

Fast Monte-Carlo Primality
Evidence Shown in the Dark

Wenbo Mao
Trusted E-Services
HP Laboratories Bristol
HPL-1999-30(R.1)
27th October, 1999*

Email:wm@hplb.hpl.hp.com

interactive
protocols, proof
of knowledge,
Monte-Carlo
primality test

We construct an efficient proof of knowledge protocol for
demonstrating Monte-Carlo evidence that a number n is the
product of two odd primes of roughly equal size. The evidence is
shown "in the dark", which means that the structure is verified
without the prime factors of n disclosed. The cost of a proof
amounts to 12k log2n multiplications of integers of size of n
where k is the number of the iterations in the proof and relates
to an error probability bounded by max(1/2k, 24/n1/4). To achieve
cost and error probability similar to these, previous techniques
require two additional conditions: (1) n is a Blum integer, and
(2) a mutually trusted k log2 n-bit long random source is
accessible by the proving/verification participants. In failure of
(1), k must be increased substantially in order to keep error
probability comparably small (e.g., k should be increased to
3000 for an error probability to remain at the level of 1/260). In
absence of (2), an additional k log2 n iterations are needed for
the participants to agree on the needed random input. We note
that the drop of (1) due to this work will have a significance on
applications.

∗ Internal Accession Date Only
 Copyright Hewlett-Packard Company 1999

Fast Monte-Carlo Primality Evidence Shown in the Dark

Wenbo Mao

Hewlett-Packard Laboratories,

Filton Road, Stoke Gi�ord,

Bristol BS34 8QZ, United Kingdom.

wm@hplb.hpl.hp.com

October 12, 1999

Abstract

We construct an e�cient proof of knowledge protocol for demonstratingMonte-

Carlo evidence that a number n is the product of two odd primes of roughly

equal size. The evidence is shown \in the dark", which means that the struc-

ture is veri�ed without the prime factors of n disclosed. The cost of a proof

amounts to 12k log
2
n multiplications of integers of size of n where k is the num-

ber of the iterations in the proof and relates to an error probability bounded by

max(1=2k; 24=n1=4). To achieve cost and error probability similar to these, pre-

vious techniques require two additional conditions: (1) n is a Blum integer, and

(2) a mutually trusted k log
2
n-bit long random source is accessible by the prov-

ing/veri�cation participants. In failure of (1), k must be increased substantially

in order to keep error probability comparably small (e.g., k should be increased

to 3000 for an error probability to remain at the level of 1=260). In absence of

(2), an additional k log
2
n iterations are needed for the participants to agree on

the needed random input. We note that the drop of (1) due to this work will

have a signi�cance in applications.

Key Words Interactive protocols, Proof of knowledge, Monte-Carlo primality test.

1 Introduction

In public-key cryptography, the private component of an individual user's crypto-

graphic key should be known only to the user. On the other hand, the user's public

key should be certi�ed by a known authority for authentication. The authority may

naturally demand that a public/private key pair have a valid private component that

conforms to a set of agreed criteria. Proof of knowledge is a powerful tool that allows

a user to run a protocol with a veri�cation party, convincing the latter of the valid-

ity of the private key without the former disclosing it (thus the evidence of validity

is shown in the dark). For instance, the ISO standardisation document 9798 part 3

1

([10]) recommends that public-key certi�cation include knowledge proof for possession

of the private component that matches the public key to be certi�ed.

A key certi�cation authority may also want to require that a user's key be gen-

erated at uniformly random which e�ectively prevents deliberate generation of week

keys. Blackburn and Galbraith proposed a protocol for two parties to jointly gener-

ate a composite number which guarantees that the prime factors of the number are

uniformly chosen [2]. At the end, only one party will know the two prime factors of

the number that has been jointly generated and be able to prove to the other the

two-prime-product structure.

We propose a protocol for e�cient proof of the validity of private keys for cryp-

tosystems based on the di�culty of integer factorisation (such as the RSA cryptosys-

tem [15]), where the criterion to be validated is that an integer is the product of two

primes of roughly equal size. The cost of a proof amounts to 12k log2 n multiplications

of integers of size of n where k is the number of the iterations in the proof and relates

to an error probability bounded by max(1=2k; 24=n1=4). This is the �rst protocol

that proves the two-prime-product structure of a number with the cost at the level of

O(k log2 n) multiplications and the error probability at the level of 1=2k (considering

k = 60 and n > 2512, 1=2k � 24=n1=4) regardless of whether the number in question

is a Blum integer [3]. Previous techniques for proving such a structure have a much

higher cost for non-Blum integers (details to be discussed in Section 2). The improved

e�ciency for reasoning about non-Blum integers due to this work manifests a partic-

ular suitability for using the proposed protocol in the proof of valid RSA keys which

are generated at uniformly random (e.g., for the protocol of Blackburn and Galbraith

[2]).

The remainder of the paper is organised as follows. In Section 2 we provide an

analysis on the costs of the previous protocols for proving that an integer is the

product of exactly two primes. In Section 3 we describe a new protocol of better

performance. We analyse the security of the new protocol in Section 4 and consider

its performance in Section 5. Finally, we conclude in Section 6.

2 Cost of Proving Two-Prime-Product Structure

Given the computational intractability of factoring large integers, to date there exists

no known algorithm that inputs a given number n and terminates in a polynomial

time in the size of n with an output answering whether n is the product of exactly

two odd primes. Nevertheless, there exists practically e�cient interactive protocols

that run in polynomial time and allow a participant who knows the factorisation of n

to prove such a structure to another without disclosing the factorisation information

to the latter.

An early idea of proving n in such a structure is based on an observation due to

Adleman (see [1]). He suggested to use the fact that if n has exactly two di�erent

2

prime factors (may include their powers) then exactly a quarter of elements in the

multiplicative group mod n are quadratic residues (square numbers mod n). On the

other hand if n has more than two prime factors then at most one-eighth of them are

quadratic residues. Thus, a prover, knowing the factorisation of n, can show a veri�er

the structure via binomial trials that for a set of k elements randomly chosen from

the multiplicative group mod n, roughly k=4 of them are quadratic residues (shown

by disclosing to the veri�er their square roots). Using a normal distribution as an

approximation to the probability of binomial trials (a standard method), Berger et al

[1] established that if
p
21�1
20

k or more such elements are shown to be quadratic residues

then the proof should be accepted with the probability of error between e�k=74 and

e�k=75. Thus, k should be in thousands (k = 3000 was suggested in [1]) in order for the

error probability to be negligibly small. (We note e�3000=74 < 1=258 < e�3000=75 and

regard an amount at this level to be negligibly small.) Since the cost for computing

a square root mod n is measured by O(log2 n) multiplications of integers mod n, the

total cost for proving the two-prime-product structure of a number n via showing

quadratic residue information will be O(k log2 n) (multiplications mod n) with an

error probability between e�k=74 and e�k=75.

Van de Graaf and Peralta [9] observed that if n is a Blum integer, that is, n

is the product of two distinct prime factors (again may include their powers), both

congruent to 3 mod 4, then any element in the multiplicative group mod n with the

positive Jacobi symbol has the property that either itself or its negation is a quadratic

residue modulo n. Their protocol for proof of Blum integer is based on this fact. A

number of other previous protocols for proving two-prime-product structure also use

this idea (e.g., [5, 8, 12]). Note that provided n is not a square number (which is

easy to test against), exactly half of the elements in the multiplicative group mod

n can have positive Jacobi symbol which is also easy to evaluate. Thus, given such

n, the above demonstration actually shows that a quarter of elements in the group

are quadratic residues (since a quadratic residue must have positive Legendre symbol

mod all prime factors, and only half of elements mod a prime have positive Jacobi

symbol). If n is not in a two-prime-product structure then it is certainly not a Blum

integer. Omitting details, for any group element of positive Jacobi symbol mod such

n (which is non-Blum and non-square), a prover will have at most a 50% chance of

correctly demonstrating the above. Clearly, such a proof using k random challenges

will result in an error probability bounded by 1=2k, which approaches zero much faster

than e�k=74 (see the comparison between them in the previous paragraph).

The simplest way to show quadratic residue evidence to display a square root of a

quadratic residue. (In the protocol of Van de Graaf and Peralta [9] for proving Blum

integer, the veri�er should check that the Jacobi symbol of a square root of a random

challenge comply with a pre-agreed random sign. This follows Blum's observation

that if n is a Blum integer, then any quadratic residue has square roots of positive

and negative Jacobi symbols [3]. In the protocol of Gennaro et al [8], a veri�er should

3

require that for each challenge g sent as challenge, a square root of either �g or �2g

mod n will be replied. It is possible for a prover to correctly respond such challenges

if one of the prime factors of n is congruent to 5 mod 8, and the other, to 7 mod

8. These form an additional constraint to n being a Blum integer.) Note that two

di�erent square roots of a quadratic residue mod n can lead to factoring n with a

non-trivial probability. So it will be dangerous for a prover to disclose a square root

of a challenge which is solely selected by the veri�er. The two protocols in [8, 9]

assume the existence of a mutually trusted random source which is accessible by the

prover and veri�er. We believe that it will be costly to implement a mutually trusted

random source between two mutually untrusted parties. The cost can be estimated by

a protocol that allows the two parties to generate mutually trusted random elements

without using a trusted third party. Blum's idea of coin
ipping [3] is such a protocol

and is used by [1, 7]. Each instantiation of that protocol generates a truely random

bit. Each random challenge of size of n generated this way takes log2 n iterations

and the same number of multi-precision operations of integers mod n (evaluation of

log2 n Jacobi symbols). Together k log2 n iterations are needed for merely agreeing on

k mutually trusted random challenges.

Above we have analysed the cost for the previous protocols to prove an integer in

the two-prime-power structure, i.e., n = prqs where p, q are distinct primes and r,

s, integers. To further prove r = s = 1 one can use the protocol of Boyar et al [4]

for proving square-free integers. Furthermore, to show that p and q are of roughly

equal size one can use Damg�ard's method of \checking commitment" protocol [6]. We

shall ignore the costs of applying these two additional protocols because they are less

expensive than that for proving the two-prime-power structure, in particular for the

case of non-Blum integers.

3 New Protocol

We describe in this section a new protocol for proving that a number is the product

of two odd primes of roughly equal size.

3.1 Notations

Let P be a positive integer. Z�P denotes the multiplicative group of elements mod P .

For a 2 Z�P , OrdP (a) denote the order of a mod P .

Let a and b be integers. a j b denotes a dividing b and a 6 j b otherwise; (a; b) denotes

the greatest common divisor of a and b;
�
a
b

�
denotes the Jacobi symbol of a mod b;

`(a) denotes the size of a, which is the number of the bits in the binary representation

of a.

Let x be a real number. bxc denotes the integer part of x (thus `(a) = blog2(a)c+

1); jxj denotes the absolute value of x.

4

Let S be a set. #S denotes the cardinality of S.

Finally, Pr[E] denotes the probability for event E to occur.

3.2 Parameter Setup

Let Alice be a prover and Bob be a veri�er. Alice has constructed n = pq such that p

and q are distinct odd primes with j`(p) � `(q)j � 2 (i.e., the sizes of the two primes

di�er by at most 2 bits).

First, Alice shall help Bob to set up a multiplicative group of order n. For her

part, Alice only needs to generate a prime P with n j (P � 1). This prime can be

constructed by testing the primality of P = 2�n+1 for � = 1; 2; � � � ; until P is found

to be prime. By the prime number theorem (general form due to Dirichlet, see e.g.,

p.28 of [11]), for �xed n with P = 2�n+ 1 � N , there are roughly

�n(N) �
1

�(2n)
�
N

lnN

such P 's which are under N and are primes. Note that N � 2�n+ 1 and n > �(2n).

So

�n(N) >
2�

ln(2�n+ 1)
:

Since Alice's primality test procedure uses � = 1; 2; � � �, the above inequality indicates

a non-trivial probability for two primes to show up upon � reaching ln(2n lnn). So

we can be sure that � is small (likely to be bounded by ln(2n lnn)). It will be

computationally easy for Alice to �nd the prime P . Once P is found to be prime,

Alice shall send the numbers n and P to Bob.

Upon receipt of n and P , Bob shall test the primality of P . Upon passing of the

test, he chooses a random element f < P , and sets

g = f (P�1)=n mod P:

Bob then sends g to Alice.

Upon receipt of g, Alice shall check OrdP (g) = n. If this does not hold, Alice may

not be able to pass a proof later. Above we have reasoned that 2� = (P � 1)=n is

small (� n). Thus, for n = pq, there can only be a few factors of P � 1 which are

less than n and are fully known to Alice. So it will be computationally easy for Alice

to check OrdP (g) = n. Upon passing this simple checking, Alice shall set

A = gp mod P; B = gq mod P:

Alice then sends the pair (A;B) to Bob.

Upon receipt of (A;B), Bob shall check the following:

A 6= B; A 6= 1; B 6= 1:

5

If these checks are passed, the system parameters have been properly set up. Speci�ed

below is a protocol that, on input of n;A;B; P , demonstrates that n is the product

of two odd primes of roughly equal size.

3.3 Protocol Speci�cation

Now we specify the new protocol.

A proof will be abandoned if any check by Alice fails, or rejected if any check

by Bob fails, or otherwise accepted. For clarity, we shall omit the trailing modP

operation in the protocol speci�cation.

Two Prime Product(n; g;A;B; P)

Repeat the following steps k times

1. Bob picks h 2 Z
�
n at random with

�
h

n

�
= �1 and sends it to Alice;

2. Alice checks
�
h

n

�
= �1, picks u; v at random such that

`(u) = `((p� 1)=2); `(v) = `((q � 1)=2);

and sets

U = g
2u
; V = g

2v
; HU = B

(hu mod n)
;

HV = A
(hv mod n)

; HUV = h
u
h
v mod n;

Alice sends to Bob: U; V; HU ; HV ; HUV ;

3. Bob picks a challenge c 2 f0; 1g at random and sends it to Alice;

4. Alice sends Bob the responses

r = u+ c(p� 1)=2; s = v + c(q � 1)=2;

5. Bob checks:

5.1 `(r) � b`(n)=2c + 2; `(s) � b`(n)=2c + 2;

5.2 g
2r+1 �

(
Ug c = 0

UA c = 1
; g

2s+1 �

(
V g c = 0

V B c = 1
;

5.3 B
(hr mod n) �

(
HU c = 0

H
�1
U

c = 1
; A

(hs mod n) �

(
HV c = 0

H
�1
V

c = 1
;

(H�1
U

and H
�1
V

mean the two exponents taking opposite signs)

5.4 h
r
h
s �

(
HUV (mod n)

HUV h
(n�1)=2 (mod n)

c = 0

c = 1
:

End.

6

We shall see in the next section that the two congruences checked in step 5.3

actually evaluate the Jacobi (Legendre) symbols
�
h

p

�
and

�
h

q

�
. Using challenges of

the negative Jacobi symbol has the virtue of not disclosing the quadratic residue

information of the challenges. In contrast, many square-root displaying protocols

(e.g., [8, 9]) disclose such information.

The protocol allows for the two factors to have size di�erences satisfying j`(p) �

`(q)j � 2. Larger size di�erences, if desirable, can be accommodated by adjusting the

inequalities in step 5.1.

4 Analyses

We analyze the security the protocol, which consists of the properties of completeness,

soundness, and privacy.

4.1 Completeness

Theorem 1 If Alice inputs the correct values into the protocol as speci�ed. Then the

proof will be accepted.

Proof We show that Bob will be satis�ed by the checks performed in protocol step

5.1 through step 5.4.

First, we show the inequalities in 5.1. Alice has set p and q such that pq = n

�2 � `(p)� `(q) � 2: (1)

Obviously

`(n) � `(p) + `(q) � `(n) + 1: (2)

Adding (1) to (2) yields

2`(p) � `(n) + 3;

or

`(p) � b`(n)c=2 + 2: (3)

Alice has chosen `(u) = `((p � 1)=2). With p odd, (p � 1)=2 is a whole number and

`((p� 1)=2) = `(p)� 1. So when c = 0

`(r) = `(u) = `((p� 1)=2) = `(p)� 1;

and When c = 1

`(r) = `(u+ (p� 1)=2) � `((p� 1)=2) + 1 = `(p):

So for both cases, (3) will imply

`(r) � b`(n)c=2 + 2:

7

Analogously we can show

`(s) � b`(n)c=2 + 2:

In the following, we shall only examine the cases under c = 1, since c = 0 will

render the congruences in 5.2 through 5.4 to hold trivially.

In 5.2, noting that gp � A (modP) and the structures of U and r, it is easy to

see that the �rst congruence will hold. The second congruence holds similarly.

To see that the congruences in 5.3 will hold, observe

B
(h(p�1)=2 mod n)

� B
(h(p�1)=2 mod p)

� B

�
h

p

�
(mod P): (4)

The �rst congruence in (4) is due to OrdP (B) = p jn. Then, since p is prime, the

second congruence in (4) follows from Euler's criterion. Therefore, the �rst congruence

in 5.3 (for c = 1) is:

B
(hr mod n) � B

(hu+(p�1)=2 mod n)

� (B(h(p�1)=2 mod n))(h
u mod n)

� (B(h(p�1)=2 mod p))(h
u mod n)

� (B

�
h

p

�
)(h

u mod n)

� (B(hu mod n))

�
h

p

�
� H

�
h

p

�
U

(mod P);

while the second congruence in 5.3 (for c = 1) is, analogously,

A
(hs mod n)

� H

�
h

q

�
V

(mod P):

The exponents of the both right-hand sides must take opposite signs since Jacobi

symbols only take values �1 and h has been chosen to satisfy

�1 =

�
h

n

�
=

�
h

p

��
h

q

�
:

Therefore the congruences in 5.3 will hold.

Finally, any h 2 Z
�
n will satisfy

h
p+q
� h

n+1 (mod n):

With (p � 1)=2, (q � 1)=2 and (n � 1)=2 being whole numbers, it is easy to rewrite

the above into

h
[(p�1)=2+(q�1)=2]

� h
(n�1)=2 (mod n):

Therefore the congruence in 5.4 will hold. 2

8

4.2 Soundness

We now show that protocol Two Prime Product provides a Monte-Carlo method for

testing the primality of the orders of A and B. We �rstly note that all the numbers

and variables to appear in this section are non-negative integers. In particular, logg(A)

and logg(B) denote some positive integers p and q less than OrdP (g) satisfying A �

g
p(mod P) and B � g

q(mod P).

Lemma 1 Without the knowledge of the factorisation of n, the element g �xed by

Bob satis�es

Pr[OrdP (g) divides x] = x=n;

for any x divides n.

Proof Without the knowledge of the factorisation of n, Bob's procedure for �xing

g is via g = f
(P�1)=n mod P using f which is chosen at random from Z

�
P
(review

Section 2.2). Then g
n � 1 (modP) by Fermat's Theorem. In the cyclic group Z

�
P

there are exactly n =
P

d jn �(d) elements of orders dividing n. Only these elements

can be the candidates for g. For the same reason, for any x jn jP�1, there are exactly

x =
P

d jx �(d) elements in Z
�
P
of orders dividing x. The claimed probability is thus

calculated as that of picking x objects from n. 2

Lemma 2 Denote OrdP (B) = x and OrdP (A) = y. Upon acceptance of a proof on

running Two Prime Product(n; g;A;B; P), Bob accepts that his random choice of h

with (h; n) = 1 and
�
h

n

�
= 1 satis�es(

h
[(logg(A)�1)=2]

� �1 (mod x)

h
[(logg(B)�1)=2] � �1 (mod y)

:

The probability for failing this does not exceed 1=2k where k is the number of iterations

used in the protocol.

Proof The �rst congruence in 5.2 shows that Alice knows both logg(U) (shown when

c = 0) and logg(UA) = logg(U)+logg(A) (shown when c = 1), and has added logg(A)

to the response whenever c = 1 is the case. Suppose Alice does not know logg(A).

Then in each iteration she can only answer Bob's random challenge with at most 1=2

chance of correctness. Thus, after having veri�ed k times of correct responses to his

random challenges, Bob should agree that the probability for Alice not having used

logg(A) in her response (when c = 1) is at most 1=2k.

The �rst congruence in 5.3 further shows that HU is generated from B with the

use of an exponent which is in turn generated from Bob's randomly chosen challenge

h. Since (h; n) = 1, (hr mod n; n) = 1. Therefore

OrdP (HU) = OrdP (B) = x:

Clearly, the quantity logg(A) in 2r+1 (when c = 1) amounts to (logg(A)� 1)=2 in r.

Therefore the �rst congruence in 5.3 shows that for h satisfying (h; n) = 1:

h
[(logg(A)�1)=2]

� �1 (mod x):

9

Analogously we can use the second congruence in 5.3 to establish that for the

same h

h
[(logg(B)�1)=2] � �1 (mod y): 2

In the rest of this section we will continue denoting

OrdP (B) = x; OrdP (A) = y:

Following the Solovay-Strassen primality test technique [16] we de�ne the following

set

Hx = f h 2 Z
�

x j (h; x) = 1; h
�
� �1 (mod x); � constant g: (5)

Clearly, this set is a subgroup of Z�
x. It is a variation of its counterpart used in

the Solovay-Strassen primality test technique. There, Hx is de�ned such that the

exponent � is (x � 1)=2. In our \test in the dark" method, the veri�er Bob is not

given the modulus x, let alone does he know the relation between the exponent and

the modulus. All the information Bob has is that the modulus is a factor of n, and

that the exponent is a constant. (The result of Lemma 2 stipulates the constant be

(logg(A)� 1)=2.)

Lemma 3 Let x; y be as in Lemma 2, �, � be constant integers, and h be an element

satisfying (h mod x; x) = (h mod y; y) = 1. If the following test

(
h
� � �1 (mod x)

h
� � �1 (mod y)

is passed for k such h's chosen at random, then both x and y are prime powers. The

probability for failing this does not exceed 1=2k.

Proof We prove the lemma by estimating the probability for x not being a prime

power. A prime power can be written as pr with p prime and r � 1. Suppose x is not

a prime power. Then let x = �� with � > 1, � > 1 and (�; �) = 1.

Obviously, either Hx is a proper subgroup of Z�
x, or Hx = Z

�
x.

In the �rst case, #Hx is at most half of #Z
�
x (since the former must divide the

latter), and thereby the probability for each h randomly picked from Z
�
x to fall in Hx

cannot exceed 1=2, which amounts to 1=2k to bound the probability for k such h's to

be so.

Now we consider Hx = Z
�
x. We claim that Hx will only contain elements satisfying

h
�
� 1 (mod x): (6)

Suppose Hx = Z
�
x while (6) is not true for some element in Hx. Let h be such an

element. So h
� � �1 (modx). Since � and � are relatively prime, by the Chinese

remainder theorem, the system f � 1 (mod �), f � h (mod �) has a solution f 2 Z
�
x.

Obviously,

f
�
� 1 (mod �); f

�
� �1 (mod �);

10

yielding

f
�
6� �1 (mod x):

So f 2 Z
�
x nHx, contradiction to Hx = Z

�
x.

So now we must consider Hx = Z
�
x with all elements in Hx satisfying (6). This

implies that for k randomly chosen h's with (h mod y; y) = 1, h� � �1 (mod y). Let

z be a prime factor of y. Then we will also have (h� mod z; z) = 1 and

h
�
� �1 (mod z): (7)

Since z is prime, by Fermat's Theorem we know z � 1 j 2�, i.e., � is a multiple of

(z� 1)=2. In Z
�
z there are exactly half the elements which are quadratic non-residues

satisfying (7) (none of other elements can satisfy it). So the probability for this

congruence to hold for k randomly chosen h's cannot exceed 1=2k. This value must

also bound the probability for x not being a prime power.

By symmetry, y is also a prime power. 2

Lemma 4 Under the hypotheses of Lemma 3, (x; y) = 1. The probability for failing

this does not exceed 1=2k.

Proof Since x and y are both prime powers, if (x; y) > 1, we can assume without

loss of generality that x = p
r j y. Using the result of Lemma 2 we can derive

�1 � h
�(mod y) � h

�(mod x):

At the same time we have

h
�
� �1 (mod x):

Thus,

h
j���j

� �1 (mod x) � �1 (mod p);

for all k instances of randomly-picked h with (h; p) = 1. Since p is prime, the above

is only possible if p� 1 divides 2j�� �j but not divides j�� �j. So j�� �j is an odd

multiple of (p� 1)=2 which implies

h
(p�1)=2

� �1 (mod p) (8)

for all such h mod p. There are only half the elements in Z
�
p which are quadratic

non-residues satisfying (8). Therefore the probability for (8) to hold for k time, i.e.,

for k random h's with h mod p being quadratic non-residues will not exceed 1=2k.

Since the congruence in (8) is derived from the assumption (x; y) > 1, the value 1=2k

also bounds the probability for (x; y) > 1. 2

Lemma 5 Under the hypotheses of Lemma 2, there exists integers a and b satisfying

logg(A) = ax � 8n1=2; logg(B) = by � 8n1=2:

11

Proof From the proof of Lemma 2 we know that A is generated from g. So its order

y can only be reduced from OrdP (g) and thereby y jOrdP (g). We also know

0 � logg(1) � logg(A
y) � y logg(A)(modOrdP (g)):

This means

OrdP (g) j y logg(A): (9)

By symmetry, x jOrdP (g) jx logg(B). Then xy jOrdP (g) since (x; y) = 1 (Lemma 4).

Combining this with (9), we have x j logg(A). By symmetry we can also derive

OrdP (g) jx logg(B); (10)

and y j logg(B). So we can write

logg(A) = ax; logg(B) = by;

for some a and b.

In protocol step 5.1. Bob has checked that in both challenge cases, the responses

r and s satisfy

`(r) � b`(n)=2c + 2:

Since when the challenge is c = 1, `(logg(A)) � `(2r + 1) = `(r) + 1,

`(logg(A)) � b`(n)=2c + 3:

This implies

logg(A) � 2b`(n)=2c+3
� 8n1=2:

By symmetry, by = logg(B) � 8n1=2. 2

Now we can prove the soundness of our protocol.

Theorem 2 Upon acceptance of a proof on running Two Prime Product(n; g;A;B; P

) where n � 244 and is odd, Bob accepts that x = logg(A), y = logg(B), and they are

distinct odd primes. The probability for failing this does not exceed max(1=2k; 24=n1=4)

where k is the number of iterations used in the proof.

Proof We know x 6= y since they are relatively prime to each other. Both are odd

since both divide an odd number n. By symmetry, we only need to prove the case

for x = logg(A) to be a prime. We have already established ax = logg(A) (Lemma 5)

and x = p
r with p being prime (Lemma 3). So to prove this theorem we need only

to show a = r = 1. We shall establish the probability for Bob to accept the proof

while assuming either r > 1, or a > 1. Using the method that we have used in the

proof of Lemma 3, we shall reason that if any of these two cases is true, then either

Hx (de�ned in (5)) should be a proper subgroup of Z�
x, which will render 1=2k to

bound the probability for Bob to accept a proof of k iterations, or another event of a

negligibly small probability should has occurred.

12

First, consider the case of r > 1.

There exists h 2 Z
�
pr of the full order (p� 1)pr�1. This element cannot be in Hx

since otherwise the �rst congruence established in Lemma 2 will imply

h
apr�1

� 1 (mod pr);

which yields

(p� 1)pr�1
j ap

r
� 1:

So there exists � satisfying

ap
r
� �(p� 1)pr�1 = 1:

This means pr�1 is relatively prime to p
r, impossible with r > 1. So Hx must be a

proper subgroup of Z�
x.

The remaining case is a > 1 and x prime.

There exists h 2 Z
�
x of full order x � 1. If h is not in Hx then Hx is a proper

subgroup and we have done. Now suppose h 2 Hx. The �rst congruence in Lemma 2

implies

h
ax�1

� 1 (mod x);

which further implies x� 1 j ax � 1 = a(x� 1) + a� 1. So x� 1 j a � 1. This is only

possible if x � a. From Lemma 5, ax � 8n1=2. So x
2 � ax � 8n1=2, or x < 3n1=4.

Lemma 5 also requires logg(B) = by � 8n1=2. These yield

x logg(B) = xby < 24n3=4:

So, this case of logg(A) requires xby < 24n3=4. From (10), OrdP (g) jxby. Also,

OrdP (g) jn. So OrdP (g) j (xby; n) � xby � n (n � 244). Now we can apply Lemma 1

and obtain

Pr[OrdP (g) divides (xby; n)] = (xby; n)=n � xby=n < 24=n1=4:

We have shown that if x is not a prime, or x 6= logg(A), then the probabilities for

Bob to accept the proof are bounded by either 1=2k, or 24=n1=4, whichever is larger.

The latter value bounds the probability for Bob to have chosen g of such a small

order. 2

Remark In the proof of Theorem 2 and Lemma 3 we have used random elements in

Z
�
x. We should point out that in the protocol Bob only picks h at random from Z

�
n,

rather than from Z
�
x, since he does not know the factorisation of n. Also h is chosen

to have the negative Jacobi symbol mod n. However, the mapping from such h in Z
�
n

to h mod x in Z
�
x is onto (the mapping is accomplished by the double exponentiations

checked in protocol step 5.3) and thereby results in uniformly distributed elements in

Z
�
x.

13

Theorem 3 Under the hypotheses of Theorem 2, n = logg(A) logg(B). The proba-

bility for failing this does not exceed max(1=2k; 8=n1=4).

Proof In Theorem 2 we have proved logg(A) logg(B) = xy = OrdP (g) jn where x

and y are distinct primes. Suppose n = xyz for some integer z. We prove the theorem

by estimating the probability for z > 1.

The congruence checked in protocol step 5.4 implies that each h that Bob chooses

at random satis�es

Ordn(h) jn� x� y + 1 (11)

De�ne the following set as a subgroup of Z�
n:

H = f h 2 Z
�

n j h
(n�x�y+1)

� 1 (mod n) g:

Since x; y are distinct primes, there exists h 2 Z
�
n of order max(x�1; y�1). If h 62 H

then H is a proper subgroup of Z�
n and #H cannot exceed the half of #Z

�
n. Thus,

the probability for choosing k random elements from Z
�
n which also fall in H (to pass

the congruence in step 5.4) will not exceed 1=2k.

Now suppose h 2 H. Without loss of generality, let x�1 � y�1. Then from (11)

we can derive

x� 1 = Ordn(h) j z � 1:

This is only possible if x � z. Given y � 8n1=2, the maximum possible value for

OrdP (g) = xy = n=z can only be resulted from the maximum possible value of x = z,

which renders

OrdP (g) = xy � 8n3=4:

Applying Lemma 1 we know that the probability for Bob having chosen g of such a

small order does not exceed 8=n1=4.

Thus, we can use max(1=2k; 8=n1=4) to bound the probability for z > 1. 2

To this end we know that the two primes factors of n have roughly equal size since

logg(A) � 8n1=2; logg(B) � 8n1=2:

As a concluding remark for our soundness analysis, we emphasize the importance

of verifying the congruences in the protocol step 5.3. Besides their roles in the sound-

ness proof that we have seen, they also exclude x and y from being certain pseudo-

primes such as Carmichael numbers (see e.g., p.137 of [13]). Moreover, they prevent

x and y from being methodically chosen in a cheating way that can pass a (
awed)

protocol in [12] for proof of a required format for RSA moduli. (The required format

is the same as what our protocol proves: n is the product of exactly two primes of

roughly equal size.) That protocol �rst applies a square-root displaying protocol to

prove that n is the product of two prime powers ([12] suggests to use the method of [9]

for proof of Blum integers; we will discuss more on square-root displaying protocols

in Section 4), and then veri�es

h
x+y
� h

n+1(mod n)

14

(equivalent to the congruence checked in our protocol step 5.4), plus checking the

sizes of x and y. Below we reason that such veri�cation does not su�ce for proving

the required format of n.

Let n = xy with x, y being odd. It is easy to see that, as long as �(n) (Carmichael

function of n, which is the lowest order of all elements in Z�
n) divides (x�1)(y�1)=2 =

(n � 1)=2 � [(x � 1) + (y � 1)]=2, the congruence above will always pass. Alice can

thus cheat as follows. She sets x = p
r with p prime and r > 1 such that y = 2pr�1+1

is prime and `(x) � `(y). There are su�ciently many primes p such that 2pr�1 + 1

is also prime. So it will be easy for Alice to �nd p and y to satisfy what is required.

Clearly, n is the product of two prime powers, and will therefore pass a Blum integer

proof based on displaying square roots of challenges. The size checking on x and y

will pass too. Moreover,

(x� 1)(y � 1) = (pr � 1)2pr�1 = (p� 1)(:::)2pr�1
;

and

�(n) = lcm(�(x); �(y)) = lcm((p� 1)pr�1
; 2pr�1) = (p� 1)pr�1

:

So it always holds

�(n) j (x� 1)(y � 1)=2:

Consequently, veri�cation using h
x+y � h

n+1(modn) will pass for all h 2 Z
�
n. But

n is not the product of exactly two primes, and the sizes of its prime factors are not

roughly equal (`(p) � `(y)=r).

4.3 Privacy

Theorem 4 Assume the computational infeasibility of computing discrete logarithms

to the base g, of factoring n, and of determining
�
h

x

�
for x being a factor of n with

given g
x(mod P). Then on inputing n = pq with p and q being odd primes, and with

challenge h satisfying
�
h

n

�
= �1, the protocol Two Prime Product is in honest veri�er

zero-knowledge.

Proof First, we note that in step 2, Alice picks two random numbers u and v with

`(u) = `((p� 1)=2) and `(v) = `((q� 1)=2). Since p and q are odd, it is clear that for

the challenge case c = 1, the responses r and s do not disclose any information about

p and q.

We now show that given n, each iteration in a protocol run (with an honest veri�er)

can be simulated by a simulator in polynomial time. This includes to simulate the

values g, A, and B. The simulator can pick the following values at uniformly random:

it picks g, A, B of order n (e.g., by picking g at random as Bob does and setting

A = g
a mod P , B = g

b mod P using random values a and b), and picks h and c

exactly as (an honest) veri�er does in the protocol:

h 2 Z
�
n satisfying

�
h

n

�
= �1;

15

c 2 f0; 1g; if c = 1 then further picks d 2 f1;�1g;

r; s satisfying `(r) � b`(n)=2c + 2; `(s) � b`(n)=2c + 2.

Using these random values, it then computes the following values to construct a

simulated view.

For c = 0:

U g
2r mod P , V g

2s mod P ,

HU B
(hr mod n) mod P , HV A

(hs mod n) mod P ,

HUV h
r
h
s mod n;

For c = 1:

U g
2r+1

=A mod P , V g
2s+1

=B mod P ,

HU (B(hr mod n))d mod P , HV (A(hs mod n))�d mod P ,

HUV h
r
h
s
h
(n�1)=2 mod n;

Under the hypotheses of the theorem, the distribution of the values U , V , HU ,

HV , HUV computed above is computationally indistinguishable from those resulted

from a true proof run. Consequently, Bob gains no additional information about p

and q other than from n. (We point out that since g is a quadratic residue, for both

cases of c, all values computed in mod P are quadratic residues mod P , without being

distinguishable by exploiting quadratic residue information.) 2

We should point out that the simulator described in Theorem 4 does not simulate

a run with a dishonest veri�er. Such a veri�er can force a proof's view to have a

distribution which is distinguishable from that of our simulation. For instance, a

dishonest veri�er can choose an h with the negative Jacobi symbol, and then uses hi

with i being random odd numbers as challenges in the rest of the proof iterations.

The proof view will then show a �xed Jacobi information in veri�cation step 5.3 (e.g.,

�xed HU and H
�1
V

in step 5.3 for all cases of c = 1). This indicates that our protocol

is only up to honest veri�er zero-knowledge.

Finally we point out that the security of the new protocol rests not only on the dif-

�culty of factorisation, but also on the discrete logarithm problem since two constants

A and B have been disclosed where p � logg(A)(mod n). We believe that the disclo-

sure of these two constants will not form a degradation for the di�culty of factoring

n since the original problem of factoring an RSA modulus has never been harder than

computing the discrete logarithm modulo the modulus as illustrated below for most

h 2 Z
�
n

h
p+q
� h

n+1(mod n):

The disclosure of A and B merely adds two additional elements to the huge set of

such elements already available.

16

5 Performance

The operations in the protocol mainly involve exponentiations modulo big integers and

evaluation of Jacobi symbols. Because the cost of the latter is trivial in comparison

to that of the former, we shall focus our attention on estimating the cost of modulo

exponentiations.

We shall not consider the cost for Alice to generate n and the related prime

P = 2�n+1 since these procedures are purely local to Alice (while a protocol involves

communications). She can prepare these two numbers well in advance before running

the protocol. However, the cost to Bob of testing the primality of P should be included

in the cost for him to run the protocol.

Testing the primality of P using a Monte-Carlo method needs k testing iterations

to achieve 1=2k error probability (using k the same as that in the protocol to equalise

the error probability). Each iteration mainly involves exponentiation mod P . So for

this part, Bob performs k exponentiations mod P .

In the proof protocol, in each iteration Alice computes four exponentiations mod

P and two of them mod n. Bob performs slightly more: four of them mod P and

on average 2.5 of them mod n (2 for c = 0 and 3 for c = 1). Thus, with a proof of

k iterations, Alice computes 4k exponentiations mod P and 2k of them mod n. For

Bob's part, adding the cost of testing the primality of P , he should perform in total

5k exponentiations mod P and 2:5k of them mod n.

Notice the fact that P = 2�n+ 1 where � is small (at the level of ln(2n lnn), see

Section 3.2). We have

log2 P � log2 n � log2[2 ln(2n lnn)]: (12)

This means that the size of P may exceed that of n by only a few bits (for instance,

for any n of size less than 10,000 bits, log2[2 ln(2n lnn)] < 5, which is less than two

percent of the size of n). Since (12) renders that the growth of the size di�erence

between the two moduli is much slower than that of the moduli, we can claim that

for n of any size larger than 512 bits (recommended least size for today), the size of

P will not exceed that of n by two percent (of the size of n), namely

log2 P � 1:02 log2 n:

Since in bit operation, the cost for exponentiation mod P is measured inO((log2 P)
3),

i.e., C(log2 P)
3 for some constant C, we can use the following to relate the cost of

exponentiation mod P to that mod n (of any size larger than 512 bits):

(log2 P)
3
� (1:02 log2 n)

3
� 1:062(log2 n)

3
:

That is, the cost of one exponentiation mod P will not exceed that of one mod n

by seven percent. We nevertheless use a ten percent expansion and convert Bob's

17

workload of 5k exponentiations mod P into 5:5k exponentiations mod n. So in total

Bob will need to compute no more than 8k = (5:5 + 2:5)k exponentiations mod n.

Alice will compute no more than 7k of them. Since on average an exponentiation mod

n amounts to 1:5 log2 n multiplications mod n, the total cost to Bob for running the

protocol will be 12k log2 n multiplications of integer of size of n. We can also use this

quantity to bound Alice's cost of running the protocol.

Theorem 5 For n of size larger than 512 bits, the computational cost of proving

and verifying that n is the product of two primes of roughly equal size using protocol

Two Prime Product is 12k log2 n multiplications of integer of size of n. Both parties

should perform this amount of operations. 2

Considering the fact that a Monte-Carlo primality test on a non-secret number

mainly involves modulo exponentiation, Bob's veri�cation cost is equal to eight such

tests on non-secret numbers of size of n.

6 Conclusion

We have constructed an e�cient knowledge proof protocol for demonstrating an in-

teger being the product of two prime factors of roughly equal size. The new protocol

is the �rst of its kind that proves such a structure with e�ciency comparable to that

of a Monte-Carlo method for primality testing of non-secret numbers of comparable

sizes regardless of whether or not the number is a Blum integer. It can be regarded

as a fast Monte-Carlo method for showing primality evidence \in the dark".

A further investigation could be to construct a proof that shows Miller-Rabin pri-

mality evidence \in the dark". For a non-Blum integer, Miller-Rabin primality test

has a lower error probability of 1=4k (assuming 1=4k � 24=n1=4 for n of secure size

in this day). The new method shows a particular applicability to proving two-prime-

product structure for non-Blum integers. Therefore a proof protocol in Miller-Rabin

version will be of interest in achieving an even better performance.

Acknowledgments It is a pleasure to thank my colleagues Simon Crouch, Kenny

Paterson and Nigel Smart for interesting discussions and helpful comments on the

subject of the paper.

References

[1] R. Berger, S. Kannan and R. Peralta. A framework for the study of crypto-

graphic protocols, Advances in Cryptology | Proceedings of CRYPTO 85 (H.C.

Williams ed.), Lecture Notes in Computer Science, Springer-Verlag 218 (1986),

pp. 87{103.

18

[2] S.R. Blackburn and S.D. Galbraith. Certi�cation of secure RSA keys, University

of Waterloo Centre for Applied Cryptographic Research, Technical Report CORR

99-44, Available from http://www.cacr.math.uwaterloo.ca/

[3] M. Blum. Coin
ipping by telephone: a protocol for solving impossible problems,

Proceedings of 24th IEEE Computer Conference (CompCon), 1982, pp. 133{137.

[4] J. Boyar, K. Friedl and C. Lund. Practical zero-knowledge proofs: Giving hints

and using de�ciencies, Advances in Cryptology | Proceedings of EUROCRYPT

89 (J.-J. Quisquater and J. Vandewalle, eds.), Lecture Notes in Computer Sci-

ence, Springer-Verlag 434 (1990), pp. 155{172.

[5] J. Camenisch and M. Michels. Proving in zero-knowledge that a number is the

product of two safe primes, In Advances in Cryptology | EUROCRYPT 99,

Lecture Notes in Computer Science, Springer-Verlag 1592 (1999), pp. 106{121.

[6] I.B. Damg�ard. Practical and provably secure release of a secret and exchange

of signatures, Advances in Cryptology: Proceedings of EUROCRYPT 93 (T.

Helleseth, ed.), Lecture Notes in Computer Science, Springer-Verlag, 765 (1994),

pp. 201{217.

[7] Z. Galil, S. Haber and M. Yung. A private interactive test of a boolean predicate

and minimum-knowledge public-key cryptosystems, 26th FOCS, 1985, pp. 360{

371.

[8] R. Gennaro, D. Miccianicio and T. Rabin. An e�cient non-interactive statis-

tical zero-knowledge proof system for quasi-safe prime products, In 5th ACM

Conference on Computer and Communications Security, October 1998.

[9] J. van de Graaf and R. Peralta. A simple and secure way to show the validity

of your public key, Advances in Cryptology | Proceedings of CRYPTO 87 (E.

Pomerance, ed.), Lecture Notes in Computer Science, Springer-Verlag 293 (1988),

pp. 128{134.

[10] ISO/IEC 9798-3. \Information technology { Security techniques { Entity au-

thentication mechanisms { Part 3: Entity authentication using a public-key al-

gorithm", International Organization for Standardization, Geneva, Switzerland,

1993 (�rst edition).

[11] E. Kranakis. Primality and Cryptography, Wiley-Teubner Series in Computer

Science, John Wiley & Sons, 1986.

[12] M. Liskov and R.D. Silverman. A statistical limited-knowledge proof

for secure RSA keys, IEEE P1363 Research Contributions, Available at

http://grouper.ieee.org/groups/1363/contributions/ifkeyval.ps

19

[13] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone. Handbook of Applied Cryp-

tography, CRC Press, 1997.

[14] S. Micali. Fair public key cryptosystems, Advances in Cryptology | Proceedings

of CRYPTO 92 (E.F. Brickell, ed.) Lecture Notes in Computer Science Springer-

Verlag 740 (1993), pp. 113{138.

[15] R.L. Rivest, A. Shamir and L.M. Adleman. A method for obtaining digital

signatures and public-key cryptosystems, Communications of the ACM v.21,

n.2, 1978, pp. 120{126.

[16] R. Solovay and V. Strassen. A fast Monte-Carlo test for primality, SIAM J.

Comput, vol. 6, no. 1, March 1977, pp. 84{85.

20

