
One Key to Rule Them All

Nigel P. Smart
Extended Enterprise Laboratory
HP Laboratories Bristol
HPL-1999-26
March, 1999

cryptographic keys We show how to specify an elliptic curve public key,
RSA public key and DSA public key all in a single 2048
bit block. The method gives a wide choice of finite fields
and curves for use in the ECC system and introduces
no known security weaknesses. The method hence
allows algorithm type to be decided at run time, rather
than at the time the public keys are distributed.
However, this is done without the need for very large
key lengths.

 Copyright Hewlett-Packard Company 1999

Internal Accession Date Only

ONE KEY TO RULE THEM ALL

N.P. SMART

Abstract. We show how to specify an elliptic curve public key, RSA public

key and DSA public key all in a single 2048 bit block. The method gives a wide

choice of �nite �elds and curves for use in the ECC system and introduces no

known security weaknesses. The method hence allows algorithm type to be

decided at run time, rather than at the time the public keys are distributed.

However, this is done without the need for very large key lengths.

Suppose Alice wishes to publish her public key in some directory, so that someone

else, say Bob, can verify Alice's digital signatures, or send Alice secret messages. At

present Alice �rst has to decide on which of the three standard public key algorithms

to use: RSA, DSA or ECC. Given this Alice then passes to the directory, or CA,

the bit pattern which represents her public key for that given algorithm. If Alice

wished to keep the choice of algorithm open, until the key was actually used, then

she would need to give the bit patterns of three independent public keys.

Such a situation could arise where we do not know how the public key is to be

used. For example, if Bob is going to verify signatures from Alice, or send messages

to Alice, using a small constrained device then RSA is probably to be preferred as

the public key operations are much faster with RSA. If however, Alice's operations,

whether signing or decryption, are to be performed on a small constrained device

then ECC is probably to be the preferred option. There may even be some situations

where DSA is the preferred option.

In any case if Alice wishes to make available all three public keys in the directory

then, with current recommendations for key sizes, she will require 1024 bits to spec-

ify her RSA key, another 1024 bits to specify her DSA key (assuming a preagreed

�nite �eld is used) and another 170 bits to specify an ECC public key (assuming a

preagreed curve is used). Hence a total of 2218 bits are required.

If the system require that users should use di�erent �nite �elds for DSA or

di�erent curves for ECC then the number of bits required increases, to at least

3500. In fact Alice may prefer to use elliptic curves over odd characteristic �elds,

since Alice may be using a PC based environment to perform her operations in.

Whilst another user may prefer elliptic curves over even characteristic �elds, since

they may be using a dedicated hardware device. It is also known that using the

same �nite �eld for DSA over a large number of users creates an attractive weakness

which could be exploited by an admittedly rich adversary. If all three keys where

stored in their standardized ASN.1 notation then the amount of storage required

would be even larger.

Another problem with using separate keys occurs in the (admittedly) unlikely

event that one of the three main public key algorithms falls to an as yet unknown

attack. If this \doomsday" scenario occurred then all public keys and the associated

public key infrastructure would need to be revoked and redeployed for all keys which

used the given public key algorithm. If however a public key was used which did

1

not depend on the algorithm choice then the public key infrastructure would not

need to be revoked and redeployed, users would just switch from using the insecure

algorithm to one of the secure ones. Admittedly legacy signatures could then be

forged (we shall not address this problem but note it can be solved using a trusted

time stamping authority). However we emphasize that future signatures, secure

communication and key agreement could proceed at no extra cost.

Using the superkeys introduced in this note there is another way to secure sig-

natures against a future doomsday scenario. By signing the document with the

three algorithms of the superkey in parallel Alice can ensure that the signatures

remains valid until the last of the algorithms is made insecure. For electronic legal

documents that are needed to remain in force over many years (or even decades)

this provides added security.

A similar process can be carried out for encryption of master keys, where the

master keys need to be stored for a long length of time. Encryption can be triple

locked with the superkey by applying the three algorithms in sequence.

Another advantage arises from being able to use, say, ECC to perform Alice's

signature operations and RSA to perform her decryption operations, since it is not

considered good practice to use the same key for both signing and decryption. But

by using a superkey one uses the same public key but in two di�erent contexts.

In this note we explain how to embed an RSA key,a DSA key and an ECC key

into one 2048 bit string. Such a string will give a wide choice of �nite �elds to use

for ECC, no restriction on which curve to use over this �nite �eld and a virtually

unique �nite �eld in which to implement DSA. Hence this 2048 bit string can be

considered a public key to end all public keys, or to paraphrase Tolkien [4]

One key to rule them all,

One key to �nd them,

One key to bring them all

and in the darkness bind them.

We shall �rst specify the elliptic curve public key, then the DSA public key and

�nally the RSA public key. We let n denote the number of bits of security in the

ECC public key and m denote the number of bits of security in the RSA public key.

The DSA key will be a �eld of order around 2m with a multiplicative subgroup of

order around 2n.

The method works in two main stages. First the elliptic curve parameters and

keys are produced in a way which means they occupy as few a number of bits as

possible. Secondly the bit pattern of the elliptic curve key is embedded into a RSA

key using a technique of Lenstra [2].

In summary our method allows a relatively short bit string to be interpreted as a

variety of public keys for di�erent algorithms. This allows additional functionality

of the public key infrastructure by

1. Allowing users to decide which public key algorithm to use dynamically rather

than having this dictated by the entity deploying the public key infrastructure.

2. The algorithm choice can depend on the environment rather than the identity

of the user.

3. Providing the ability to cope with the scenario of a public key system being

declared weak.

2

4. Provides a mechanism to triple lock an encryption or triple sign a message

with only relatively small key size. Thus giving added security over a longer

period of time.

In addition other bene�ts arise from our method of creating ECC keys and ECC

system parameters with a small amount of space. For example the current ASN.1

de�nition of elliptic curve parameters and keys in X9.62 [5] means that keys can take

up a lot of bandwidth. This can be a problem, given that ECC will be used in small

constrained devices, where bandwidth is a problem. Using the small key lengths

derived from our method one can achieve the bene�t of users using di�erent �elds

and curves without the disadvantages of preagreement and/or increased bandwidth.

We end this introduction with a short note on the notation we shall use in the rest

of this paper. If x and y are bit strings we let x jj y denote the concatenation of the

bit strings. If x is a bit string we let fxg denote the number or �nite �eld element

represented by x (with least signi�cant bit last) and for a number or �nite �eld

element y we let [y] denote the bit string which represents y. Clearly this notation

will clash with other notations, such as a set of one element and the multiplication

by y map, however we assume the reader is intelligent enough to understand the

meaning from the context.

1. The Elliptic Curve Public Key

All the details we require about elliptic curve systems can be found in the book

[1].

1.1. The Finite Field. We �rst need to specify which �nite �eld to use and

whether it is of even or odd characteristic. We wish to choose an elliptic curve, E,

over a �eld Fq of order around 2n. Note that in all current practical elliptic curve

systems, one would choose n � 255.

To specify an even characteristic �eld can then be done in the 8 bits needed

to represent n, assuming an Optimal Normal Basis is used to represent the �eld

elements. Alternatively, if we restrict to �elds with a trinomial basis then we can

represent the �eld using

Xn +Xc + 1

so we require another 8 bits to represent c. In practice it is common to take n to

be odd in this situation, which we shall indeed do (for reasons to become apparent

later). Hence to specify the even characteristic �eld requires at most 15 bits, since

we are assuming n is always odd.

In many systems for odd characteristic �elds we use �elds of prime order equal

to

q = 2n + c:

If c is small this gives a very e�cient way of performing the �eld operations with

no known loss of security. We shall restrict to �elds of the above form with n � 255

and 1 � c � 255. There are 174 such primes with 150 � n � 255 and 1 � c � 255,

which we list in Table 1. Hence we have more choice of odd characteristic �elds

than even characteristic �elds. In addition we will require 15 bits to represent q, 8

bits for n and 7 bits for c, since clearly c must be odd.

Since both odd and even �elds can be represented using 15 bits we can represent

the choice of �eld in 16 bits by using a single additional bit to specify whether we

are in the odd or even case. We shall call the resulting bit string f .

3

1.2. The Elliptic Curve. Having chosen a �eld, we now �nd an elliptic curve

over Fq using Schoof's algorithm [3]. Notice that we are not specifying a special

elliptic curve and so we are not compromising security with our choice of elliptic

curves. The elliptic curve is given by an equation of the form

Y 2 = X3 + aX + b q odd;

Y 2 +XY = X3 + a2X
2 + a6 q even:

Since in the even characteristic case we have insisted that n is odd, we can choose

a2 2 f0; 1g.
In the odd characteristic case we can assume that a will sit in an eight bit

word. To see why this is so, notice that Y 2 = X3 + aX + b is isomorphic to

Y 2 = X3 + au4X + bu6 for some u 2 Fq . Now if q � 1 (mod 4) then we have a

25 percent change of replacing a by any number a0, by simply trying to extract the

fourth root of a0=a. If q � 3 (mod 4) then we have an even better chance, namely

50 percent, of this working for any given a0. If we insist that a is speci�ed by only

8 bits then we have an, at most,

:75256 � 10�32

chance that our curve found by Schoof's algorithm cannot be put in a form with

a 62 f1; : : : ; 256g. If we are so unlucky we could always try and �nd another curve.

Since b and a6 both require n bits to specify them, we can represent the elliptic

curve E using only n+ 8 bits. We call the resulting string e.

1.3. The Group Order. We assume that the curve order is divisible by a large

prime l and

Nq = #E(Fq) =

8<
:

l q odd;

2l q even and a2 = 1;

4l q even and a2 = 0:

This is common practice and such elliptic curves are quite easy to �nd using Schoof's

algorithm for the values of q in use today. By Hasse's theorem we have that t =

q + 1 � #E(Fq) is bounded by jtj � 2
p
q. Hence to specify the group order, and

hence l, requires 2 + n=2 bits. The resulting bit string we denote by o.

1.4. The Generating Point. We now need to specify a point which generates a

subgroup of order l. We pick a random bit string x of length 7 and consider the

�eld element fxg represented by x. With probability 1=2 we can �nd a �eld element

y 2 Fq such that (fxg; y) 2 E(Fq). If we then compute

P = [Nq=l](fxg; y)
then with probability around 22�n we have P = O and we reject this value of x and

start again. Otherwise we have found a point P which is a non-trivial element of

order l in E(Fq). So we can represent the generating point, P , by compressing the

elliptic curve point (fxg; y) into a bit string, p, of length 8 bits. With overwhelming

probability such a method is guaranteed to �nd a suitable generating point.

1.5. The Public Key. We �nally need to construct the public key. We produce

a random number k, the private key, with 1 < k < l and compute the public key

Q = [k]P:

By compressing Q we can represent Q by a bit string q of length at most n+1 bits.

4

Hence to represent all the parameters of our elliptic curve public key we require

the bit string

X = f jj e jj o jj p jj q
of length t = 16 + (n+ 8) + (2 + n=2) + 8 + (n+ 1) = 35 + 5n=2 bits.

2. The DSA Public Key

Using the prime l above, which is of order 2n, we form the number

T = lfXgb(m�n)=tc+1 + 1:

Since fXg is a number of bit length t the bit length of T is

log2(T) � log2(l) +
m� n

t
log2fXg � n+m� n = m:

We now repeatedly add l onto T , until we come across a prime number, P =

T +�l. By the prime number theorem such a prime number will occur, on average,

after m such additions, so we can assume that the bit length of � is log2m. The

resulting prime P will be the �eld in which our DSA public key will lie, clearly it is

deterministically derived from the bit string X and the prime l will divide P � 1.

We can assume that l2 does not divide P � 1, which is such a rare event we can

safely ignore it.

We now choose a random number g of bit length less than 8 and compute

h � g(P�1)=l (mod P):

With probability 2�n we obtain 1, in which case we choose another random g of

bit length less than 8 and repeat the calculation until h is not equal to one. The

number h is then a generator of the subgroup of FP of order l.

Our DSA public key is then the number

z = hk (mod P):

Notice that we have used the same private key for the ECC and DSA schemes, this

is not necessary and is just done here for convenience and so we do not need to �nd

another letter. In addition it means the holder of the private key is less likely to

forget which private key corresponds to ECC and which to DSA.

We let Z denote the bit string [z] of length approximately m bits and set

Y = X jj [�] jj [g]:
So Y is a bit string of length 43 + 5n=2 + log2m bits.

3. The RSA Public Key

Using the method in [2], which apparently has been known for a long time, we

can construct an m bit RSA modulus, N , which contains the bit string Y as either

the leading or trailing portion of [N]. This is possible assuming

m > 86 + 5n+ 2 log2m:

As the RSA public exponent we make the standard choice of 65537. Finally we

represent all three public keys using the bit string

[N] jj Z
of length 2m. In `real life' we have typical values of n = 160 and m = 1024, which

satisfy the above inequality with ease.

5

4. Security

Clearly our choice of elliptic curve parameters do not a�ect the security of the

system. Neither does our choice of DSA parameters, although the choice of such a

value of P could possibly lead to small degradations in performance when compared

to sparse values of P used in some DSA signature implementations.

The discussion in [2] should convince the reader that the resulting RSA public

keys provide no loss in security compared to more general RSA moduli.

References

[1] I.F. Blake, G. Seroussi and N.P. Smart. Elliptic Curves in Cryptography. To appear, CUP,

1999.

[2] A. Lenstra. Generating RSA moduli with a predetermined portion. In Advances in Cryptog-

raphy, ASIACRYPT 98, 1{10. Springer{Verlag, LNCS 1514, 1998.

[3] R. Schoof. Elliptic curves over �nite �elds and the computation of square roots mod p. Math.

Comp., 44, 483{494, 1985.

[4] J.R.R. Tolkien. The Lord of the Rings. George Allen and Unwin, 1954.

[5] ANSI X9.62 Public Key Cryptography for the �nancial services Industry: The Elliptic Curve

Digital Signature Algorithm (ECDSA) Draft Standard, 1998.

Hewlett-Packard Laboratories,Filton Road, Stoke Gifford, Bristol, BS12 6QZ, U.K.

E-mail address: nsma@hplb.hpl.hp.com

6

Table 1. The 174 primes of the form 2n + c with 150 � n � 255

and 1 � c � 255

n c n c

150 147, 163 151 253

152 27 153 45, 115, 133

154 97, 189, 253 155 7

156 19, 49, 225 157 117, 135, 151, 231

158 85 159 87, 117

160 49, 55, 79, 85, 97, 133, 135, 225 161 105, 177

162 7, 37, 73, 129 164 87, 99, 189, 193

165 15, 115, 193 166 49, 207

167 27, 63 168 205, 249

169 57, 123, 153 170 129, 223

171 133 172 27, 67, 103

173 21 174 15, 49, 169

175 235 176 67, 189

177 7, 157, 213, 247 178 33, 75, 169, 229, 247

180 33, 177 181 57, 223

182 7, 217 184 163

185 217 186 49, 57, 109, 127, 163

189 3 190 67, 163, 183

192 43, 225, 255 193 25, 97, 193, 237

194 67, 189, 199 195 115

196 69 197 133, 235

199 81 200 25

202 79, 153, 163, 207, 247 204 73

205 223 206 79

207 175 208 133, 135, 193

209 43, 111, 121 210 127, 133

211 57, 81, 163, 223 212 63, 67, 177

213 157 214 117

215 45 216 159, 189

218 43 219 127

221 13, 91 222 67, 169, 205, 249

223 61, 163, 247 225 157

227 37 228 45, 73, 117

229 27, 81 230 15, 189

231 91 232 93

233 87 235 27

236 219 238 249

239 15 240 93

243 241 244 97, 99

246 15, 85 247 231

249 241 251 55, 81, 223

255 105

7

