We begin again with the
traditional superblock from Figure 1(a), which is contained inside
the rectangle of Figure 2(a). We assume that the program usually
falls through all three branches. The original code of Figure 2(a)
is augmented with a new branch operation, referred to as abypass
branch. The bypass branch behaves as a composite branch that
takes when any of the original branches takes and falls through
when all of the original branches fall through. Compare operations
are added to compute the off-trace (bypass-branch) FRP and an
on-trace FRP, corresponding to falling through all of the original
branches. These compares are shown as multi-input logical gates
to indicate that the FRP expression can be freely re-associated to
accelerate evaluation. Note that the bypass branch in Figure 2(a)
is redundant, since it never takes.

The next step of transformation is shown in Figure 2(b). Each
of the original branches and any non-speculative operations de-
pendent upon these branches are moved down across the bypass
branch. Normally, code moved below a branch is replicated along
both paths. However, the bypass-branch condition guarantees that
if the bypass branch falls through, then none of the branches
moved on trace below the bypass branch will take. After these
branches are eliminated, the bypass branch is the only branch re-
maining on trace. Non-speculative operations (e.g. stores in the
figure) that were originally trapped between branches can now be
scheduled in parallel. After transformation, only a single branch
remains on trace and both the on- and off-trace FRPs are computed
in a height-reduced (freely re-associated) manner. Thus, control
CPR reduces both branch dependence height as well as data de-
pendence height needed to evaluate branch conditions.

There are a number of ways to implement the height-reduced
computation of FRPs. On conventional processors, they can be im-
plemented using using two-input logical operations. Height reduc-
tion uses the associative property to carefully re-organize the tree
of two-input operations. The approach presented here height re-

duces FRP computation using the PlayDoh style wired-AND and
wired-OR compares. These compares are unordered and the code
motion of a static scheduler naturally re-associates FRP evaluation
by accumulating input terms as they become available. Further,
for wide machines, more than two terms can be combined in each
machine cycle.

It is important to note that the transformation of Figure 2
can be applied either to the original superblock of Figure 1(a)
or the FRP-converted superblock of Figure 1(b). This leads to
a general approach for control CPR of predicated code which
correctly accommodates input code of arbitrary complexity and
achieves height-reduction benefits in most cases of interest includ-
ing conventional and FRP-converted superblocks with embedded
if-conversion. This is important because predicated execution is
often introduced prior to control CPR (e.g. when if-converted in-
trinsics are inlined).

Blocking. When control CPR is uniformly applied to an en-
tire superblock, a number of difficulties arise. First, in the context
of a heuristic which requires irredundant on-trace code, it may be
illegal to apply control CPR to an entire superblock. To ensure
irredundant on-trace code, compares associated with exit branches
that are moved off trace also move off-trace. Irredundant code is
defined in more detail in the context of PlayDoh operations in Sec-
tion 4.2. This motion requires that predicates computed by these
compares cannot be used on trace. When redundant compares are
required on trace, the code is referred to asinseparableand our
control CPR transformation is not applied. For example, assume
that the compare condition c1 in Figure 2(a) depends upon a load
operation that in turn depends upon store 1. Then, the code after
transformation (Figure 2(b)) is illegal because the assumed load is
used to compute c1 and must execute before store 1 yet it is also
dependent upon (after) the same store.

Even when correctness is not an issue, superior results are of-
ten achieved when we apply control CPR to smaller subregions.
The application of control CPR can delay the execution of non-
speculative operations including superblock exit branches. Exit
branches are pushed below the bypass branch and out of the su-

E1
branch

store 1

E2

E3

store 2

store 0

c0

c1

c2

branch

branch

never
occurs

c0
c1

c2

c0
c1

c2

E4

bypass

store 0

bypass
to

off-trace
code

c0
c1

c2
c0

c1
c2

E4

store 1 store 2

E1
branch

store 1

E2

E3

store 2

c0

c1

c2

branch

branch

a) insertion of bypass branch b) final height-reduced code

Figure 2. Control CPR schema

Figure 3. Partitioning into multiple CPR blocks

perblock. When an exit branch is taken, control CPR can introduce
a performance penalty. Even when execution remains on trace,
all on-trace and non-speculative operations are guarded by an on-
trace FRP that is dependent uponall compare conditions. This can
delay the execution of non-speculative operations and their depen-
dent operations, and can compromise performance especially for
long superblocks.

Blocking long superblocks into smaller subregions alleviates
these problems. ACPR blockis a linear sequence of basic blocks
from the original superblock over which the control CPR is ap-
plied. Figure 3(a) illustrates a superblock prior to the applica-
tion of control CPR. Dashed lines show blocking into three CPR
blocks. Figure 3(b) shows the code after control CPR. Each non-
trivial CPR block has been transformed into code with a single

on-trace bypass branch and a compensation block, while the mid-
dle (unit length) CPR block remains unchanged. The final code is
scheduled as three distinct hyperblocks, one hyperblock is sched-
uled for the entire on-trace region while a separate hyperblock is
scheduled for each compensation block. This allows scheduling
overlap between adjacent on-trace CPR blocks.

Note that when each CPR block is traversed on-trace, both on-
trace and off-trace paths below this point are accelerated. Thus,
the successful traversal of the first CPR block (B1) in Figure 3(b)
accelerates paths to on-trace exit E7 as well as to off-trace exit E5.
Thus, when CPR blocking is applied the performance of resultant
code is more tolerant to unbiased branches than if control CPR
were uniformly applied to the entire superblock.

4.2 ICBM approach

Principal goals of ICBM (Irredundant Consecutive Branch
Method) are: to reduce critical-path length; and to transform code
without increasing the average number of executed operations.
This is accomplished in part due to the motion of branches off
trace. ICBM operates on linear single-entry, multi-exit regions of
code that contain predicated operations, such as superblocks and
hyperblocks [H+93]. For the remainder of our discussion, we will
usehyperblockto refer to a candidate ICBM input region.

Figure 4 shows the ICBM transformation for an input com-
prised of a single CPR block. The initial code is shown to the left
of the arrow and transformed code is shown to the right. The sym-
bols in the figure are as follows: squares represent the two-target
compare operations, diamonds represent branches, and circles rep-
resent all other operations. The solid edges represent the control
and data dependences that are necessary to explain the transforma-
tion. Conversely, the dotted edges on the right hand side of each
of the shaded rectangles represent the remaining dependences that
are peripheral to the transformation.

The example initial code represents a CPR block region within

...

b1

uc un

P1

O1

cp

C0

b2

uc un

Pn-1

On-1

cp

C1

bn

uc un

cp

Cn-1

...

A0

b1

uc un

P1

cp

C0

b2

uc un

Pn-1

cp

C1

T

bn

...

A0

O1

ac on

On-1

cp

and

C0

A0

...

ac on

cp

C1

ac on

cp

Cn-1

or

P1

Pn-1

...

bypass

on-trace
FRP

off-trace
FRP

uc un

cp

Cn-1

root predicate root predicate

a) original code b) transformed on-trace and off-trace code

Figure 4. Overview of the ICBM schema

an FRP-converted superblock. The transformed code shows new
operations inserted by ICBM and the code motion performed dur-
ing the transformation. Now consider a basic blocki (other than
the entry block) in the original code. The block contains a com-
pare (with conditionCi), a branch (bi+1), and sets of operations
Oi andPi. These sets are used to precisely describe the code mo-
tion performed during ICBM. The non-compare and non-branch
operations are partitioned into two sets:Oi contains operations
that are independent of FRPs andPi contains operations that di-
rectly or indirectly depend upon FRPs. The first basic block re-
quires special treatment, because none of its operations are forced
off trace by the motion of compares; all operations from the first
block are contained in setA0.

The root predicateholds the entry condition for a CPR block.
Figure 4 represents a single CPR block taken from a sequence as
in Figure 3. Each CPR block in the sequence is responsible for
computing a on-trace FRP in terms of its root predicate. This on-
trace FRP becomes the root predicate for the next CPR block. The
root predicate for the first CPR block in a region is true.

The transformed code of Figure 4b is divided into on-trace code
on the left and off-trace code on the right. On-trace code includes
all operations from the first basic block (A0) together with opera-
tions from subsequent basic blocks that are independent of FRPs
(O1; : : : ; On�1). The on-trace path also includeslookahead com-
pares: operations used to compute the on-trace and off-trace FRPs.
The lookahead compares implement the multi-input logical gates
of Figure 2 using PlayDoh wired-and and wired-or compares.
Each compare computes two results using the semantics described
in Section 3. An AC term is the complement of a branch condi-
tion and' ed with the CPR block root predicate; all AC terms are
wire-and' ed to form the on-trace FRP. An ON term is a branch
condition and' ed with the CPR block root predicate; all ON terms
are wire-or' ed to form the off-trace FRP.

The bypass branch follows the lookahead compare operations;

these operations are introduced by the ICBM transformation. Fi-
nally, the added compare and branch operations are followed by
operations that are dependent upon FRPs in the original code,
namely operations in setsP1; : : : ; Pn�1. Operations in these sets
are replicated both on and off trace. If we consider both the on-
trace and off-trace copy of operations inPi, each of these opera-
tions execute under conditions in the transformed program that are
identical to their execution conditions in the original program.

Note that on-trace code is said to beirredundantsince it has
fewer operations than the original code. This can be seen by first
considering the sets of operations, A, O and P. Every operation
within these sets in the original code appears within these sets in
the on-trace code. For each compare operation in the original code,
a single height-reduced compare operation appears in the on-trace
code. Finally, all of the branches in the original code are replaced
by a single bypass branch in the on-trace code. The net effect is to
conserve the operation count except thatn branches in the original
code are replaced by one branch in the on-trace code. It is in this
sense that the code is considered irredundant (and in fact reduced
operation count) for the target PlayDoh architecture.

Off-trace code consists of each of the compares in the original
code and all operations that were dependent on those compares.
Because the original compares are moved off trace to eliminate
redundancy, operations that are dependent upon the compares also
move off trace.

5 ICBM Implementation

The ICBM schema has been implemented within Elcor, our
compiler for research in high-performance EPIC architectures.
ICBM accepts general single-entry linear regions as input; com-
mon examples are conventional superblocks, FRP-converted su-
perblocks, and hyperblocks. The ICBM transformation consists of
a sequence of four phases which either analyze or transform code:
1) predicate speculation, 2) match, 3) restructure, and 4) off-trace
motion. After ICBM, a pass of dead code elimination removes
any unnecessary operations, such as operations that compute pred-
icates which are not referenced.

The ICBM code modules take advantage of Elcor's family of
predicate cognizant analysis tools. Classic tools for data-flow anal-
ysis and dependence edge construction have been upgraded to ana-
lyze predicated code in a conservative (with respect to correctness)
yet reasonably accurate manner. Without these enhancements, the
benefits of predicate-based control CPR would not be realized.

5.1 Predicate speculation

ICBM begins with predicate speculation. Predicate specula-
tion serves two purposes. First, it reduces dependence height by
eliminating an operation's dependence on its predicate calcula-
tion [MLC+92]. More importantly, predicate speculation elimi-
nates dependences that would inhibit ICBM's separability condi-
tion (discussed in the next sub-section). Often, the predicate for
a basic block guards operations required to compute the predicate
for the next block. These dependences prevent compares from
moving off trace during ICBM and constitute a separability fail-
ure. In FRP-converted code, separability systematically fails at
almost every basic block. Predicate speculation removes most of
these dependences allowing separability to pass more frequently.

Predicate speculation operates in two bottom-up traversals of
a hyperblock. An array, calledliveness, contains boolean expres-
sions representing predicate conditions under which each regis-
ter or memory location is live [JS96]. Initially, liveness is only
available at hyperblock exit points, and is computed on the fly at
each point (i.e. at each operation) during the backward traversal.
All operations are candidates for promotion with the exception of
compare-to-predicate operations which unconditionally compute
result predicates from input predicates.

In the first pass, the guarding predicate (p) for each operation is
conditionally promoted to a predicate (q) such that p implies q (or
q is larger than p). While in principle, predicate promotion could
promote a predicate to a variety of larger predicates, the only larger
predicate considered here is predicate true. For each operation, the
promotion occurs only if the operation will not overwrite a live
register or memory value when it is promoted.

The second pass selectively demotes predicates. Demotion is
the inverse of promotion: an operation's guard is demoted to a
predicate that evaluates to true less frequently. The operation may
be partially demoted or fully demoted (i.e. returned to its origi-
nal guard). Demotion provides two benefits: first, it may reduce
dependence height, and second it may demote an operations ex-
ecution condition without adding dependence height. Demoting
an operations predicate produces second order benefits such as re-
duced memory traffic, fewer cache misses, as well as improved
predicate sensitive register allocation.

Demotion is demonstrated by a simple example. Consider two
dependent operations initially guarded by the same predicate. Dur-
ing predicate speculation, assume that the first operation's predi-
cate cannot be promoted without violating correctness while the
second operation's predicate is promoted to true. However, since
the second operation depends upon the first, this speculation does
not reduce height. During the second pass, the predicate of the sec-
ond operation is lowered to its original value. Where there is a data
dependence between the these operations, demotion undoes inef-
fective promotion without changing dependence height. Where
there is a branch dependence after the first pass, demotion reduces
dependence height by replacing the branch dependence with a data
dependence on the branch's guarding compare.

5.2 Match

Match identifies CPR blocks within a program region which is
to be transformed. CPR block identification addresses two major
issues: correctness and performance heuristics. Match processes
hyperblocks creating a description of a transformation to be subse-
quently performed by the CPR transformation module. The result
of match is a list of CPR blocks, where each CPR block is a sub-
region of the hyperblock that is to be independently transformed.

A preliminary pass within match generates a list of branches in
the hyperblock in their sequential order. Next, reaching-definition
analysis is performed on predicate variables. For every branch or
compare operation, this analysis identifies the unique compare-
to-predicate operation that computes the guarding predicate, if
such an operation exists within the region. This allows compares
that do not control branches (e.g. those used for conventional if-
conversion in hyperblocks) to be ignored.

In a subsequent pass, match grows a list of CPR blocks to cover
all branches in the hyperblock. The process is seeded with a CPR

block containing only the first branch. Match grows CPR blocks
by appending consecutive branches until an exit condition termi-
nates the block. The process is re-seeded, with the next branch
(not yet appended into any CPR block), and continues until all
branches in the original hyperblock have been treated. Pseudo
code for match is shown in Figure 5.

Match performs a number of tests including thesuitability, sep-
arability, exit-weightandpredict-takentests. Each of these tests
can terminate a CPR block. The suitability and separability tests
guarantee that the transformation can be correctly applied, while
the exit-weight and predict-taken tests are heuristics to improve
performance. The correctness tests are designed to detect situa-
tions where ICBM can be applied and guaranteed to produce both
correct and efficient code. Other approaches might broaden the
applicability of control CPR by generalizing ICBM.

Suitability. The suitability test generalizes control CPR to
handle input programs containing arbitrary predication. Suitability
always passes when match processes simple superblocks or FRP-
converted superblocks. However, in the presence of more complex
uses of predicates, the suitability test ensures that CPR blocks use
branch predicates and branch conditions in a fashion consistent
with the production of correct code using the CPR schema of Fig-
ure 4.

Consider the following linear sequence of compare and branch
operations taken from a hyperblock:

pf1, pt1 = cmpp.uc.un(bc1) if pg0
branch <exit 1> if pt1
pf2, pt2 = cmpp.uc.un(bc2) if pg1
branch <exit 2> if pt2
...
pfn, ptn = cmpp.uc.un(bcn) if pg(n-1)
branch <exit n> if ptn

FTEXIT:

The ICBM schema must generate code which computes an off-
trace FRP for the bypass branch; this FRP must be true exactly
when any of the branches in the CPR block takes. Theith branch
takes exactly whenbci andpgi�1 are both true. Any one of the
exit branches takes when((pg0 ^ bc1) _ : : : _ (pgn�1 ^ bcn)).
If guards and conditions for the compares which compute branch
predicates are arbitrary, then we must evaluate this fully-general
expression for the off-trace FRP.

The ICBM schema more efficiently addresses commonly oc-
curring predicate usage by actually generating code for the off-
trace FRP using the simpler expression(pg0 ^ (bc1 _ bc2 _ : : : _

bcn)). Suitability guarantees that this simpler expression produces
correct code before the control CPR transformation is applied to
a given CPR block. When suitability fails, code is left unchanged
over an input subregion in order to ensure correctness rather than
generating the more complex fully-general expression for the off-
trace FRP.

Suitability is divided into an initialization step which treats a
CPR block of length one, and a growth step which decides whether
the CPR block can be legally augmented with the next branch op-
eration. The suitability test is initialized as follows. A current
branch pointer is initialized to point at the first branch in a length-
one CPR block. Asuitable predicate set(SP) is initialized to the

Procedure ICBMmatch
f
1: final branchin prev block = 0 ;
2: result.clear() ; // result is initially null
3: while (TRUE) // form a list of cpr blocks
4: first branch = finalbranchin prev block + 1 ;
5: curr branch = firstbranch ;
6: if (curr branch> total numberof branches)
7: break;
8: cpr block.clear() ; // initialize a new CPR block
9: cpr block.append(currbranch) ; // defines seed branch
10: suitability test init(curr branch) ;
11: separabilitytest init(curr branch) ;
12: exit weight test init(curr branch) ;
13: predtakenflag = FALSE ;
14: while (TRUE) // grow CPR block from seed
15: if (pred takenflag)
16: break;
17: candbranch = currbranch+1 ;
18: if (suitability test failure(candbranch))
19: break;
20: if (separabilitytest failure(candbranch))
21: break;
22: if (predict taken(candbr))
23: predtakenflag = TRUE ;
24: if (!pred takenflag && exit weight test failure(candbranch))
25: break;
26: // passed all tests, append tuple to CPR block
27: cpr block.append(currbranch) ;
28: curr branch = candbranch ;
29: endwhile
30: result.append(cprblock) ;
31: final branchin prev block=curr branch ;
32: endwhile
33: return result ;
g

Figure 5. Match pseudo code

empty set. For the initial branch (i.e. the0th), if the control-
ling compare operation unconditionally computes its branch guard
predicate (i.e. using the UN target modifier), then the compare op-
eration's guarding predicate is added to SP. This guarding predi-
cate is the CPR block's root predicate, as shown in Figure 4. If the
compare operation also unconditionally computes a complemen-
tary fall-through predicate (i.e. using the UC modifier), then the
fall-through predicate is added to SP as well.

The following three conditions form an induction hypothesis
which is readily verified for an initial CPR block of length one:
(1) if pg0 is false then all members of SP (if any) are also false; (2)
if pg0 is true and no exit branch is taken, then all members of SP
are true; (3) the off-trace FRP computed aspg0^ (bc1_ : : :_ bcn)
is true exactly when one of the branches in the CPR block takes.

We continue growing the current CPR block by inspecting can-
didate branches in order. For the current branch (i.e. theith),
if the controlling compare operation unconditionally computes its
branch-guarding predicate (i.e. using the UN target modifier) and
if the compare's guarding predicatepgi is in SP, then the can-
didate branch can be appended to the current CPR block. Oth-
erwise, growth of the current CPR block is terminated, and the
current branch becomes the initial seed branch for a subsequent
CPR block. If the compare operation also unconditionally com-
putes a complementary fall-through predicate (i.e. using the UC
modifier), then the fall-through predicate is added to SP. One can
show that when a candidate branch is appended to a CPR block,

all three conditions of the induction hypothesis remain true. Thus,
CPR blocks formed after passing suitability have the property that
their schematically generated off-trace FRP is true exactly when
one of the branches in the CPR block takes.

Separability. The separability test is also needed to ensure
the correctness of the control CPR schema. The CPR transforma-
tion shown in Figure 2 moves compares from the original code
off-trace and replaces them with lookahead compares which re-
main on-trace. If improperly applied, the code motion required by
the ICBM schema can violate dependence constraints. This might
occur when a branch condition required to compute on-trace and
off-trace FRPs is dependent upon a predicate which, after ICBM,
is computed only off-trace. Since ICBM is designed to produce
irredundant code by moving the original compares off-trace, de-
pendences from a compare which will be moved off-trace to a
lookahead compare which must remain on-trace are not allowed.

The separability test repeatedly applies the function append-
successors which, for a given branch, computes a set operations
which are dependent upon the compare which guards the branch.
Note that in the control CPR schema, the off-trace FRP is com-
puted as:pg0^(bc1_bc2_: : :_bcn), only the guard for the initial
compare operation(pg0) is used. All guards for subsequent com-
pares(pg1; : : : ; pgn�1) are ignored due to the successful applica-
tion of the suitability test. Thus, when append-successors com-
putes a set of successors from a given compare, any dependence
resulting from the use of the compare's fall-through predicate as
the guard of a compare which in turn guards a subsequent branch
can be ignored.

The separability test is also divided into an initialization step
which treats a CPR block of length one, and a subsequent sepa-
rability step which decides whether the CPR block can be legally
augmented with an additional basic block. During initialization, a
set calledsuccis initialized to the null set, and append-successors
is invoked on the initial branch, which is unconditionally included
in the CPR block. After computing the appropriate set of succes-
sor operations for the compare guarding the initial branch, this set
is accumulated intosucc.

The separability step is invoked to test each subsequent candi-
date branch for inclusion into the current CPR block. First, the
compare which guards the candidate branch is tested for member-
ship insucc. If the compare is a member ofsucc, separability is
violated and the candidate branch cannot join the CPR block. Oth-
erwise, the candidate branch may be included in the CPR block
and append-successors is invoked on the candidate branch thus ac-
cumulating appropriate successors of the compare guarding the
branch intosucc.

Exit-weight and predict-taken tests. The exit-weight and
predict-taken tests are heuristics which truncate the formation of a
CPR block using branch profile data which provides taken and not-
taken frequencies for each branch. The exit-weight test monitors
the ratio of the cumulative exit frequencies of all of the branches
within the CPR block divided by the entry frequency into the CPR
block. When the inclusion of a candidate branch into a CPR block
causes this ratio to exceed a threshold, the candidate branch is not
included and CPR block growth is terminated.

The predict-taken test identifies likely exits in the input code
that are selected as the final branch in a CPR block. Such a CPR
block is tagged as a likely-taken CPR block and receives special

treatment during ICBM restructure. The code generation and code
motion schema for the likely-taken CPR block allows a CPR block
to reach a predicted taken branch target without first branching
to an off-trace compensation block and again branching from the
compensation block to the final target.

The predict-taken test monitors the ratio of the candidate
branch exit frequency divided by the CPR block entry frequency.
When this ratio exceeds a threshold, a likely taken CPR block is
formed. This test takes priority over the exit-weight test, which
would otherwise truncate the CPR block. Further, when the candi-
date branch is identified as satisfying all conditions required for a
predict-taken CPR block, growth is terminated after the candidate
branch is appended to the current CPR block.

5.3 Restructure

Restructure performs the actual height-reducing transformation
on each non-trivial CPR block identified in the previous step. This
phase introduces all new operations including the lookahead com-
pares and the bypass branch. The re-wiring of guarding predicates
and branch conditions to these new predicates is also performed
during this phase. Lastly, a new region known as thecompensa-
tion block is created to hold the off-trace code after code motion.
Two variations of CPR blocks are treated: first, a branch sequence
in which all the branches are likely fall-through (fall-through vari-
ation); and second a branch sequence in which all are likely fall-
through except the last which is likely-taken (taken variation).

Restructure is rather mechanical in nature. It consists of the
following steps that are performed for each CPR block: insert
on-trace and off-trace predicate computation; create compensation
block; insert bypass branch; re-wire guarding predicates. These
steps are explained for the fall-through variation. Afterwards,
changes for the taken variation are described.

Two predicates, the on-trace and off-trace FRPs, are introduced
for each CPR block. These hold the conditions that execution re-
mains on-trace (on-trace FRP evaluates to true) or goes off-trace
(bypass branch FRP evaluates to true) in the course of the entire
CPR block. The on-trace FRP is computed as the conjunction of
the fall-through conditions of the branches using wired-and se-
mantics. The off-trace FRP is computed as the disjunction of the
taken branch conditions using wired-or semantics. These FRPs
are computed using lookahead compares inserted after each of the
original branch compares. Each lookahead compare uses the same
condition and source operands as the original. All of the looka-
head compares target the new on-trace and off-trace FRPs using
the dual target AC/ON semantics. One subtlety of the transforma-
tion is that each of the lookahead compares is not guarded by the
predicate of the corresponding original compares. Rather, all are
guarded by the root predicate of the CPR block. This substitution
is legal due to the success of the suitability test.

The use of wired-and and wired-or predicates require that they
be properly initialized. The off-trace predicate (wired-or) is simply
initialized to 0. The on-trace predicate (wired-and) is initialized to
the root predicate of the CPR block which is strictly greater than
the wired-and result.

The next two steps create the compensation block and insert a
conditional branch to that block. An empty compensation block is
added to the function body. The bypass branch is added as a con-
ditional branch to the compensation block that occurs when the

off-trace FRP evaluates to true. This branch is inserted immedi-
ately after the final branch within the original CPR block.

The final step of the restructure eliminates uses of predicates
computed by the original compares from operations subsequent to
the bypass branch. One of the goals of the schema is to allow
the original compares to move off-trace to eliminate redundancy.
However, this can only be accomplished if there are no uses in the
remainder of the hyperblock of the predicates they compute. It
can be shown that such uses of any of the original predicates can
be safely replaced by a use of the on-trace FRP.

Taken variation. Several small changes to restructure are
necessary for the taken variation. Instead of accelerating the fall-
through direction of the final branch, the taken direction is accel-
erated. To accomplish this, the sense of the final lookahead com-
pare is inverted, e.g., a less-than condition in the original compare
becomes a greater-than-or-equals in the new compare. The more
interesting part of the variation is that a new bypass branch is not
required. Rather, the last branch in the CPR block serves as the
bypass branch. Its taken condition corresponds to remaining on-
trace, and its fall-through corresponds to going off-trace. As a
result, a new compensation block is also not required. Instead, the
remainder of the hyperblock serves as the compensation block.

5.4 Off-trace motion

After the preceding height-reducing transformations are com-
plete, redundant operations are moved off-trace to benefit the more
likely on-trace path. This motion is performed prior to schedul-
ing so that we can use our existing superblock/hyperblock sched-
uler. An alternate approach would rely on a tree-region sched-
uler [HBC98] to perform code motion between the height-reduced
hyperblock and its associated compensation blocks.

Three passes are performed over the hyperblock region to iden-
tify the set of operations that must move off trace, and to further
identify the subset of moved operations that must be split, so that
a copy remains on trace. A final step performs the required op-
eration splitting and code motion. The steps are as follows. First,
identify all data dependence successors of the compare and branch
operations that must be moved off-trace (set 1). Second, identify
a subset of the operations in set 1 that produce a value that is also
needed on-trace (set 2). These operations must be split or repli-
cated along both paths. Stores are the most common operations
that require splitting. Third, identify any of the remaining opera-
tions not in set 1 whose results are used only along the off-trace
path, since their motion off-trace will benefit the on-trace path
(set 3). Finally, move operations in sets 1 and 3 to compensation
blocks, while replicating operations in set 2.

6 Code Example

The application of ICBM is illustrated in this section using a
simple code example. The example chosen is the inner loop for a
common string copy routine. The example source, shown in Fig-
ure 6(a), is a while loop which copies elements of string A into
string B. To expose instruction-level parallelism, the loop body is
unrolled four times. PlayDoh assembly code after unrolling and
other traditional code optimizations is shown in Figure 6(b). Each
iteration stores a current value into arrayB, loads the next value
from arrayA, computes the necessary addresses, and conditionally

a = &A[0] ;
b = &B[0] ;
while (�a != 0)f
�b++ =� a++ ;

g

(a) source code

Loop:
1. r21 = add (r2, 0) if T
2. store (r21, r34) if T
3. r11 = add (r1, 1) if T
4. r31 = load (r11) if T
5. r41 = pbr (Exit, 0) if T
6. p51 = cmpp.un eq (r31, 0) if T
7. branch (p51, r41)
8. r22 = add (r2, 1) if T
9. store (r22, r31) if T

10. r12 = add (r1, 2) if T
11. r32 = load (r12) if T
12. r42 = pbr (Exit, 0) if T
13. p52 = cmpp.un eq (r32, 0) if T
14. branch (p52, r42)
15. r23 = add (r2, 2) if T
16. store (r23, r32) if T
17. r13 = add (r1, 3) if T
18. r33 = load (r13) if T
19. r43 = pbr (Exit, 0) if T
20. p53 = cmpp.un eq (r33, 0) if T
21. branch (p53, r43)
22. r24 = add (r2, 3) if T
23. store (r24, r33) if T
24. r14 = add (r1, 4) if T
25. r34 = load (r14) if T
26. r44 = pbr (Loop, 1) if T
27. r1 = add (r1, 4) if T
28. r2 = add (r2, 4) if T
29. p54 = cmpp.un ne (r34, 0) if T
30. branch (p54, r44)

Exit:

Loop:
1. r21 = add (r2, 0) if T
2. store (r21, r34) if T
3. r11 = add (r1, 1) if T
4. r31 = load (r11) if T
5. r41 = pbr (Exit, 0) if T
6. p51, p61 = cmpp.un.uc eq (r31, 0) if T
7. branch (p51, r41)
8. r22 = add (r2, 1) if p61
9. store (r22, r31) if p61

10. r12 = add (r1, 2) if p61
11. r32 = load (r12) if p61
12. r42 = pbr (Exit, 0) if p61
13. p52, p62 = cmpp.un.uc eq (r32, 0) if p61
14. branch (p52, r42)
15. r23 = add (r2, 2) if p62
16. store (r23, r32) if p62
17. r13 = add (r1, 3) if p62
18. r33 = load (r13) if p62
19. r43 = pbr (Exit, 0) if p62
20. p53, p63 = cmpp.un.uc eq (r33, 0) if p62
21. branch (p53, r43)
22. r24 = add (r2, 3) if p63
23. store (r24, r33) if p63
24. r14 = add (r1, 4) if p63
25. r34 = load (r14) if p63
26. r44 = pbr (Loop, 1) if p63
27. r1 = add (r1, 4) if p63
28. r2 = add (r2, 4) if p63
29. p54 = cmpp.un ne (r34, 0) if p63
30. branch (p54, r44)

Exit:

(b) unrolled assembly code (c) after FRP conversion

Figure 6. Example: transformation applied to strcpy

exits the loop after the end ofA is reached. In PlayDoh, conditional
branches are realized using three operations: a prepare-to-branch
(op 5), a comparison (op 6), and a predicated control transfer (op
7). For the last iteration, two additional operations increment the
array pointers by the unroll amount (four). At this point, all oper-
ations are guarded by the predicate true (denoted byif T).

Figure 6(c) shows the FRP-converted superblock. FRP conver-
sion is accomplished using cmpp operations which generate two
predicate outputs: the taken condition (UN output) and the fall-
through condition (UC output). Operations which were dependent
on the branch are now guarded by the fall-through condition to
complete the transformation. For example, in Figure 6(c), op 6
has a second target, p61, that generates the fall-through condition;
operations that were dependent on op 7, namely ops 8-13, are now
guarded by p61. The code in Figure 6(c) represents the preferred
input for the ICBM schema.

Predicate speculation.The first phase of the ICBM schema
is predicate speculation. Predicate speculation is applied to the
FRP-converted superblock in Figure 6(c). The resultant code after
speculation is shown in Figure 7(a). This example is somewhat un-
interesting from the viewpoint of predicate speculation. In the first
pass of predicate speculation, all eligible operations in the block
are promoted to true. Note that promotion of operations within an
FRP-converted superblock is always legal, since promotion faith-
fully mirrors the original code. The second pass demotes the pred-
icate of ops 9, 16, and 23 back to their original value. Each of
these stores are dependent on a prior branch. For instance, op 16
is dependent on op 14 and speculating op 16 to true was not use-

ful. Demotion lowers op 16's predicate to the branch fall-through
predicate, p62. Not only does demotion undo a useless promotion,
it also lowers dependence height by enabling the store and branch
to be freely reordered.

Match. The next phase of the ICBM schema is to apply match
to the code in Figure 7(a). Match identifies the CPR blocks or
the set of subregions that will be transformed. Recall that match
consists of a set of four tests (suitability, separability, exit weight
and predict taken) that are conditions for terminating a CPR block.
For this example, the only predicates that are used are those gen-
erated via FRP conversion and thus the suitability test succeeds
across the entire block. In addition, there are no dependences that
cause the separability test to fail. It is illustrative to note that if
the compiler could not determine that a store and a subsequent
load were independent in this example, the separability test would
fail. For instance, assume there is an alias between operations 16
and 18. The match algorithm would attempt to append the com-
pare/branch tuple 20/21 to the CPR block containing the previous
two compare/branch tuples (6/7, 13/14). However, there is a chain
of dependences connecting ops 13 and 20 (13 to 14 via a flow de-
pendence, 14 to 16 via a control dependence, 16 to 18 via the as-
sumed memory dependence, and 18 to 20 via a flow dependence).
This would cause a separability violation preventing the addition
of the compare/branch tuple.

The exit weight and predict taken tests are based on branch pro-
file data. For this example, it is assumed the last branch (op 30)
is predominantly taken since it is the loop back branch. Further,
it is assumed the exit weight threshold is exceeded by the second
branch (op 14), but its predominant direction is fall-through. As
a result, the match algorithm identifies two CPR blocks in Fig-
ure 7(a). The first CPR block includes the first two branches and
will use the fall-through restructure schema. The second CPR
blocks includes the last two branches and will use the taken re-
structure schema. In the actual application of ICBM, such small
CPR blocks are not typically formed. However, it is done in this
example to jointly illustrate both the fall-through and taken re-
structure schemas.

Restructure. The next phase of the ICBM schema is to re-
structure (apply the control CPR transformation) to each of the
CPR blocks. The overall result of the restructure is shown in Fig-
ure 7b. Focusing on the first CPR block, the new on-trace and
off-trace predicates are p71 and p81, respectively. After each of
the original cmpps that compute the the branch conditions (ops 6
and 13), the lookahead AC/ON cmpps are inserted (ops 32 and
33). The lookahead cmpps look identical to the original cmpps in
terms of source operands and compare condition. The lookahead
cmpps are guarded by the root predicate of the CPR block. Since
this is the first CPR block in the hyperblock, the root predicate is
true.

Again, focusing just on the first CPR block, op 35 is the by-
pass branch and the new block labeledCmp1is the compensation
block. The bypass branch is inserted after the last branch in the
CPR block. The bypass-branch predicate is p81. Note that the
PlayDoh architecture requires a prepare-to-branch operation for
each branch, hence op 34 is inserted in conjunction with the by-
pass branch. The final phase of restructure rewires operations in
the hyperblock subsequent to the last branch in the CPR block (op
14) that use predicates computed by the original cmpps. For this

Loop:
1. r21 = add (r2, 0) if T
2. store (r21, r34) if T
3. r11 = add (r1, 1) if T
4. r31 = load (r11) if T
5. r41 = pbr (Exit, 0) if T
6. p51, p61 = cmpp.un.uc eq (r31, 0) if T
7. branch (p51, r41)
8. r22 = add (r2, 1) if T
9. store (r22, r31) if p61

10. r12 = add (r1, 2) if T
11. r32 = load (r12) if T
12. r42 = pbr (Exit, 0) if T
13. p52, p62 = cmpp.un.uc eq (r32, 0) if p61
14. branch (p52, r42)
15. r23 = add (r2, 2) if T
16. store (r23, r32) if p62
17. r13 = add (r1, 3) if T
18. r33 = load (r13) if T
19. r43 = pbr (Exit, 0) if T
20. p53, p63 = cmpp.un.uc eq (r33, 0) if p62
21. branch (p53, r43)
22. r24 = add (r2, 3) if T
23. store (r24, r33) if p63
24. r14 = add (r1, 4) if T
25. r34 = load (r14) if T
26. r44 = pbr (Loop, 1) if T
27. r1 = add (r1, 4) if T
28. r2 = add (r2, 4) if T
29. p54 = cmpp.un ne (r34, 0) if p63
30. branch (p54, r44)

Exit:

Loop:
31. p71 = 1, p81 = 0, p82 = 0
1. r21 = add (r2, 0) if T
2. store (r21, r34) if T
3. r11 = add (r1, 1) if T
4. r31 = load (r11) if T
5. r41 = pbr (Exit, 0) if T
6. p51, p61 = cmpp.un.uc eq (r31, 0) if T

32. p71, p81 = cmpp.ac.on eq (r31, 0) if T
7. branch (p51, r41)
8. r22 = add (r2, 1) if T
9. store (r22, r31) if p61

10. r12 = add (r1, 2) if T
11. r32 = load (r12) if T
12. r42 = pbr (Exit, 0) if T
13. p52, p62 = cmpp.un.uc eq (r32, 0) if p61
33. p71, p81 = cmpp.ac.on eq (r32, 0) if T
14. branch (p52, r42)
34. r91 = pbr (Cmp1, 0) if T
35. branch (p81, r91)
15. r23 = add (r2, 2) if T
16. store (r23, r32) if p71
17. r13 = add (r1, 3) if T
18. r33 = load (r13) if T
19. r43 = pbr (Exit, 0) if T
20. p53, p63 = cmpp.un.uc eq (r33, 0) if p71
36. p72 = cmpp.un eq (0, 0) if p71
37. p72, p82 = cmpp.ac.on eq (r33, 0) if p71
21. branch (p53, r43)
22. r24 = add (r2, 3) if T
23. store (r24, r33) if p63
24. r14 = add (r1, 4) if T
25. r34 = load (r14) if T
26. r44 = pbr (Loop, 1) if T
27. r1 = add (r1, 4) if T
28. r2 = add (r2, 4) if T
29. p54 = cmpp.un ne (r34, 0) if p63
38. p72, p82 = cmpp.ac.on eq (r34, 0) if p71
30. branch (p72, r44)
Cmp2:

Exit:

Cmp1:

Loop:
31. p71 = 1, p81 = 0, p82 = 0
1. r21 = add (r2, 0) if T
2. store (r21, r34) if T
3. r11 = add (r1, 1) if T
4. r31 = load (r11) if T

32. p71, p81 = cmpp.ac.on eq (r31, 0) if T
8. r22 = add (r2, 1) if T

10. r12 = add (r1, 2) if T
11. r32 = load (r12) if T
33. p71, p81 = cmpp.ac.on eq (r32, 0) if T
34. r91 = pbr (Cmp1, 0) if T
35. branch (p81, r91)
9c. store (r22, r31) if p71
15. r23 = add (r2, 2) if T
16. store (r23, r32) if p71
17. r13 = add (r1, 3) if T
18. r33 = load (r13) if T
36. p72 = cmpp.un eq (0, 0) if p71
37. p72, p82 = cmpp.ac.on eq (r33, 0) if p71
22. r24 = add (r2, 3) if T
24. r14 = add (r1, 4) if T
25. r34 = load (r14) if T
26. r44 = pbr (Loop, 1) if T
27. r1 = add (r1, 4) if T
28. r2 = add (r2, 4) if T
38. p72, p82 = cmpp.ac.on eq (r34, 0) if p71

23c. store (r24, r33) if p72
30. branch (p72, r44)

Cmp2:
19. r43 = pbr (Exit, 0) if T
20. p53, p63 = cmpp.un.uc eq (r33, 0) if p71
21. branch (p53, r43)
23. store (r24, r33) if p63
29. p54 = cmpp.un ne (r34, 0) if p63

Exit:

Cmp1:
5. r41 = pbr (Exit, 0) if T
6. p51, p61 = cmpp.un.uc eq (r31, 0) if T
7. branch (p51, r41)
9. store (r22, r31) if p61

12. r42 = pbr (Exit, 0) if T
13. p52, p62 = cmpp.un.uc eq (r32, 0) if p61
14. branch (p52, r42)

(a) after predicate speculation (b) after restructure (c) after off-trace motion

Figure 7. Example, continued: transformation applied to strcpy

example, ops 16 and 20 are guarded by p62. The guards are modi-
fied to the new on-trace predicate, p71 to accomplish the necessary
re-wiring. After this substitution is complete, there are no uses of
the original predicates (p51, p61, p52, p62) outside the CPR block.

The taken variation of restructure is illustrated in the second
CPR block in Figure 7(b), where op 30 is likely taken. Here, op
30 serves as the bypass branch and the compensation area denoted
by the labelCmp2is just the tail portion of the hyperblock. The
lookahead cmpps are inserted after the original cmpps using the
same approach as the fall-through variation. Except, the sense of
the last cmpp (op 38) is inverted from its original counterpart (op
29). The condition under which the final branch takes serves as the
new on-trace predicate, p72. Note that op 36 is the initialization
for the on-trace predicate, p72. This operation initializes p72 to
the root predicate of the CPR block, namely p71.

Off-trace motion. The final phase of the ICBM schema is
to apply off-trace motion to each restructured CPR block. Off-
trace motion removes all the redundant operations from the on-
trace path. Off-trace motion is applied to Figure 7(b). In the first
CPR block, the two original branches (ops 7 and 14) and their
compares (ops 6 and 13) are redundant so they will move off-trace.
The store operation (op 9) must also move off-trace, since it is
a successor of the first cmpp. Additionally, operations 5 and 12
are moved off-trace, since their results are not live on-trace. The
final move set contains ops 5, 6, 7, 9, 12, 13, and 14. Since the

store operation (op 9) is also needed on-trace, it must be split. By
similar analysis, the move set for the second CPR block contains
ops 19, 20, 21, 23, and 29; operation 23 is needed on-trace, so it is
split. Figure 7(c) shows the final code after off-trace motion and
splitting.

Dead code elimination.After ICBM is complete, a phase of
dead code elimination is needed to remove unnecessary opera-
tions. In Figure 7(c), predicates p54 and p62 are dead; hence, dead
code elimination removes op 29 and removes the second destina-
tion of op 13.

Summary. Figures 6 and 7 illustrate the application of the
ICBM schema for control CPR to an unrolled version of a string
copy loop. The initial unrolled code (Figure 6(b)) consists of 30
operations in the loop. The final code (Figure 7(c)) contains of a
total of 28 operations in the loop itself and an additional 11 oper-
ations in compensation blocks. Furthermore using the operation
latencies described in the next section, the transformation reduces
the dependence height through the loop from 8 to 7 cycles. Over-
all, the ICBM transformation has both reduced the number of op-
erations and the dependence height along the dominant execution
path. The cost of this transformation was an increase in the static
code size of 9 operations. The achieved height reduction in string
copy experiments is substantially larger than that achieved in the
example due to a larger unroll factor for the loop and a more suit-
able selection of CPR blocks.

Benchmark Seq Nar Med Wid Inf Benchmark Seq Nar Med Wid Inf

008.espresso 1.15 1.04 1.08 1.14 1.15 134.perl 1.06 1.05 1.10 1.12 1.12
022.li 1.08 1.03 1.04 1.06 1.06 147.vortex 1.12 1.02 1.08 1.14 1.14
023.eqntott 0.85 0.87 1.10 1.23 1.23 cccp 1.11 1.10 1.36 1.50 1.58
026.compress 0.95 1.05 1.15 1.16 1.17 cmp 1.53 1.25 1.79 2.87 3.60
056.ear 1.09 1.01 1.12 1.33 1.52 eqn 1.16 1.06 1.15 1.24 1.26
072.sc 1.16 1.07 1.16 1.21 1.23 grep 1.26 1.03 1.32 2.11 2.61
085.cc1 1.13 1.06 1.12 1.15 1.18 lex 1.29 1.08 1.34 1.97 2.26
099.go 0.96 1.01 1.02 1.02 1.02 strcpy 1.73 1.27 1.53 2.76 4.26
124.m88ksim 1.15 1.07 1.10 1.12 1.13 tbl 1.02 0.99 1.06 1.13 1.14
126.gcc 1.02 1.03 1.06 1.07 1.07 wc 1.17 1.07 1.31 1.34 1.34
129.compress 1.10 1.03 1.08 1.12 1.14 yacc 1.15 1.05 1.26 1.40 1.46
130.li 1.06 1.06 1.07 1.07 1.07 Gmean-spec95 1.07 1.04 1.08 1.10 1.11
132.ijpeg 1.11 1.08 1.12 1.16 1.21 Gmean-all 1.13 1.05 1.18 1.33 1.41

Table 2. The effectiveness of ICBM for processors with branch latency 1.

7 Experiments

We now present results taken from our ICBM implementation
within the Elcor compiler. Elcor and its machine description lan-
guage allow us to compile for a broad range of EPIC processors.
For these experiments, we restrict our discussion to a class of reg-
ular machines defined by four parameters:I denoting the number
of integer units,F denoting the number of floating-point units,M
denoting the number of memory units, andB denoting the num-
ber of branch units. We define the following regular EPIC proces-
sors by their(I; F;M;B) tuple: narrow is (2; 1; 1; 1); mediumis
(4; 2; 2; 1); wideis (8; 4; 4; 2), andinfinite is (75; 25; 25; 25). One
additional processor is defined, thesequentialprocessor issues ex-
actly one operation of any type per cycle.

Operation latencies are as follows: simple integer - 1, simple
floating point - 3, memory load - 2, memory store - 1, integer and
floating point multiply - 3, and integer and floating point divide -
8. Branch latencies are 1.

The benchmarks studied consist of a set of SPEC-92 as well
as SPEC-95 applications and common Unix utilities. Spec92 ap-
plications include: 008.espresso, 022.li, 023.eqntott, 026.com-
press, 056.ear, 072.sc, and 085.cc1. Spec 95 applications in-
clude 099.go, 124.m88ksim, 126.gcc, and 129.compress, 130.li,
132.ijpeg, 134.perl, 147.vortex. Unix utilities include:cccp, cmp,
eqn, grep, lex, strcpy, tbl, wc, andyacc.

Benchmark performance is derived using a compiler estimation
approach. Code is first scheduled for each processor configura-
tion. Then, performance is computed using static schedule lengths
and profile data. The benchmark execution time is calculated as
the sum across all blocks in the program of each block's sched-
ule length weighted by its dynamic execution frequency. Bench-
mark performance ignores dynamic effects such as stall cycles
associated with the instruction cache, data cache, or branch pre-
dictor. The measurements weight all application code. Where
control CPR has not been applied, the performance of the unopti-
mized code is measured. Previous experience with this method has
shown that it accurately determines the performance obtained via
simulation of an equivalent, statically-scheduled processor where
dynamic effects are ignored.

The experiments evaluate the effects of control CPR by com-
paring the performance of two compiled codes: baseline and

height-reduced. The baseline code is optimized superblock code
produced by the IMPACT compiler [H+93]. The height-reduced
code is the baseline code to which FRP conversion and the ICBM
schema are applied.

Results. The effectiveness of control CPR using ICBM is
shown in Table 2. The speedup observed after applying control
CPR across a spectrum of EPIC processors is presented. Speedup
is calculated by dividing the execution cycles of the baseline code
by that of the height-reduced code for each processor. Each data
point represents the fraction of performance improvement that is
observed with control CPR for each application on a particular
processor. The geometric means of the performance across the
SPEC-95 applications (Gmean-spec95) and across all applications
(Gmean-all) are also shown.

The table shows that control CPR is highly effective for all
processors. Mean speedups across all the benchmarks of 13%,
5%, 18%, 33%, and 41% are achieved for the sequential, narrow,
medium, wide, and infinite processors. For the sequential proces-
sor, the speedup is largely due to the reduction in the number of
operations. Branches and other operations that are only needed
off-trace are removed from the main path by the transformation.
At the other extreme, the largest speedups are observed for the in-
finite processor which fully exposes program dependence height.
Four of the benchmarks,cmp, grep, lex, andstrcpyachieve more
than a factor of two improvement with control CPR.

Branch intensive programs with highly biased branches and
separable computation of branch conditions invariably exhibit
large speedups with control CPR. This is especially true on pro-
cessors with substantial hardware parallelism. Such programs in-
cludecccp, cmp, grep, lex, strcpy, wc andyaccwhere speedups
of 1.34 to 2.87 are achieved for the wide processor. The com-
bination of highly biased branches and separable computation of
branch conditions provides an underlying program structure where
control CPR can be applied to large groups of branches. Further,
programs with a large fraction of branches exhibit little parallelism
due to the large number of branch dependences. The combination
of these features provide an ideal environment for control CPR to
be effective. Control CPR is able to substantially reduce branch
dependence height in these programs which is translated directly
into performance gains through increases in parallelism.

A number of effects contribute to the lower observed speedups

Benchmark S tot S br D tot D br Benchmark S tot S br D tot D br

008.espresso 1.10 1.06 0.98 0.39 134.perl 1.01 1.01 0.97 0.66
022.li 1.03 1.01 0.99 0.63 147.vortex 1.02 1.01 0.91 0.62
023.eqntott 1.11 1.04 1.04 0.54 cccp 1.10 1.06 0.88 0.39
026.compress 1.14 1.06 1.06 0.61 cmp 1.08 1.01 0.71 0.13
056.ear 1.06 1.03 0.94 0.35 eqn 1.03 1.01 0.91 0.48
072.sc 1.05 1.02 0.92 0.52 grep 1.12 1.03 0.85 0.15
085.cc1 1.05 1.02 0.97 0.63 lex 1.12 1.04 0.83 0.20
099.go 1.08 1.04 1.04 0.86 strcpy 1.16 1.00 0.61 0.07
124.m88ksim 1.03 1.02 0.99 0.44 tbl 1.06 1.03 1.00 0.65
126.gcc 1.05 1.02 1.01 0.81 wc 1.20 1.08 0.94 0.40
129.compress 1.19 1.08 0.99 0.53 yacc 1.15 1.07 0.95 0.36
130.li 1.04 1.02 1.02 0.66 Gmean-spec95 1.06 1.03 0.98 0.62
132.ijpeg 1.07 1.05 0.93 0.51 Gmean-all 1.08 1.03 0.93 0.42

Table 3. The effect of ICBM on the static and dynamic operation counts for the medium processor.

in application measurements. A primary cause for low speedups is
difficulty in accurate identification of static program traces caused
by unbiased branches. This results in either very short CPR blocks
eliminating much of the benefit of control CPR; or, it results in
frequent branching into off-trace compensation blocks which can
reduce performance. The benchmark,099.goexhibits this effect
most prominently as it is dominated by unbiased branches.

Another cause of low speedups, particularly for the sequential
and narrow processors, is the use of a single set of CPR block se-
lection heuristics for all the processors. The heuristics were tuned
to accelerate programs for the medium processor and then directly
applied for all the measured processors. The medium processor
derives substantial height-reduction benefit from the formation of
large CPR blocks. A side effect of large CPR blocks is that mod-
estly important exit branches are delayed by motion off trace. For
wider processors, this delay is more than made up for by the in-
creased parallelism.

For sequential and narrow processors, large CPR blocks often
cause performance problems. The increased height reduction that
is achieved cannot be exploited due to the limited processor re-
sources. Further, performance is hurt by delaying the execution
of exit branches through off-trace motion. The net effect is code
with poor performance for the sequential and narrow processors
that becomes substantially better on processors with more hard-
ware resources. The benchmark which most notably illustrates
this behavior is023.eqntottwhere significant performance loss for
the sequential and narrow machines is observed. But, the loss is
converted into a substantial gain for the medium, wide, and infinite
processors. The further development of distinct heuristics for each
machine configuration would alleviate this problem.

Finally in Table 2, it is interesting to note that the speedups
with control CPR on the narrow processor are consistently less
than those on the sequential processor. This behavior is due pri-
marily to the nature of the reduced work introduced by control
CPR and the nature of the processors. For the sequential proces-
sor, each operation eliminated from the on-trace path contributes
directly to performance improvement since the processor can only
sustain one operation per cycle. Conversely on the narrow ma-
chine, there are dedicated units for each operation type. Thus,
eliminating a branch operation may not produce any performance
improvement unless the branch unit is saturated. For wider pro-

cessors, this behavior disappears. With more resources, the perfor-
mance gain due to eliminating operations becomes less important,
while the reduction in dependence height is the dominant source
of the performance gain.

Table 3 presents the effects of control CPR on both the static
and dynamic operation counts for all operations as well as for only
branch operations. Columns are labeled ”S tot” (static all opera-
tions), ”S br” (static branch), ”D tot” (dynamic all operations),
”D br” (dynamic branches) to indicate the nature of the measure-
ment taken. Rows are labeled with the benchmark name. Each
cell shows the ratio of the number of operations of the height-
reduced code to the number of operations in the baseline code.
Again the geometric means of the ratios across the SPEC-95 appli-
cations (Gmean-spec95) and across all applications (Gmean-all)
are shown.

Of particular interest are the dynamic operation counts for
branches. For the set of small programs dominated by predictable
branches, we see that the number of executed branches is greatly
reduced in the range .07 to .40 times the number of original
branches. Even for the larger applications, the number of exe-
cuted branches is typically less than .66 times the original number.
Such results may allow computer architects designing future pro-
cessors to provide less branch throughput in hardware while still
achieving enhanced efficiency and performance through compiler
technology.

The static total operation counts show the code expansion in-
curred to perform control CPR. With the exception of the small
benchmarks, a less than 10% code expansion is consistently ob-
served. As shown with the code example in Section 6, control
CPR does increase static code size through the insertion of redun-
dant code in the compensation blocks. However, the overall size is
strictly controlled by applying control CPR only to the frequently
executed program regions. The remainder of the code is left un-
treated. The net result is that the overall static code expansion is
rather small for most applications.

Its important to note that these results do not represent ei-
ther system-level speedups or limits to the effectiveness of this
technology. Dynamic effects such as virtual memory or cache
performance may dilute these speedups. Heuristics for control
CPR are not very mature and have not yet been tuned for each
specific processor configuration. In addition, these experiments

have not addressed the treatment of unbiased branches. Unbiased
branches typically result in short CPR blocks because either an
input superblock was truncated during superblock formation or,
the exit-ratio test terminates CPR block growth in the match al-
gorithm. While these experiments apply FRP conversion to linear
superblocks, no traditional if-conversion has been applied. The
compiler could employ traditional if-conversion to eliminate many
unbiased branches and thus further improve the effectiveness of
control CPR. These results do, however, indicate that control CPR
techniques have the potential to produce important speedups on
major applications and deserve further study.

8 Conclusion

In this paper, we have described theIrredundant Consecutive
Branch Method(ICBM) schema for control critical path reduc-
tion that alleviates performance bottlenecks due to branch latency
and throughput. This paper has advanced control CPR from a con-
cept to a systematic compiler technology which automatically pro-
cesses a general class programs.

Control CPR uses a number of basic tools to decrease branch
dependence height. The use of fully-resolved predicates (FRPs)
parallelizes branches by allowing free branch re-ordering during
scheduling and by providing well-defined overlapped branch ex-
ecution on processors with exposed branch latency. The use of
FRPs transforms chains of branch dependences into chains of data
dependences necessary to compute FRPs. These data dependence
chains can be height-reduced by using the associative property and
2-input logical operations or by using PlayDoh's wired-and and
wired-or compare operations.

By accelerating likely-taken paths at the expense of rarely
taken paths, our implementation of control CPR (ICBM) decreases
dependence height without requiring excessive operation count. In
fact, ICBM systematically decreases the total number of executed
operations and greatly decreases the number of executed branches
for scalar programs running on our target processor. We have im-
plemented ICBM within a working ILP compiler and we have pre-
sented experimental results to evaluate the effectiveness of ICBM
on scalar programs. Our results show that ICBM provides sub-
stantial speedups for a broad range of applications and for a range
of EPIC processors with varying degrees of hardware parallelism.

Acknowledgments

The authors thank Anton Ertl for the extensive time and effort
he put into improving the quality of this paper; Santosh Abraham,
David August, Vinod Kathail, and Matthai Philipose for all their
effort developing the Elcor hyperblock scheduler and control-flow
transformation infrastructure; Rob Schreiber and the anonymous
referees for their valuable comments and suggestions.

References

[AKPW83] J. R. Allen, K. Kennedy, C. Porterfield, and J. War-
ren. Conversion of control dependence to data de-
pendence. InConference Record of POPL-10, pp.
177–189, Jan. 1983.

[BGS95] R. Bodik, R. Gupta, and M Soffa. Interprocedural
conditional branch elimination. InProceedings of
PLDI-95, pp. 146–158, June 1995.

[DT93] J. Dehnert and R. Towle. Compiling for the Cydra-5.
The Journal of Supercomputing, 7(1):181–228, Jan.
1993.

[FF92] J. Fisher and S. Freudenberger. Predicting conditional
jump directions from previous runs of a program. In
Proceedings of ASPLOS-V, pp. 85–95, Oct. 1992.

[GK92] T. Granlund and R. Kenner. Eliminating branches us-
ing a superoptimizer and the gnu c compiler. InPro-
ceedings of PLDI-92, pp. 341–352, June 1992.

[H+93] W. W. Hwu et al. The Superblock: An effective tech-
nique for VLIW and superscalar compilation.The
Journal of Supercomputing, 7(1):229–248, Jan. 1993.

[HBC98] W. A. Havanki, S. Banerjia, and T. M. Conte. Tree-
gion scheduling for wide-issue processors. InPro-
ceedings of HPCA-4, Feb. 1998.

[JS96] R. Johnson and M. Schlansker. Analysis techniques
for predicated code. InProceedings of Micro-29, pp.
100–113, Dec. 1996.

[KSR93] V. Kathail, M. Schlansker, and B. Rau. HPL PlayDoh
architecture specification: Version 1.0. Technical Re-
port HPL-93-80, H.P. Laboratories, Feb. 1993.

[Kuc78] D. J. Kuck.The Structure of Computers and Compu-
tations, volume 1. John Wiley and Sons, New York,
NY, 1978.

[LFK+93] P. Lowney, S. Freudenberger, T. Karzas, W. Lichten-
stein, R. Nix, J. O' Donnell, and J. Ruttenberg. The
Multiflow trace scheduling compiler.The Journal of
Supercomputing, 7(1):51–142, Jan. 1993.

[ME92] S.-M. Moon and K. Ebcioglu. An efficient resource-
constrained global scheduling technique for super-
scalar and vliw processors. InProceedings of Micro-
25, pp. 55–71, Dec. 1992.

[MLC+92] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank,
and R. A. Bringmann. Effective compiler support for
predicated execution using the hyperblock. InPro-
ceedings of Micro-25, pp. 45–54, Dec. 1992.

[MW92] F. Mueller and D Whalley. Avoiding unconditional
jumps by code replication. InProceedings of PLDI-
92, pp. 322–330, June 1992.

[MW95] F. Mueller and D. Whalley. Avoiding conditional
branches by code replication. InACM SIGPLAN No-
tices, pp. 272–282, 1995.

[SK93] M. Schlansker and V. Kathail. Acceleration of alge-
braic recurrences on processors with instruction level
parallelism. InProceedings of LCPC-6, pp. 406–429,
1993.

[SK95] M. Schlansker and V. Kathail. Critical path reduction
for scalar programs. InProceedings of Micro-28, pp.
57–69, Dec. 1995.

[TLS90] P. Tirumalai, M. Lee, and M. Schlansker. Paralleliza-
tion of loops with exits on pipeline processors. In
Proceedings Supercomputing '90, pp. 200–212, Nov.
1990.

[YUW98] M. Yang, G. Uh, and D. Whalley. Interprocedural
conditional branch elimination. InProceedings of
PLDI-98, pp. 130–141, June 1998.

