(ﬁ/” HEWLETT®

PACKARD

From LOCO-I to the
JPEG-LS Standard

Marcelo J. Weinberger, Gadiel Seroussi
Computer Systems Laboratory

HP Laboratories Palo Alto

HPL-1999-3

January, 1999

E-mail: [marcelo,seroussi]@hpl.hp.com

lossless image LOCO-I (LOw COmplexity LOssless COmpression for
compression, Images) is the algorithm at the core of the new ISO/ITU
standards standard for lossless and near-lossless compression of

continuous-tone images, JPEG-LS. The algorithm,
presented at DCC'96, was conceived as a
“‘fow complexity projection” of the universal context
modeling paradigm, matching its modeling unit to a
simple coding unit based on Golomb codes. The
JPEG-LS standard evolved after successive
refinements of the core algorithm. This evolution, and
the main algorithmic components of JPEG-LS are
described In this paper. JPEG-LS attains compression
ratios similar or superior to those obtained with
state-of-the-art schemes based on arithmetic coding.
Moreover, it is within a few percentage points of the
best available compression ratios, at a complexity level
estimated at an order of magnitude lower.

Internal Accession Date Only

o Copyright Hewlett-Packard Company 1999

1 Introduction

LOCO-I (LOw COmplexity LOssless COmpression for Images) is the algorithm at the core of the
new ISO/ITU standard for lossless and near-lossless compression of continuous-tone images, JPEG-
LS [1]. The algorithm was introduced in [2], and the standard evolved after successive refinements
[3, 4, 5, 6, 7]. In this paper, we present a full description of the main algorithmic components of
JPEG-LS.

Lossless data compression schemes often consist of two distinct and independent components:
modeling and coding. The conceptual separation between these components [8] was made possible
by the invention of the arithmetic codes [9], which can realize any probability assignment dictated
by the model, to a preset precision. These two milestones in the development of lossless data
compression allowed researchers to view the problem merely as one of probability assignment,
concentrating on the design of imaginative models for specific applications (e.g., image compression)
with the goal of improving on compression ratios. Optimization of the sequential probability
assignment process for images, inspired on the ideas of universal modeling, is analyzed in [10], where
a relatively high complexity scheme is presented as a way to demonstrate these ideas. Rather than
pursuing this optimization, the main objective driving the design of LOCO-I was to systematically
“project” the image modeling principles outlined in [10] and further developed in [11], into a
low complexity plane, both from a modeling and coding perspective. A key challenge in this
process is that the above separation between modeling and coding becomes less clean under the
low complexity coding constraint. This is because the use of a generic arithmetic coder, which
enables the most general models, is ruled out in many low complexity applications, especially for
software implementations.

While [10] represented the best published compression results at the time (at the cost of high
complexity), it could be argued that the improvement over the state of the art (e.g., variants of
the Sunset algorithm [12, 13]), was scant. The research leading to the CALIC algorithm [14],
conducted in parallel to the development of LOCO-I, seems to confirm a pattern of diminishing
returns. CALIC avoids some of the optimizations performed in [10], but by tuning the model more
carefully to the image compression application, some compression gains are obtained. Yet, the im-
provement is not dramatic, even for the most complex version of the algorithm [15]. More recently,
the same observation applies to the TMW algorithm [16]. Actually, in many applications, a drastic

complexity reduction can have more practical impact than a modest increase in compression. This

observation suggested that judicious modeling, which seemed to be reaching a point of diminishing
returns in terms of compression ratios, should rather be applied to obtain competitive compression
at significantly lower complexity levels. Thus, the challenge for LOCO-I was to bridge the (signif-
icant) compression gap between simplicity-driven schemes (e.g., the Huffman mode of the lossless
JPEG standard [17]), and the more complex ones.

The FELICS algorithm [18] can be considered as a first step in bridging the above gap. While
maintaining the complexity level of FELICS, LOCO-I attains significantly better compression ratios,
similar or superior to those obtained with state-of-the art schemes based on arithmetic coding, but
at a fraction of the complexity. In fact, as shown in [2, 19], LOCO-I performs within a few percentage
points of the best available compression ratios (given by CALIC), at a complexity level estimated
at about an order of magnitude lower.

The remainder of this paper is organized as follows. Section 2 presents a detailed description of
the basic algorithm behind JPEG-LS, culminating with a summary of all the steps of the algorithm.
While the modeling considerations discussed in [2] are omitted (the reader is referred to [19] for an
in depth discussion), some basic elements of LOCO-I are revisited for the sake of completeness. A
more detailed description is reserved to JPEG-LS components that are new or are not discussed in
detail in [2]. A lossy mode of operation, termed “near-lossless,” is discussed in Section 3. Section 4
lists various features in the standard, including the treatment of multi-component (color) images.
Section 5 presents a variant of LOCO-I, based on arithmetic coding, adopted for a prospective ex-
tension of the baseline JPEG-LS standard. In Section 6, compression results are reported, including

measured data throughput for a software implementation.

2 Detailed description of JPEG-LS
The modeling in LOCO-I/JPEG-LS follows the structure pioneered by the Sunset algorithm [12],
including;:
a. Prediction of a value ;41 for the next sample x;11 based on a finite subset (a causal template)
of the past data 2! = 129 -+ 24 (in the sequel, time indexes reflect a raster-scan order).

b. Determination of a context in which x;41 occurs (the context is a function of a causal tem-

plate).

c. Choice of a probabilistic model for the prediction residual ;41 2 ZTy+1 — Ty41, conditioned on

the context of x;11.

context

image prediction v pred. errors,
clbla | samples errors Context statistics _: | Golomb
Modeler "] Coder
alx .| Fixed 1
\ Gradients Predictor
@[l Adaptive
Flat "|Correction
. Region?| : T Predictor y
image : regular compresse:
samples p. regular 8 4Lf bitstream
mode run image run lengths, run'§ mode
samples | Run statistics | Run
Counter "] Coder
Modeler Coder

Figure 1: JPEG-LS: Block Diagram

The overall simplicity of LOCO-I/JPEG-LS can be mainly attributed to its success in matching
the complexity of the modeling and coding units, combining simplicity with the compression poten-
tial of context models, thus “enjoying the best of both worlds.” The main blocks of the algorithm
are depicted in Figure 1. The shaded area in the image icon at the left of the figure represents the

scanned past sequence

, on which prediction and context modeling are based, while the black dot
represents the sample currently encoded. The switches labeled mode select operation in “regular”
or “run” mode, as determined from ! by a simple region “flatness” criterion (see Section 2.7). The
causal template for JPEG-LS is also depicted in Figure 1, where x denotes the current sample, and
a, b, ¢, and d, are neighboring samples (both the value and the location) in the relative positions

shown in the figure,! where the dependence on the time index ¢ is omitted. By using the template

of Figure 1, JPEG-LS limits its image buffering requirement to one scan line.

2.1 Predictor
In LOCO-I/JPEG-LS, the predictor consists of a fixed and an adaptive component. The fixed

component incorporates prior knowledge on the structure of images to be compressed (thus saving
unnecessary “model learning” costs [20, 11]) through a rudimentary edge detecting capability.
Specifically, it guesses:))
min(a, b) if ¢ > max(a, b)
Zuep = max(a, b) if ¢ < min(a, b) (1)
a+b—c otherwise.

Combining interpretations in [2] and [21], the predictor (1) was termed “median edge detector”

(MED) during the standardization process.

!The causal template in [2] includes an additional sample, e, West of a. This location was discarded in the course
of the standardization process as its contribution did not justify the additional context storage required [5].

The adaptive component is limited to an integer additive term, analogous to an affine term in
the adaptive predictor of [10]. It effects a context-dependent translation (“bias cancellation”), and
can be interpreted as part of the estimation procedure for the probabilistic model for the prediction

residuals (see Section 2.4).

2.2 Parameterization

Reducing the number of parameters is a key objective in a context modeling scheme, to avoid
“context dilution.” The total number of parameters in the model depends on the number of contexts
and on the number of free parameters defining the coding distribution at each context. The latter
is reduced to two in LOCO-I/JPEG-LS by assuming a two-sided geometric distribution (TSGD)
model for the prediction residuals. According to this parametric class, the marginal probability

mass function (PMF) of a prediction residual, conditioned on the context, is given by
Pgp)(e) = C(0,p)01T7, e =0,41,42, .. @)

Here, C'(0, p) is a normalization factor, 6 € (0, 1) controls the two-sided exponential decay rate, and
0 < p < 1is a shift parameter which reflects a DC offset typically present in the prediction error
signal of context-based schemes. This offset is due to integer-value constraints and possible bias in
the prediction step. The shift parameter is also useful for better capturing the two adjacent modes
often observed in empirical context-dependent histograms of prediction errors. This is achieved by
letting p take non-integer values. Moreover, the limited range of p, which corresponds to PMF
modes at 0 and —1, assumes that the adaptive term of the predictor is tuned to produce average
residuals between 0 and —1 (see Section 2.4). The choice of this interval is matched to the codes
presented in Section 2.5. Therefore, the fixed prediction offset is broken into an integer part (or
“bias”), canceled by the adaptive part of the predictor, and a (negative) fractional part (or shift).
The TSGD centered at zero corresponds to p = 0, and, when p = %, Pg,p) is a bi-modal distribution
with equal peaks at —1 and 0. Notice that the parameters of the PMF are context-dependent, even
though this fact is omitted in our notation. Coding of TSGDs is extensively studied in [22].

The image alphabet, assumed infinite in (2), has a finite size « in practice. For a given prediction
T, € takes on values in the range —z < ¢ < a—z. Since % is known to the decoder, the actual value
of the prediction residual can be reduced, modulo «, to a value between — |« /2| and [«/2]—1. This
is done in LOCO-I/JPEG-LS, thus remapping large prediction residuals to small ones. Merging
the “tails” of peaked distributions with their central part does not significantly affect the two-

sided geometric behavior. Since « is typically quite large, the analysis is still based on the infinite

alphabet model (2).

2.3 Context model

The context that conditions the encoding of the prediction residual in JPEG-LS is built out of
local gradients [10, 2|. Specifically, the differences g1 = d — b, g2 = b — ¢, and g3 = ¢ — a are
quantized into up to 9 connected regions by a quantizer x(-). To preserve symmetry, the regions are
indexed —4,---,—1,0,1,---,4, with k(g) = —r(—g), for a total of 729 different quantized context
triplets. For a prediction residual ¢;y1, if the first non-zero element of a triplet Cy = [q1, g2, g3],
where ¢; = k(g;), j=1,2,3, is negative, the encoded value is —¢;41, using context —C;. This is
anticipated by the decoder, which flips the sign if necessary to obtain the original error value.
Merging contexts of “opposite signs” results in a total of 365 contexts. For an 8-bit per pixel
alphabet, the default quantization regions are {0}, £{1,2}, £{3,4,5,6}, £{7,8,---,20}, £{e|e >
21 }. However, the boundaries are adjustable parameters, except that the central region must be
{0}. In particular, a suitable choice can collapse quantization regions, resulting in a smaller effective
number of contexts, with applications to the compression of small images. For medium-sized to
large images, in turn, more contexts could be afforded without incurring an excessive model cost.
However, the compression improvement is marginal and does not justify the increase in resources [5].
Through appropriate scaling, default boundary values are also provided for general alphabet sizes
a [4, 1].

2.4 Bias cancellation

As mentioned in Section 2.1, the adaptive part of the predictor is context-based and it is used to
“cancel” the integer part of the fixed prediction offset. As a result, the distributions in (2) present
a context-dependent shift p, 0 < p < 1. In principle, bias cancellation could be performed by
keeping, for each context, a count IV of context occurrences, and a cumulative sum D of prediction
errors incurred so far in the context by the fixed predictor (1). Then, a correction value C’ could
be computed as the rounded average C’ = [D/N] and added to the fixed prediction Zygp, to
offset the prediction bias. This approach, however, has two main problems. First, it requires a
general division, in opposition to the low complexity requirements of LOCO-1/JPEG-LS. Second,
it is very sensitive to the influence of “outliers:” atypical large errors can affect future values of C’
until it returns to its typical value, which is quite stable. In LOCO-1/JPEG-LS, the two problems
are solved by approximating the quotient C’ with a stored correction value C', which is initialized

to zero and adjusted by at most one unit per occurrence of the context. An accumulation of

corrected prediction residuals, B, is also kept, with initial value zero, and is “forced” to remain in
the interval (—N,0]. The two variables, a set of which is kept per context, are updated according

to the division-free procedure shown in Figure 2 (in C-language style). This procedure will tend to

B =B +¢ /* accumulate prediction residual */
N=N+1; /* update occurrence counter */
/* update correction value and shift statistics */
if (B<-N) {

C=C-1,B=B+N;

if (BL<-N) B=-N+1;
}
else if (B>0) {

C=C+1; B=B—N;

if (B>0) B=0;

Figure 2: Bias computation procedure

produce average prediction residuals in the interval (—1,0]. To reduce storage requirements, C' is
not incremented (resp. decremented) over 127 (resp. under —128). Notice that —B/N approximates

the shift parameter p.

2.5 Coding

In a low complexity framework, the choice of a TSGD model is of paramount importance, since it
leads to the surprisingly simple coding unit used in LOCO-I/JPEG-LS. The recent characterization
of the family of optimal prefix codes for TSGDs [22] provides insight into the coding procedure,
which is derived by reduction of the above family using techniques presented in [23]. As a result,
adaptive symbol-by-symbol coding is possible at very low complexity, thus avoiding the use of the
more complex arithmetic coders. The codes of [22] are based on Golomb codes [24], whose structure
enables simple calculation of the code words without recourse to the storage of code tables, as would

be the case with unstructured, generic Huffman codes.?

2The use of Golomb codes in conjunction with context modeling was pioneered in the FELICS algorithm [18].

2.5.1 Golomb codes and optimal prefix codes for the TSGD

Given a positive integer parameter m, the mth order Golomb code G, encodes an integer y > 0
in two parts: a unary representation of |y/m|, and a modified binary representation of y modm.
Golomb codes are optimal [25] for one-sided geometric distributions (OSGDs) of the nonnegative
integers, i.e. distributions of the form (1—6)#Y, where 0 < § < 1. The special case m = 2¥ leads
to particularly simple encoding/decoding procedures. We refer to codes Gor as Golomb-power-of-2
(GPO2) codes, and to k also as a Golomb parameter, the distinction from 2 being clear from the
context.

In [22], the TSGD parameter space (#,p) is partitioned, and a different optimal prefix code
corresponds to each class in the partition (p < % is assumed, since the case p > % can be reduced
to the former by means of the reflection/shift transformation ¢ — —(e+ 1)). Classes are associated
with one of the following three one-to-one mappings onto the nonnegative integers. One mapping
is applied to the integer ¢ to be encoded, and is followed by a Golomb code; the other two are
applied to |¢|, followed by a Golomb code and a sign bit whenever € # 0. For each type of code, the
classes are also indexed with a positive integer ¢, given by a many-to-one function of and p. The
parameter of the Golomb code used follows from the corresponding value of £. The first mapping

related to the optimal codes in [22] is given by
M (e) = 2le] — u(e), (3)

where u(€) = 1if € < 0, or 0 otherwise. This mapping gives the index of an integer in the interleaved
sequence 0,—1,1,—2,2,... It was first used by Rice in [26] to encode TSGDs centered at zero, by
applying a GPO2 code to M(¢). In case p < 1/2, M (¢€) orders prediction residuals by probability.

The corresponding mapping for p > 3 is M’(€) = M(—e—1). For —|a/2] < € < [a/2]-1, the
values M (¢) are in the range 0 < M(¢) < a—1. This is also the range for M’(¢) with even . For

odd a, M’(€) can also take on the value o (but not a—1).

2.5.2 Sequential parameter estimation

The structured family of codes characterized in [22], provides a reasonable alternative for low com-
plexity adaptive coding of TSGDs: Based on the past sequence of prediction residuals € = ejes - - - ¢
encoded at a given context, select a type of code and a value of the code index ¢ sequentially, and
use this code to encode ¢,.11. (Notice that ¢ here indexes occurrences of a given context, thus corre-
sponding to the variable N introduced in Section 2.4.) The decoder makes the same determination,

after decoding the same past sequence. Thus, the coding is done “on the fly,” as with adaptive

arithmetic coders. Such strategy aims at an expected code length that approaches the one that
would be obtained with the best fized code in the family, i.e. the Huffman code for the (unknown)
parameter values.

Yet, the complexity of both the code determination and the encoding procedure would be
beyond the constraints set for JPEG-LS. For that reason, as in [26], LOCO-I/JPEG-LS only uses
the sub-family of GPO2 codes. Furthermore, only codes based on the mappings M(-) and M'(-)
are used. We denote ['x(€) = Gy (M(c)). The mapping M’(+) is relevant only for £ = 0, since
Ik(e) = T'x(—e—1) for every k > 0. Thus, the sequential code selection task in LOCO-1/JPEG-LS
consists of the selection of a Golomb parameter k, and in case k = 0, a mapping M(-) or M'(-).
We further denote I'y(€) = G1(M'(¢)).

In JPEG-LS, this code selection task is accomplished by approximating a sequential ezplicit
minimization of the expected code length for a maximum likelihood estimate of the TSGD param-
eters f and p given ¢!. The minimization, which performs essentially as well as the the best fixed
code from the sub-family, is analyzed in [22], and approximated in [23]; see also [19, Theorem 1].

It is based on the sufficient statistics S; and N; for 6 and p,

t t

Se =2 (leil — uler)), Ne =) ule).

=1 =1

N, is the total number of negative samples in €/, and S; + N; is the accumulated sum of absolute
values.

In JPEG-LS, the explicit minimization is approximated as follows: For each context, the ac-
cumulated sum of magnitudes of prediction residuals, S;+/V;, is maintained in a register A, in
addition to the variables B and N defined in Section 2.4. The following procedure then selects a

code for the prediction residual €;41:

a. Compute k as
k= min{k'|2¥ N > A}. (4)
b. If £ > 0, choose code I'y. If £k =0 and 2B > —N, choose code I'g. Otherwise, choose code

.

The above procedure improves on the one described in [2] by its more accurate approximation
of the optimal selection in the case £ = 0. In software, k can be computed by the C programming

language “one-liner”
for (k=0; (N<<k)<A; k++);

2.5.3 Limited-length Golomb codes

The encoding procedure of Section 2.5 can produce significant expansion for single samples: for
example, with a = 256 and k& = 0, a prediction residual ¢ = —128 would produce 256 output bits, a
32:1 expansion. Moreover, one can create artificial images with long sequences of different contexts,
such that this situation occurs sample after sample, thus causing significant local expansion (this
context pattern is necessary for this situation to arise, as large residuals would otherwise trigger
adaptation of k to a larger value for a particular context). While such worst case sequence is not
likely in practical situations, significant local expansion was observed for some images. This can be
problematic in implementations with limited buffer space for compressed data. Therefore, adopting
a practical trade-off, GPO2 codes are modified in JPEG-LS to limit the code length per sample to
(typically) 43, where 3 2 [log] (hereafter, logarithms are taken to the base 2), e.g. 32 bits for
8 bits/pixel images. The limitation is achieved using a simple technique [7] that avoids a negative
impact on complexity. For a maximum code word length of L. bits, the encoding of an integer

y, 0 <y <, proceeds as in Section 2.5.1 whenever q(y) = |27 %y| satisfies
A
q(y) < Lmax - 6 —-1= Qmax , (5)

where we assume Ly, > 3+ 1. This is by far the most frequent case, adding only one comparison
per encoding. By (4), k < 5—1, so that the total code length after appending & bits is within the
required limit Lyax. Now, if ¢(4) > ¢max, ¢max is encoded in unary, which acts as an “escape” code,

followed by an explicit binary representation of y — 1, using 3 bits.

2.6 Resets

To enhance adaptation to non-stationarity of image statistics, and to limit the storage requirements
per context, LOCO-I/JPEG-LS periodically resets the variables N, A, and B. Specifically, in
each context these variables are halved (rounding down to nearest integer) each time N attains a
predetermined threshold Ny. In this way, the immediate past is given a larger weight than the

remote past. Values of Ny between 32 and 256 work well for typical images; the default value in

JPEG-LS is 64.

2.7 Embedded alphabet extension
Symbol-by-symbol (Huffman) coding (as opposed to arithmetic coding) is inefficient for very low
entropy distributions, due to its fundamental limitation of producing at least one code bit per

encoding. This problem is addressed in LOCO-I by embedding an alphabet extension in the model

3Notice that the range for y may include « in case « is odd and the mapping M'(-) is used.

(“run” mode) for “flat regions.” The encoder enters a “run” mode when a “flat region” context
with a = b = ¢ = d is detected. A run of the sample «a is expected, and the run length is encoded.
When the run is broken by a non-matching sample z, the encoder goes into a “run interruption”
state, where the difference e = = —b (with the sample above x) is encoded. Runs can also be broken
by ends of lines, in which case the encoder returns to normal context-based coding. Since all the
decisions for switching in and out of the run mode are based on past samples, the decoder can
reproduce the same decisions without any side information.

The encoding of run lengths in JPEG-LS is also based on Golomb codes, originally proposed in
[24] for such applications. However, an improved adaptation strategy can be derived from viewing
the encoded sequence as binary (‘0’ for a “hit,” ‘1’ for a “miss”). For a positive integer parameter
m, let EG,, denote a variable-to-variable length code defined over the extended binary alphabet
{1,01,001,...,0™ 11,0™}, where 0° denotes a sequence of ¢ zeros. Under EG,,, the extended
symbol 0™ (a successful run of m “hits”) is encoded with a 0, while 0°1, 0 < ¢ < m, is encoded
with a 1 followed by the modified binary representation of . By considering a concatenation of
extended input symbols, it is easy to see that EG,, is equivalent to (G, applied to the run length.
However, E(,, is defined over a finite alphabet, with “hits” and “misses” modeled as independent
and identically distributed (i.i.d.). We will refer to EG,, as an elementary Golomb code of order m.
Variations of these codes were introduced in [27, 28, 29]. They are also studied in [30] in the context
of embedded coding of wavelet coefficients, where insight is provided into their well-known efficiency
for encoding i.i.d. binary sequences over a surprisingly wide range of values of the probability ¢ of
a ‘0.’

When ¢ is unknown a priori, EG,, is superior to G, in that m can be adapted within a run,
based on the current estimate of ¢. The optimal adaptation turns out to be extremely simple if
the the family of codes is reduced, again, to the case where m = 29, while the redundancy remains
very small for the ranges of interest. This approach, termed block-MELCODE, originates in [28, 3]
and was adopted in JPEG-LS. Count-based adaptation strategies for the parameter g are proposed
in [28] and [30]. JPEG-LS uses a pre-defined table to approximate these strategies. A run segment
of length m (i.e., 0™) triggers an index increment, while a “miss” (i.e., 0/1, 0 < ¢ < m) triggers
an index decrement. The index is used to enter the table, which determines how many consecutive

run segments (resp. “misses”) trigger an increment (resp. decrement) of g (see [1]).

10

Main Algorithm

Step 0.

Step 1.
Step 2.
Step 3.
Step 4.

Step 5.
Step 6.
Step 7.
Step 8.
Step 9.
Step 10.

Step 11.

Step 12.
Step 13.

Initialization:

a. Compute Liax = 2(Pmaxt max{8, fOmax}), where fpax = max{2, [loga]}.

b. Initialize the 365 sets of context counters A, B, C, and N as follows: B = C =0, N =1,
A = max{2, | (o + 32)/64]}. Similar initializations are needed for the corresponding variables
in the two run interruption contexts.

c. Initialize to 0 the index Igynx to the run mode adaptation table.

d. Set current sample x to the first sample in the image.

Compute the “local gradients” g1 =d—b, go =b— ¢, and g3 = c — b.

If g1=g2=¢g3=0, go to Run Mode Processing. Otherwise, continue in “regular” mode.

Quantize the local gradients g;, i = 1,2,3 as described in Section 2.3.

Denote the quantized gradients by ¢;, ¢ = 1,2,3. If the first non-zero component of [g1, g2, g3

is negative, reverse all the signs in the triplet and associate a negative sign to it. Otherwise,

associate a positive sign. Map the triplet, on a one-to-one basis, into an index in the range [1, 364]

(context number 0 is reserved to the run mode). Use the index to address the context counters.

Compute the fixed prediction Zyep according to (1).

Correct Zmep by adding (resp. subtracting) the value of C for the context in case the sign associ-

ated to the context is positive (resp. negative). Clamp the corrected value to the range [0, o — 1]

to obtain the corrected prediction z.

Compute the prediction residual € = x — & and, if a negative sign is associated to the context, set

€ — —¢. Reduce € modulo « to a value € in the range [—|a/2], [a/2]—1].

Compute the Golomb parameter k according to (4).

Map € to M (e€) or, if k=0 and 2B < —N, to M'(e).

Golomb-encode the mapped prediction residual using the parameter k and, if necessary, perform

the code word length limitation procedure with maximum length L ..

Update the context counters by adding € to B and |¢| to A, halving A, B, and N in case N = Ny

(reset threshold), and incrementing N.

Update the values of B and C' following the “if-else” statement in Figure 2.

Go to Step 1 to process the next sample.

Run Mode Processing

Step 1.
Step 2.

Step 3.

Step 4.

Read new samples until either x # a or the end of the line is encountered.

Let m = 29 denote the current parameter of the elementary Golomb code. For each run segment
of length m, append a ‘1’ to the output bit stream and increment the index Izyx. If so indicated
by the table, double m.

If the run was interrupted by the end of a line, append ‘1’ to the output bit stream and go to
Step 1 of the main algorithm (Fig. 3). Otherwise, append ‘0’ to the output bit stream followed
by the binary representation of the residual run length using g bits, decrement Izyn, and if so
indicated by the table, half m.

Encode the run interruption sample and go to Step 1 of the Main Algorithm.

Figure 3: JPEG-LS: encoding of a single component.

11

For a run interruption sample x the coded value is € = (z—b) mod . Thus, both the fixed
predictor (1) and the bias cancellation procedure are skipped. Coding is otherwise similar to the
regular sample case. However, conditioning is based on two special contexts, determined according
to whether a = b or a # b. In the former case, we always have ¢ # 0 (since, by definition of run
interruption, z # a). Therefore, the mappings M(-) and M’(-) are modified to take advantage of
this exclusion. Moreover, since the B counter is not used in these contexts (no bias cancellation
is performed), the decision between M (-) and M’(-) is based on the number N; of negative values
occurring in each context. The same reset procedure as in Section 2.6 is used for the corresponding
counters. Also, the length limitation for the Golomb code takes into account the g + 1 bits of the

last coded run segment, thus limiting every code word length to Ly.x—g—1 bits.

2.8 Summary of encoding procedures

Figure 3 summarizes the lossless encoding procedures described in Section 2 for a single component
of an image. The decoding process uses the same basic procedures and follows almost the same
steps in reverse order (see [1] for details). Causal template values falling outside image boundaries

are suitably defined in [1].

3 Near-lossless compression

JPEG-LS offers a lossy mode of operation, termed “near-lossless,” in which every sample value in a
reconstructed image component is guaranteed to differ from the corresponding value in the original
image by up to a preset (small) amount, 6. The basic technique employed for achieving this goal
is the traditional DPCM loop, where the prediction residual (after correction and possible sign
reversion, but before modulo reduction) is quantized into bins of size 2d+1, with reproduction at
the center of the interval. Quantization of a prediction residual € is performed by integer division,

according to i
Q0 = sign(c) | L2
204+1]°
The following aspects of the coding procedure are affected by the quantization step. Context
modeling and prediction are based on reconstructed values, so that the decoder can mimic the
operation of the encoder. In the sequel, the notation a, b, ¢, and d, will be used to refer also to the
reconstructed values of the samples at these positions. The condition for entering the run mode is
relaxed to require that the gradients g;, i = 1,2, 3, satisfy |g;| < J. This relaxed condition reflects
the fact that reconstructed sample differences up to 0 can be the result of quantization errors.

Moreover, once in run mode, the encoder checks for runs within a tolerance of 9, while reproducing

12

the value of the reconstructed sample at a. Consequently, the two run interruption contexts are
determined according to whether |a — b| < § or not. The relaxed condition for the run mode also
determines the central region for quantized gradients, which is |g;| < 0, 4 = 1,2,3. Thus, the size
of the central region is increased by 2J, and the default thresholds for gradient quantization are
scaled accordingly.

The reduction of the quantized prediction residual is done modulo o = |(a +49)/(20 + 1),
into the range [—|a’/2], [@//2]—1]. The reduced value is (losslessly) encoded and recovered at the
decoder, which first multiplies it by 20+1, then adds it to the (corrected) prediction (or subtracts
it, if the sign associated to the context is negative), and reduces it modulo o/(26+1) into the range
[—¢, o'+ (2041)—1-4], finally clamping it into the range [0, «—1|. It can be seen that, after modular
reduction, the recovered value cannot be larger than oo — 1+ §. Thus, before clamping, the decoder
actually produces a value in the range [0, a« — 1+ 0], which is precisely the range of possible sample
values with an error tolerance of +4.

As for encoding, o replaces « in the definition of the limited-length Golomb coding procedure.
Since A accumulates quantized error magnitudes, k < [loga’]. On the other hand, B accumulates
the encoded value, multiplied by 256+1. The alternative mapping M’(+) is not used.

Although the initial goal of this mode was to guarantee a bounded error for applications with
legal implications (e.g., medical images), for small values of J its visual and SNR performance is

often superior to that of traditional transform coding techniques.

4 Other features of the standard

Bit stream. The compressed data format for JPEG-LS closely follows the one specified for
JPEG [17]. The same high level syntax applies, with the bit stream organized into frames, scans,
and restart intervals within a scan, markers specifying the various structural parts, and marker
segments specifying the various parameters. New marker assignments are compatible with [17]. One
difference, however, is the existence of default values for many of the JPEG-LS coding parameters
(e.g., gradient quantization thresholds, reset threshold), with marker segments used to override
these values. In addition, the method for easy detection of marker segments differs from the one
in [17] (see [1, 19]).

Color images. For encoding color images, JPEG-LS supports combinations of single-
component and multi-component scans. Section 2 describes the encoding process for a single-

component scan. For multi-component scans, a single set of context counters (namely, A, B, C,

13

and N for regular mode contexts) is used across all components in the scan. Prediction and con-
text determination are performed as in the single component case, and are component independent.
Thus, the use of possible correlation between color planes (e.g., in an RGB representation) is lim-
ited to sharing statistics, collected from all planes. A more comprehensive exploitation of this
correlation is beyond the specified scope of JPEG-LS.

In JPEG-LS, the data in a multi-component scan can be interleaved either by lines (line-
interleaved mode) or by samples (sample-interleaved mode). In line-interleaved mode, the run
mode adaptation is component-dependent. In sample-interleaved mode, the runs are common to
all the components in the scan, with run mode selected only when the corresponding condition
is satisfied for all the components. Likewise, a run is interrupted whenever so dictated by any
of the components. Thus, a single run length, common to all components, is encoded. This
approach is convenient for images in which runs tend to be synchronized between components (e.g.,
synthetic images), but should be avoided in cases where run statistics differ significantly across
components, since a component may systematically cause run interruptions for another component
with otherwise long runs (e.g. the run-prone K component in CMYK representation). Since one
sample from each component is processed in turn, all components in a scan must have the same
dimensions.

Palletized images. The JPEG-LS syntax also provides tools for encoding palletized images in
index space (i.e., as an array of indices to a palette table), rather than in the original color space.
To this end, the decoding process may be followed by a so-called sample-mapping procedure, which
maps each decoded sample value (e.g., an 8-bit index) to a reconstructed sample value (e.g., an
RGB triplet) by means of mapping tables. Appropriate syntax is defined to allow embedding of
these tables in the JPEG-LS bit stream.

Many of the assumptions for the JPEG-LS model, targeted at continuous-tone images, do not
hold when compressing an array of indices. However, an appropriate reordering of the palette table
can sometimes alleviate this deficiency (e.g., the low complexity luminance-order heuristic [31]).
JPEG-LS does not specify a particular palette ordering. Notice also that JPEG-LS was not de-
signed, and might not give optimal performance, for images that have been palletized through
dithering.

Sample-mapping is also useful for images with “sparse histograms.” Such images contain only

a subset of the possible sample values, and the fixed predictor (1) would tend to concentrate the

14

value of the prediction residuals into a reduced set. However, prediction correction tends to spread
these values over the entire range, and even if that were not the case, the probability assignment of
a TSGD model would not take advantage of the reduced alphabet. Assuming prior knowledge of
the histogram sparseness, this problem is addressed by mapping the sparse samples to a contiguous

set.

5 LOCO-A: an arithmetic coding extension

In this section, we present an arithmetic coding extension of LOCO-I, termed LOCO-A [32], which
has been adopted for a prospective extension of the baseline JPEG-LS standard (JPEG-LS Part 2).
The goal of this extension is to address the basic limitations that the baseline presents when dealing
with very compressible images (e.g., computer graphics, near-lossless mode with 6 > 3), due to the
symbol-by-symbol coding approach, or with images that are far from being continuous-tone or have
sparse histograms. In addition, LOCO-A closes, in general, most of the (small) compression gap
between JPEG-LS and the best published results (see Section 6), while still being considerably
simpler than these higher complexity alternatives.

LOCO-A is a natural extension of the JPEG-LS baseline, requiring the same buffering capa-
bility. The context model and most of the prediction are identical to those in LOCO-I. The basic
difference follows from an alternative interpretation of the modeling approach in LOCO-1.* Under
this interpretation, the use of only [loga]+1 different prefix codes to encode context-dependent
distributions of prediction residuals, is viewed as a (dynamic) way of clustering conditioning con-
texts. The clusters result from the use of a small family of codes, as opposed to a scheme based on
arithmetic coding, which would use different arithmetic codes for different distributions. Thus, this
aspect of LOCO-I can also be viewed as a realization of the basic paradigm proposed and analyzed
in [11] and also used in CALIC [14], in which a multiplicity of predicting contexts is clustered into
a few conditioning states. This interpretation suggests that conditioning states can be obtained by
clustering contexts based on the value of the Golomb parameter k (thus grouping contexts with
similar conditional distributions). The resulting state-conditioned distributions can be arithmetic
encoded, therefore relaxing the TSGD assumption, which is used only as a means to form the states.
The relaxation of the TSGD assumption is possible due to the small number of states, [loga|+1,
which enables the modeling of more parameters per state. In LOCO-A, this idea is generalized to

create higher resolution clusters based on the average magnitude A/N of prediction residuals (as

4Xjaolin Wu, private communication.

15

k is itself a function of A/N). Since, by definition, each cluster would include contexts with very
similar conditional distributions, this measure of activity level can be seen as a refinement of the
“error energy” used in CALIC [14], and a further application of the paradigm of [11]. Activity
levels are also used in the ALCM algorithm [33].

Modeling in LOCO-A proceeds as in LOCO-I, collecting the same statistics at each context (with
the “run” condition defining a separate encoding state). Clustering is accomplished by modifying
(4) as follows:

k = min{k’ | 282N > A},
For 8 bits/pixel images, 12 encoding states are defined: k =0,k =1, ---, k=9, k > 9, and the
run state.

Bias cancellation is performed as in LOCO-I, except that the TSGDs are centered in the interval
(—1/2, 1/2], instead of (—1, 0] (as the coding method that justified the negative fractional shift in
LOCO-I is no longer used). In addition, regardless of the computed correction value, the corrected
prediction is incremented or decremented in the direction of Zygp until it is either a value that
has already occurred in the image, or Zygp. This modification alleviates the unwanted effects
on images with sparse histograms, while having virtually no effect on “regular” images. No bias
cancellation is done in the run state. A “sign flip” borrowed from the CALIC algorithm [14] is
performed: if the bias count B is positive, then the sign of the error is flipped. In this way, when
distributions that are similar in shape but have opposite biases are merged, the statistics are added
“in phase.” Finally, prediction errors are arithmetic-coded conditioned on one of the 12 encoding
states. Binary arithmetic coding is performed, following the Golomb-based binarization strategy
of [33]. For a state with index k, we choose the corresponding binarization tree as the Golomb tree

for the parameter 2/¥/?1 (the run state also uses k = 0).

6 Results

Extensive comparisons of the compression performance of LOCO-I/JPEG-LS with that of other
relevant lossless image compression schemes are presented in [2] and [19], where it is shown that
LOCO-I/JPEG-LS significantly outperforms other schemes of comparable complexity (e.g., PNG,
FELICS, JPEG-Huffman), and it attains compression ratios similar or superior to those of higher
complexity schemes based on arithmetic coding (e.g., Sunset CB9 [13]|, JPEG-Arithmetic). LOCO-
I/JPEG-LS is, on the average, within a few percentage points of the best available compression

ratios (given by CALIC [14]), at a complexity level estimated at about an order of magnitude lower.

16

Near-lossless
Image LOCO-I | JPEG-LS +1 | +3 CALIC | LOCO-A
bike 3.59 3.63 2.39 1.57 3.50 3.54
cafe 4.80 4.83 3.41 2.40 4.69 4.75
woman 4.17 4.20 2.75 1.82 4.05 4.11
tools 5.07 5.08 3.68 2.65 4.95 5.01
bike3 4.37 4.38 3.10 2.17 4.23 4.33
cats 2.59 2.61 1.84 1.28 2.51 2.54
water 1.79 1.81 1.07 0.61 1.74 1.75
finger 5.63 5.66 4.03 2.89 5.47 5.50
us 2.67 2.63 1.64 1.14 2.34 2.45
chart 1.33 1.32 0.86 0.56 1.28 1.18
chart_s 2.74 2.77 1.85 1.25 2.66 2.65
compoundl 1.30 1.27 0.90 0.67 1.24 1.21
compound?2 1.35 1.33 0.94 0.70 1.24 1.25
aerial2 4.01 4.11 2.87 2.03 3.83 3.58
faxballs 0.97 0.90 0.68 0.47 0.75 0.64
gold 3.92 3.91 2.46 1.52 3.83 3.85
hotel 3.78 3.80 2.36 1.45 3.71 3.72
Average 3.18 3.19 2.17 1.48 3.06 3.06

Table 1: Compression results on JPEG-LS benchmark set (in bits/pixel averaged over color planes)

The results presented in this section highlight aspects not covered in [2], namely, the (slight)
change in performance between LOCO-I and JPEG-LS, compression in near-lossless mode, the
performance of the LOCO-A extension, and how the latter compares to CALIC [14]. The results
are presented in Table 1. The rows in the table correspond to the subset of 8 bits/pixel images
from the benchmark set provided in the Call for Contributions leading to JPEG-LS. This is a
rich set with a wide variety of images, including natural images, compound documents, aerial
photographs, scanned and computer generated images. Images were compressed in component-by-
component mode with compression ratios given in bits/pixel averaged over color planes. Except
for the columns labeled “near-lossless,” results are for lossless compression.

The discrepancy between the LOCO-I and JPEG-LS columns is due to the main differences
between the algorithms, namely: use of a fifth context pixel in LOCO-I, limitation of Golomb code
word lengths in JPEG-LS, different coding methods in run mode, and overhead in JPEG-LS due
to data format (e.g., marker segments, bit stuffing, etc.). The comparison between LOCO-A and
CALIC shows that the latter scheme maintains a slight advantage (1-2%) for “smooth” images,
while LOCO-A shows a significant advantage for the classes of images it targets: sparse histograms
(“aerial2”) and computer-generated (“faxballs”). Moreover, LOCO-A performs as well as CALIC
on compound documents without using a separate binary mode [14]. The average compression

ratios on the benchmark set for both schemes set end up being equal.

17

The performance of JPEG-LS on the images of Table 1 is very similar when run in line-
interleaved mode, with a maximum compression ratio deterioration of 1% on “gold” and “hotel,”
and a maximum improvement of 1% on “compoundl.” In sample-interleaved mode, however, the
deterioration is generally more significant (3 to 5% in many cases), but with a 3 to 4% improvement
on compound documents.

A C-language implementation of LOCO-I/JPEG-LS benchmarks, on a 300MHz Pentium® II
machine, at data rates from about 1.5 MBytes/s for natural images to about 6 MBytes/s for
compound documents and computer graphics images. The latter speed-up is due in great part to
the frequent use of the run mode. LOCO-I/JPEG-LS decompression is about 10% slower than
compression, making it a fairly symmetric system. Executables for JPEG-LS in various platforms
are available at the web site <http://www.hpl.hp.com/loco/>. The organizations holding patents
covering aspects of JPEG-LS have agreed to allow payment-free licensing of these patents for use

in the standard.

Acknowledgments. Many thanks to H. Kajiwara, G. Langdon, D. Lee, N. Memon, F. Ono, E.
Ordentlich, M. Rabbani, D. Speck, I. Ueno, X. Wu, and T. Yoshida for useful discussions.

References

[1] ISO/IEC JTC1/SC29 WG1 (JPEG/JBIG), “Information technology - Lossless and near-lossless com-
pression of continuous-tone still images,” 1998. Final Draft International Standard FDIS14495-1 (JPEG-
LS). Also, ITU Recommendation T.87.

[2] M. J. Weinberger, G. Seroussi, and G. Sapiro, “LOCO-I: A low complexity, context-based, lossless image
compression algorithm,” in Proc. DCC’96, (Snowbird, Utah, USA), pp. 140-149, Mar. 1996.

[3] I. Ueno and F. Ono, “Proposed modification of LOCO-I for its improvement of the performance.”
ISO/IEC JTC1/SC29/WG1 document N297, Feb. 1996.

[4] M. J. Weinberger, G. Seroussi, and G. Sapiro, “Fine-tuning the baseline.” ISO/IEC JTC1/SC29/WG1
document N341, June 1996.

[5] M. J. Weinberger, G. Seroussi, and G. Sapiro, “Effects of resets and number of contexts on the baseline.”
ISO/IEC JTC1/SC29/WG1 document N386, June 1996.

[6] M. J. Weinberger, G. Seroussi, and G. Sapiro, “Palettes and sample mapping in JPEG-LS.” ISO/IEC
JTC1/SC29/WG1 document N412, Nov. 1996.

[7] M. J. Weinberger, G. Seroussi, G. Sapiro, and E. Ordentlich, “JPEG-LS with limited-length code
words.” ISO/IEC JTC1/SC29/WG1 document N538, July 1997.

[8] J. Rissanen and G. G. Langdon, Jr., “Universal modeling and coding,” IEEE Trans. Inform. Theory,
vol. IT-27, pp. 12-23, Jan. 1981.

[9] J. Rissanen, “Generalized Kraft inequality and arithmetic coding,” IBM Ji. Res. Develop., vol. 20 (3),
pp. 198-203, May 1976.

[10] M. J. Weinberger, J. Rissanen, and R. Arps, “Applications of universal context modeling to lossless
compression of gray-scale images,” IEEE Trans. Image Processing, vol. 5, pp. 575-586, Apr. 1996.

18

[11]

[12]

[13]

M. J. Weinberger and G. Seroussi, “Sequential prediction and ranking in universal context modeling
and data compression,” IEFFE Trans. Inform. Theory, vol. 43, pp. 1697-1706, Sept. 1997. Preliminary
version presented at the 1994 IEEE Intern’l Symp. on Inform. Theory, Trondheim, Norway, July 1994.
S. Todd, G. G. Langdon, Jr., and J. Rissanen, “Parameter reduction and context selection for compres-
sion of the gray-scale images,” IBM JI. Res. Develop., vol. 29 (2), pp. 188-193, Mar. 1985.

G. G. Langdon, Jr. and C. A. Haidinyak, “Experiments with lossless and virtually lossless image com-
pression algorithms,” in Proc. SPIE, vol. 2418, pp. 21-27, Feb. 1995.

X. Wu and N. D. Memon, “Context-based, adaptive, lossless image coding,” IEEE Trans. Commun.,
vol. 45 (4), pp. 437-444, Apr. 1997.

X. Wu, “Efficient lossless compression of continuous-tone images via context selection and quantization,”
IEEFE Trans. Image Processing, vol. IP-6, pp. 656664, May 1997.

B. Meyer and P. Tischer, “TMW — A new method for lossless image compression,” in Proc. of the 1997
International Picture Coding Symposium (PCS97), (Berlin, Germany), Sept. 1997.

ISO/IEC 10918-1, ITU T.81, “Digital compression and coding of continuous tone still images - Require-
ments and guidelines,” Sept. 1993.

P. G. Howard and J. S. Vitter, “Fast and efficient lossless image compression,” in Proc. DCC"93,
(Snowbird, Utah, USA), pp. 351-360, Mar. 1993.

M. J. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless image compression algorithm:
Principles and standardization into JPEG-LS,” 1998. Submitted to IEEE Trans. Image Proc. Available
as Hewlett-Packard Laboratories Technical Report.

J. Rissanen, Stochastic Complexity in Statistical Inquiry. New Jersey, London: World Scientific, 1989.
S. A. Martucci, “Reversible compression of HDTV images using median adaptive prediction and arith-
metic coding,” in Proc. IEEE Intern’l Symp. on Clircuits and Syst., pp. 1310-1313, IEEE Press, 1990.
N. Merhav, G. Seroussi, and M. J. Weinberger, “Lossless compression for sources with two-sided geo-
metric distributions,” 1998. Submitted to IEEE Trans. Inform. Theory. Available as Technical Report
No. HPL-94-111, Apr. 1998, Hewlett-Packard Laboratories.

G. Seroussi and M. J. Weinberger, “On adaptive strategies for an extended family of Golomb-type
codes,” in Proc. DCC’97, (Snowbird, Utah, USA), pp. 131-140, Mar. 1997.

S. W. Golomb, “Run-length encodings,” IEEFE Trans. Inform. Theory, vol. IT-12, pp. 399-401, 1966.
R. Gallager and D. V. Voorhis, “Optimal source codes for geometrically distributed integer alphabets,”
IEEFE Trans. Inform. Theory, vol. IT-21, pp. 228-230, Mar. 1975.

R. F. Rice, “Some practical universal noiseless coding techniques - parts I-III1,” Tech. Rep. JPL-79-22,
JPL-83-17, and JPL-91-3, Jet Propulsion Laboratory, Pasadena, CA, Mar. 1979, Mar. 1983, Nov. 1991.
J. Teuhola, “A compression method for clustered bit-vectors,” Information Processing Letters, vol. 7,
pp. 308-311, Oct. 1978.

R. Ohnishi, Y. Ueno, and F. Ono, “The efficient coding scheme for binary sources,” IECE of Japan,
vol. 60-A, pp. 1114-1121, Dec. 1977. (In Japanese).

G. G. Langdon, Jr., “An adaptive run-length coding algorithm,” IBM Technical Disclosure Bulletin,
vol. 26, pp. 3783-3785, Dec. 1983.

E. Ordentlich, M. J. Weinberger, and G. Seroussi, “A low complexity modeling approach for embedded
coding of wavelet coefficients,” in Proc. DC(C’98, (Snowbird, Utah, USA), pp. 408—417, Mar. 1998.

A. Zaccarin and B. Liu, “A novel approach for coding color quantized images,” IEEE Trans. Image
Processing, vol. IP-2, pp. 442-453, Oct. 1993.

M. J. Weinberger, G. Seroussi, and G. Sapiro, “LOCO-A: an arithmetic coding extension of LOCO-1.”
ISO/IEC JTC1/SC29/WG1 document N342, June 1996.

D. Speck, “Activity level classification model (ALCM).” A proposal submitted in response to the Call
for Contributions for ISO/IEC JTC 1.29.12, 1995.

19

