
Implicit Computation: An Output-
Polynomial Algorithm for Evaluating
Straight-Line Programs

Troy A. Shahoumian
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-1999-25
February, 1999

E-mail: troy_shahoumian@hp.com

theory of
computation,
randomized
algorithms,
straight-line
programs,
output-polynomial
algorithms

Inputless straight-line programs using addition,
subtraction and multiplication are considered. An
output-polynomial algorithm is given for computing
the output of such a program. The program runs in
time polynomial in the length of the program and the
length of its output. As a consequence, even if
intermediate results are exponentially longer than the
program, the output can be computed efficiently when
the output's size is small. This algorithm also applies
to programs with integral inputs if the size of the
inputs are considered to be part of the program's size.

 Copyright Hewlett-Packard Company 1999

Internal Accession Date Only

1 Introduction

This paper gives an output-polynomial algorithm for computing the output

of an inputless straight-line program. In an inputless straight-line program

all variables are de�ned prior to use. Being straight-line means that there are

no loops or conditional statements. Such a program is a list of statements

which are executed sequentially. The allowed operations are (1) loading an

integer speci�ed by the program into a variable, and (2) adding, subtracting

or multiplying two previously de�ned variables and assigning the result to a

third variable.

The length of the output can be exponentially longer than the original pro-

gram. This can be achieved by repeatedly squaring a number. The length of

a number doubles with each squaring. Therefore, no algorithm can evaluate

a program's output in time which is polynomial in the program's length.

The output may simply be too long. This paper gives an output-polynomial

algorithm for evaluating a straight-line program. Such a program runs in

time polynomial in the length of the straight-line program and its output.

The length of intermediate results is not a factor in the running time. As a

result, even if intermediate results are long, if the output is small it can be

found e�ciently using our algorithm.

This result came from considering the Program Sign Problem: given an in-

putless straight-line program, it is unknown whether the sign of the output

can be determined in time polynomial in the program's length. The results

of this paper imply that the sign can be determined when the output's length

is polynomially bigger than the program's size. In such cases, the program's

2

output can be computed in time polynomial in the program's length and the

output's sign can be read o�.

2 The Algorithm

For purposes of the analysis, assume that the only constant loaded by any

instruction is unity. If a program loads the constant C, this can be replaced

by O(logC) instructions where the only constant loaded is unity. Using this

convention, the number of instructions is a good measure for the size of a

program. Otherwise, the number of instructions would not be a good measure

of the program's size; the lengths of integers speci�ed in the program would

not be accounted for.

The algorithm is quite simple and is as follows:

Algorithm Compute Program's Output

Input: An inputless program P which has n instructions and only loads the

constant unity.

Output: With probability 1=2, it outputs the correct output of P .

i 1;

while true do

Compute c P mod 22
i

;

Pick a prime p having O(n logn + i) bits;

If P � c mod p then output c;

Pick a prime p having O(n logn + i) bits;

If P � 22
i

� c mod p then output �c;

i i + 1;

od

3

An error can occur when the p chosen is composite. An error can also occur

when we choose a prime p for which P � c mod p or P � 22
i

� c mod p but

there is not actual equality. The following lemma bounds the probability of

the latter occuring.

Lemma 2.1 Let k be an integer with 0 < jkj < 2n+1. If p is a randomly

chosen prime with i+cn log n bits, then the probability|taken over the choice

of p|that k � 0 mod p is O(1=c2i).

Proof: When p is chosen to have cn logn bits, the failure probability goes

to O(1=c) for large n because

failure probability =
Number of primes dividing k

�(cn log n)

� n/ cn log n

log(cn log n)

= log(cn log n)

c log n
:

This probability goes to 1=c for large n. For large n, �(4n) > 2�(n) so when

choosing the prime, increasing the number of bits by 2i will cut the failure

probability by 2i. 2

The probability of failure in the ith iteration should be 1=21+i. As mentioned

before, there are two sources of possible error: choosing a composite and

choosing a prime which gives equality modulo that prime when equality does

not actually occur. In the ith iteration, the probability of either of these

events should be 2�3�i. In order for the second source of error to be less

than 2�3�i, Lemma 1 shows that a prime with O(n logn) bits su�ces. Let

L(n; i) be the length of the primes chosen in the ith iteration; i.e., L(n; i) =

k � (n logn + i) for some constant k.

4

Let b be the number of bits required to represent the output of the program

P and let b0 = 2dlg be be the smallest power of two not less than b. In the last

iteration of the algorithm, the primes chosen have L(n; b0) bits.

Let's analyze the running time of choosing the primes in the ith iteration

with the desired probability of failure. About one in n n-bit numbers are

prime. Speci�cally, among all integers up to 2n+1, by the prime number

theorem about one in log(n + 1) are prime. There are polynomial-time al-

gorithms for testing the primality of a number. For example, given a n-bit

number, Rabin's algorithm [Rab80] takes O(kn2) time to achieve a probabil-

ity of failure of less than 1=22k. In order to choose a random prime, random

integers are chosen and tested for being prime. In the ith iteration of the

algorithm there will be O(L(n; i)) primality tests done in order to choose

a L(n; i)-bit prime; we want each primality test to fail with probability at

most 1=23+i+log(k1L(n; i)) for some constant k1. This will give a probability of

choosing a composite in the ith iteration to be 2�3�i. In the ith iteration

choosing a L(n; i) bit prime takes O((i+ logL(n; i))L(n; i)2) time.

In the last iteration, computing c takes O(b0n) time because c is being com-

puted modulo 2b
0

. Each of the two tests|that check whether P � c mod p

and P � 22
i

� c mod p|take O(nL(n; b0)) time. This is dominated by the

O((b0 + logL(n; b0))L(n; b0)2) time required to choose the primes. The run-

ning time of the algorithm is O(b(b+logL(n; b))L(n; b)2). This is polynomial

in the length of the program and the output.

5

3 Conclusion

Traditional methods of computing require enough memory to store all in-

termediate results. Our results show that this requirement is unnecessary.

Our algorithm requires enough memory to store the result (is this neces-

sary?) and time which is polynomial in the length of the program and its

output. The length of intermediate results|even if they are exponentially

larger than the amount of available RAM|is not a factor in the running

time of the algorithm.

References

[Rab80] M.O. Rabin, \Probabilistic Algorithm for Testing Primality." Jour-

nal of Number Theory, 12 (1980) 128{138.

6

