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SYMBOLIC DYNAMICS IN

MATHEMATICS, PHYSICS, AND ENGINEERING

NICHOLAS B. TUFILLARO

Abstract. I discuss several applications of symbolic dynamics and topological analysis to prob-

lems in mathematics, physics, and engineering. These are notes based on a talk presented on Sep-

tember 26, 1997 at the Institute for Mathematics and its Applications (IMA http://www.ima.umn.edu)

as part of their Industrial Problems Seminar. The IMA is located in the Mathematics Department

at the University of Minnesota.

1. Introduction

The mathematical aspects of this talk cover several topics, including kneading theory, horseshoes,
and braid analysis. I �rst look at standard examples from the nonlinear dynamics liteature which I
use to illustrate the rudiments of symbolic dynamics. Speci�cally, I start by examining the dynamics
of the quadratic map (and other unimodal maps), and the Rossler system of di�erential equations.
Next, I turn to some examples from physics which also illustrate unimodal behavior such as the
motions of a vibrating string and chemical oscillations in the Belousov-Zhabotinskii reaction. After
learning about symbolic dynamics from these examples I then �nish by showing how to use a
symbolic analysis in a typical engineering application where the goal is often to detect (and possibly
control) bifurcations found in noisy experimental data. Speci�cally, I review a recent application
from engineering where symbolic dynamics is used to model and diagnosis cycle variablity in internal
combustion engines.

The di�erent emphasis of the applications in the di�erent disciplines is summarized in Table 1.
The recent applications in physics and engineering suggest that symbolic dynamics is emerging as a
new and potentially powerful tool for nonlinear system identi�cation and diagnosis.

The general strategy for using symbolic dynamics as an analysis and diagnositic tool is as follows:
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Thanks to Warren Weckesser for perparing notes from the talk.

Discipline Method Goals Emphasis

Mathematics Generating partition
on phase space

faithful map, 1 - 1,
n - 1

proving

Physics (approximate) generat-
ing partition, with ex-
perimental resolution

model system, state
identi�cation, veri-
�cation

understanding

Engineering map for data reduction,
simple and robust

diagnose, distin-
guish

doing

Table 1. Symbolic dynamics in mathematics, physics, and engineering. The germ
of the ideas is the same in each discipline, but the goals and implementations can
be very di�erent.
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Iterations of the quadratic map

Figure 1. The quadratic map, with � = 3:5. The vertical and horizontal lines
show �ve iterates of the point x0 = 0:1.

� Identify/specify the topological class/type.
� Set up a \symbol dynamics" for that particular class. (The symbolic dynamics are the topo-

logical coordinates appropriate for nonlinear problems.)
� Extract as much information as you can based on topology alone before considering metric
properties. Identify/measure \topological parameters" if possible.

These ideas will be developed below.
Another point of this talk is to begin to understand some of the elements needed for e�ective

collaborations between academia and industry. My experience as scientist and engineer leads me
to believe that the di�erent goals and problems that arise in academic research and industrial
development are usually not properly understood or communicated in an afternoon. Rather, it
really takes an immersion in each others' work environment and culture to understand what the
goals are, how things really work, and how to get things done. In my opinion, there is more than a
di�erence in vocabulary stiing e�ective collaboration between workers in industry and academia.

2. Unimodal Maps and Kneading Theory

The prototypical example of a unimodal map is the quadratic map:

xn+1 = �xn(1� xn):(1)

Figure 1 shows f(x) = �x(1 � x), and includes a few iterations of the point x0 = 0:1. In general,
a unimodal map maps an interval I into intself, has a single critical point C in I , and is monotone
increasing on the left of C and decreasing on the right. For the quadratic map, I = [0; 1] and
C = 1=2. The key topological property of a unimodal map is that it stretches and folds the interval
I into itself.

One of the motivating reasons for studying the quadratic map is to understand the diagram
shown in Figure 2. A closer view of part of this plot is shown in Figure 3. In each of these plots,
a large sequence of increasing values of � are generated. For each value of �, we set x0 = 0:75,
and iterate the quadratic map 1000 times. We then plot the next 32 values in the iteration versus
�. These plots provide a rough picture of the asymptotic behavior of the quadratic map. For
example, Figure 2 shows that for � < 3, there is a stable equilibrium. (Indeed, it is easy to prove
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Figure 2. Bifurcation diagram for the quadratic map, 2:8 < � < 4.
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Figure 3. A closer look at the bifurcation diagram for the quadratic map, 3:5 <
� < 3:9.

that for 1 < � < 4, x = ��1

�
is an equilibrium, and it is stable for 1 < � < 3.) At � = 3, the

equilibrium becomes unstable, and a stable period 2 orbit is born. As � is increased, the period 2
orbit eventually becomes unstable, and a period 4 orbit is born. This sequence of period doubling
bifurcations appears to continue as � is increased, but there is not su�cient resolution in the �gures
to see what happens. We can see a stable period 6 orbit at � � 3:63, and a stable period 3 orbit at
� � 3:83.

In principle, we could determine all the periodic orbits (and determine their stability) by solving
the appropriate formula. For example, period 3 orbits satisfy x = f(f(f(x))). However, these
equations quickly become intractable as the period increases. It has also been observed that very
similar bifurcation diagrams can be found with other unimodal maps, suggesting that the qualitative
structure of the bifurcation diagram is not unique to the quadratic map. The phenonema illustrated
by the \universal" aspects of the bifurcation diagrams can be elucidated with symbolic dynamics
and kneading theory.
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To set up the symbolic dynamics of this system, we must �rst de�ne a partition. Informally a
partition is the separation of phase space into disjoint regions. By createing this partition we can
go from a continuous description of a physical process to a discrete description composed of a �nite
(usually just a few) symbols. One of the �rst goals of symbolic dynamics is to understand the
connection between continuous systems and discrete systems with (typically) a small alphabet.

For the quadratic map with 0 � � � 4, I = [0; 1]. We de�ne I0 = [0; 1=2), C = 1=2, and
I1 = (1=2; 1]. Given x0, we de�ne xn by (1). We now de�ne

sn =

8><
>:

0 if xn 2 I0;

C if xn = C;

1 if xn 2 I1:

The symbol sequence or itinerary of the point x0 is the sequence S(x0) = fs0; s1; s2; s3; : : : g. For
example, if � = 3:5 and x0 = 0:1 (see Figure 1), then S(0:1) = f0; 0; 1; 1; 1; 0; : : :g. The quadratic
map acts on the sequence as a shift :

S(f t(x)) = �tS(x) = fst; st+1; st+2; : : : g;

where � operates on sequences by discarding the left-most symbol, and shifting the rest of the
sequence to the left.

I present a brief discussion of kneading theory [6, 7]. (A nice introduction to the theory is given
by Devaney [8].) First, I de�ne an ordering � on the itineraries which preserves the ordering on the
interval. More precisely, if S(x) � S(y), then x < y, and if x < y, then S(x) � S(y). Note that for
a unimodal map, f is increasing on I0 and decreasing on I1. After one iteration, the order of points
in I0 is maintained, while the order of points in I1 is reversed. That is, if x 2 I1 and y 2 I1, and
x < y, then f(x) > f(y).

De�ne the order of the symbols to be 0 < C < 1. Let's compare the symbol sequences S(x) =
fs0; s1; s2; : : : g and S(y) = ft0; t1; t2; : : : g. Clearly, if s0 < t0, then x < y, and if s0 > t0 then x > y.
If s0 = t0, we compare s1 and t1. However, we have to take into account that if s0 = t0 = 1, then the
order of the points has been reversed by the �rst iteration of the mapping. Therefore, if s0 = t0 = 1
and s1 < t1, then it must be that x > y (and x < y if s1 > t1). Now suppose that the �rst two
symbols agree, but, say, s2 < t2. If the �rst two symbols are 00, then there have been no reversals,
so x < y. If the �rst two symbols are 01 or 10, then there has been one reversal, so x > y. Finally,
if the �rst two symbols are 11, then there have been two reversals, so x < y.

In general, the order is determined by the order of the �rst pair of symbols that di�er in the
two sequences. In order to know the correct direction of the inequalities, we must keep track of
how many times the order has been reversed. But this is just the number of 1s that appear in the
segment of the sequences that agree, because a 1 means that the points are to the right of C, and
their order will be reversed by the next iteration. If there are an even number of 1s, then we use
the natural order of the �rst symbols that di�er. If there are an odd number of ones, then the order
of x and y is the reverse of the order of the �rst pair of di�erent symbols.

These simple observations on the ordering of symbol sequences lead to some remarkable conse-
quences. An illustration of the power of the kneading theory are the following theorems, which hold
for a large class of unimodal maps. We de�ne the kneading sequence K(f) of the unimodal map f

to be the itinerary of x = f(C), i.e. K(f) = S(f(C)).

Theorem. Let s be a symbol sequence. If K(f) is not periodic, and �i(s) � K(f) for all i � 0,
then there is a point x 2 I such that S(x) = s.

This means we can construct an arbitrary symbol sequence s, and if this sequence precedes the
kneading sequence of the map, then there is a point in the interval with symbol sequence s. A
generalization is the following.
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Figure 4. A single trajectory in the Rossler system.

Theorem. Suppose we are given two symbol sequences s and t, and there is a y 2 I such that
S(y) = t. If there is an m � 0 such that �n(s) � �m(t) for all n � 0, then there is x 2 I such that
S(x) = s.

These results prove especially useful when we consider periodic orbits. (See, for example, Chapter
1.19 of Devaney [8] for a more detailed introduction.) As we vary �, the kneading sequence K(f)
changes, and the above results shows that the kneading sequence \determines" which periodic orbits
exist. It turns out that for the quadratic map, the kneading sequence increases (in the sense of the
order de�ned above) as � increases. By combining the kneading theory with an additional property
of the quadratic map (namely that is has a negative Schwarzian derivative), we obtain a detailed
description of how periodic orbits arise as � (and hence the kneading sequence) increases. This
theory \explains" the qualitative features of the bifurcation diagram in Figure 2 which hold for all
unimodal maps of the interval..

3. Symbolic Dynamics and Analysis for Chaotic Attractors in R3

Now we turn from maps to ows to see how what we learned about unimodal maps can be applied
to systems modeled by di�erential equations.

We consider three dimensional systems of di�erential equations that possess a chaotic attractor.
As an example, we consider the Rossler equations:

_x = �(y + z);

_y = x+ �y;

_z = � + (x� �)z:

(2)

In this example, we use � = 0:17, � = 0:4, and � = 8:5. A single (numerically computed) trajectory
is shown in Figure 4. This trajectory provides a good approximation to the attractor.

Figure 5 shows (approximate) periodic orbits that were extracted from a single chaotic trajectory.
Any two periodic orbits form a knot, and a collection of intertwined periodic orbits is called a braid.
One key idea of braid analysis is to use the topological properties of a braid made up of a few periodic
orbits to infer the existence of other periodic orbits. We saw that in the one dimensional maps, the
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Figure 5. Some periodic orbits in the Rossler attractor.

existence of a given periodic orbit can imply the existence of others. There is an analogous result
for two dimensional maps, which can be applied to a Poincar�e section in a three dimensional ow.

One goal of this analysis is to identify an organizing template. A template is a branched manifold
into which the periodic orbits can be placed in a way that preserves their topological structure in
the ow. (See Tu�llaro [5], Chapter 5, and the references therein.)

These ideas can be used to analyze experimental time series data. This type of analysis is often
called topological time series analysis. The steps involved include identifying approximate periodic
orbits in the data, embedding the data in R3 (by using, for example, time-delay coordinates), and
�nding the topological relations among the periodic orbits. One may then be able to predict the
organizing template of the experimental system.

One example of topological time series analysis is the work of Mindlin, et al [9], and Tu�llaro [1],
who have applied these methods to experimental data taken from the Belousov-Zhabotinskii reaction.

Another example is the analysis of the variations in the amplitude of a forced vibrating string. An
elastic \string" (actually a metal wire) is stretched between two �xed points. The wire is subjected
to a periodic force by running an alternating current through the wire and placing it in a magnetic
�eld. When the string is forced near its fundamental frequency, the resulting vibrations have a fairly
large amplitude. Some string models predict that the amplitude will vary chaotically in certain
parameter ranges.

Molteno and Tu�llaro [2] conducted experiments in which they observed a sequence of bifurcations
and chaotic vibrations. O'Reilly and Holmes [3] have also observed chaotic vibrations. Tu�llaro,
et al [4] applied the methods of topological times series analysis to measurements of the transverse
displacement of the wire at a single point. They extracted periodic orbits from the data, and they
were able to identify an organizing template for the periodic orbits. In fact, they found that the
dynamics could be described with a one dimensional unimodal map.

A similar result can be seen in the Rossler system. Figures 4, 6 and 7 show pictorially how the
dynamics in the Rossler attractor can be reduced (at least approximately) to a one dimensional
unimodal map. First, we consider a Poincar�e cross section �, as shown in Figure 4. A plot of the
crossings through � is given in Figure 6. The set of crossings appears to be one-dimensional. This
leads us to consider the return map of just one variable, say x. In Figure 7, we plot �xi+1 vs. �xi,
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This plots suggests that this map is well approximated by a one-dimensional uni-
modal map. The vertical dotted line indicates the location of the critical point of
the map.

where the xi are the x coordinates of the successive crossings of �. We see that this one dimensional
map is unimodal, with a critical point at x � �8:14.

4. Cycle variability in internal combustion engines

Now that we have learned the rudiments of symbolic dynamics, we now point out how these ideas
from mathematics and physics are used to motivated new methods that aid in the modeling and
diagnosis of noisy nonlinear systems.

Recently, researchers at Oak Ridge National Labs and the University of Kentucky at Knoxville
have applied the methods of symbolic time series analysis to the study of cycle variations in spark-
ignited combustion engines [10, 11]. It has been observed for over 50 years that the combustion
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e�ciency of an internal combustion engine can vary signi�cantly from one cycle to the next. This
cycle variability is enhanced under lean (i.e. oxygen rich) fueling. The importance of understanding
and controlling cycle variability has increased in recent years, as car manufacturers try to run their
engines with leaner fuel mixtures to improve fuel e�ciency and reduce NOx emissions. The pressure
for solving this problem comes from the new rules set forth by the Clean Air Act which will go into
full e�ect at the begining part of the next century.

In the four-stroke cycle, fuel and air enter the cylinder through the intake valve and the mixture is
compressed when the piston moves up the cylinder. Near maximum compression, a spark ignites the
mixture, and the resulting combustion forces the piston down the cylinder. This part of the cycle is
used to perform work, such as driving the wheels of an automobile. When the piston again moves up
the cylinder, the combustion by-products are forced out of the cylinder through the exhaust valve.
Then, as the piston moves down the cylinder, fresh fuel and air enter the cylinder, and the cycle
repeats.

One important cause of cycle variability is that, in a given cycle, combustion of the fuel may not
be complete, and the unburned fuel may not be completely eliminated during the exhaust phase
of the cycle. In this case, there will be extra fuel in the next cycle. This can result is signi�cant
variation in the power output of each cycle.

Daw, et al [10], have developed an empirical model of the combustion cycle. Their model maps the
composition of the fuel-air mixture from one cycle to the next. Their analysis of this model reveals
a sequence of period-doubling bifurcations as the equivalence ratio (ratio of fuel present relative to
fuel required to consume all oxygen) of the injected fuel-air mixture is decreased from stoichiometry,
in which there is just enough fuel to consume all the oxygen, towards the lean limit, in which there is
excess oxygen. Two of their applications of symbolic encoding and dynamics will be discussed here.
First, they used symbolic encoding to detect a bifurcation in noisy experimental data. Second, they
used symbol sequence statistics as part of a model �tting procedure.

To explain these applications, we introduce the symbol sequence histogram. The �rst step in the
analysis is to discretize the time series data into n discrete values. For example, in a binary partition
(n = 2), data values are assigned the symbol \0" or \1" according to whether the data value is below
or above a given threshold, respectively. (One approach for determining the appropriate threshold
is ensure that in the resulting symbol sequence there is an equal number of each symbol.) Next,
a symbol sequence vector length m is chosen, and the relative frequency of all possible symbol
sequences of length m are calculated from the full symbol sequence. For example, if we have a
binary partition and m = 6, we would calculate the relative frequency of the symbol sequences
000000, 000001, 000010, etc. that occur in the discretized data sequence. The symbol sequence
length m is chosen so that the modi�ed Shannon entropy

H =
1

logn

X
i

pi log pi

is minimized. In this formula, pi is the probability of the symbol sequence i, and n is the total
number of observed sequences.

By expressing the length m symbol sequence as its decimal equivalent (e.g. 0000002 = 010,
0001102 = 610, 0101012 = 2110, etc.), we can represent the symbol sequence statistics as a histogram,
in which the horizontal axis is the decimal equivalent of the symbol sequence, and the vertical axis
is the relative frequency of the symbol sequence.

For truly random data (and with a su�ciently large set of data), each symbol sequence of length
m is equiprobable. Therefore, any signi�cant deviation from equiprobability is evidence for deter-
ministic structure in the data. For example, the existence of a stable period-2 solution would result
in frequent occurrences of the symbol sequences 010101 and 101010, which would show up in the
histogram as spikes at 21 and 42. (Indeed, in the absence of transients, noise, and measurement
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error, the discretized data sequence would be :::01010101:::, and only 21 and 42 would have non-zero
probabilities.)

Detecting bifurcations in noisy experimental data. Finney, et al [11] conducted a series of
experiments in which the equivalence ratio was varied from near stoichiometry to very lean, and the
heat released in each cycle was determined for over 2800 cycles. By using a binary partition and
a sequence length of six, they found evidence of a bifurcation from a steady solution to a period-
2 solution near an equivalence ratio of 0:71. For larger equivalence ratios, the symbol sequence
histograms show equiprobability for each symbol sequence. Near 0:71, the frequencies of 21 and 42
begin to show peaks, and these peaks increase signi�cantly as the equivalence ratio is decreased.

Using symbol sequence statistics in model �tting. The empirical model of Daw, et al [10]
includes several indeterminate parameters. To �t these parameters to the experimental data, the
symbol sequence histogram was used as part of a model �tting procedure. The �t of the model was
optimized by iteratively adjusting the parameters to give the best agreement between the symbol
sequence histogram for iterations of the model and the experimental data. In their analysis, they
found that higher level partitions were needed to accurately �t the model to the data. (A binary
partition was su�cient to detect the period-2 bifurcation.) With this procedure, they were able
to obtain a good match between the model and the experimental data, with physically plausible
parameter values.

5. Summary

The main point of this discussion is to illustrate how ideas orginating in mathematics and physics
for extracting topological information from a dynamical system and its associate nonlinear time
series can be used to solve practical engineering problems by motiviating new methods to diagnosis
and model noisy nonlinear systems. Topological methods encoded by symbolic dynamics represent a
new method of system and parameter identi�cation which are relatively simple, robust, and degrade
gracefully with noise. In a sense, they are the \proper" coordinates to extract \robust" information
from (possibly noisy) nonlinear systems.
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