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In this letter we suggest that a method recently proposed
by Wayland et al. [1] for recognising determinism in a time

series can also be used as a diagnostic to determine the mini-

mum embedding dimension required for reconstructing phase
space. Furthermore we suggest a simple extension to the Way-

land et al. method which enables phase space to be recon-

structed from input{output time series data. We compare
the results of this extension to the results given by the exten-

sions to the method of false nearest neighbours put forward

by Rhodes and Morari [2] and the method of averaged false
nearest neighbours by Cao et al. [3].

I. INTRODUCTION

In this letter we suggest that a method recently pro-
posed by Wayland et al. [1] for recognising determinism
in a time series can also be used as a diagnostic to de-
termine the minimum embedding dimension required for
reconstructing phase space. Furthermore we suggest a
simple extension to the Wayland method which enables
phase space to be reconstructed from input{output time
series. We compare the results of this new diagnostic with
the results of two other diagnostics recently proposed in
the literature [2,3].
The paper by Casdagli [4] is a common starting point

for many researchers when faced with the problem of ap-
plying nonlinear dynamics techniques to the modelling of
systems using input{output time series data. The main
idea drawn from this paper is that an extended phase
space can be reconstructed from the input and output
time series. If we denote the output time series by y(t)
and the input time series by u(t) then Casdagli's results
say an extended reconstructed phase space can be formed
with vectors

z(t) =
�
y(t � (k � 1)s); . . . ; y(t� s); y(t);

u(t � (l � 1)s); . . . ; u(t� s); u(t)
�
; (1)

where k is the embedding dimension of the output time
series and l is the embedding dimension of the input time
series. We have assumed that the time delay s is the same
for the input and the output time series although this
need not be the case. In the following we assume that an
appropriate time delay has been found. In addition we
will normalise all time series to lie in the range �2 and
2.

For a given time delay the problem is to design a di-
agnostic to �nd appropriate values for k and l from time
series data. Rhodes and Morari [2] have extended the
false nearest neighbour algorithm of Kennel et al. [5] to
determine k and l. More recently Cao et al. [3] have
suggested an alternative method by extending the work
of [6]. In this letter we argue that the method of Way-
land et al. can similary be extended to provide such a
diagnostic.
The outline of this letter is as follows: In the next

section we describe the Wayland method for detecting
determinism in a time series, and explain why it can be
used as a diagnostic for determining an appropriate em-
beddign dimension for phase space reconstruction. We
re-inforce our contention with an example using data
from the chaotic Lorenz system. We then introduce our
scheme for reconstruction using input{output time series
data by extending the Wayland method. To illustrate
our technique we apply it to data from Du�ng's equa-
tion and to data obtained from a model of a Bi{Polar
Junction Transistor (BJT). We compare our results with
those obtained from an implementation of the methods
of [2] and [3].

II. THE WAYLAND METHOD

According to Wayland et al. [1] a time series is said to
be deterministic if the reconstructed vectors

x(t) =
�
y(t � (k � 1)s); . . . ; y(t � s); y(t)

�

can be modelled as the iteration of a continuous function
f . A test for continuity can be developed based on the
fact that points close together will map to points close
together under a single iteration of the map f .
Let x0 be a reference vector chosen from x(t); t =

1; 2; . . . ; N , and let x1; x2; . . . ; xm be the m{nearest
neighbours of x0 chosen from x(t); t = 1; 2; . . . ; N . In
addition, we ensure that none of these points are tem-
porally correlated. Let y0; y1; . . . ; ym be the images of
the vector x0 and its neighbours respectively. If the data
is deterministic and correctly embedded we expect the
translation vectors

vj = yj � xj



to be nearly equal provided the near neighbours are
within a small region of phase space. Wayland et al.
quantify this insight by computing the translation error

Etrans =
1

m + 1

mX

j=0

kvj� < v > k2

k < v > k2
;

where

< v >=
1

m+ 1

mX

j=0

vj :

This local translation error is extended to a more
global measure of translation error by choosing Nr ran-
dom reference vectors from x(t); t = 1; 2; . . .; N . For
each reference vector we compute an associated Etrans

and then calculate the global translation error E =
median(Etrans).
In addition to the embedding dimension k and the time

delay s there are two other free parameters. These are
Nr the number of reference vectors and m the number of
near neighbours. We will remove the parameter Nr by
using all embedded data points as reference vectors just
like the extensions in [2] and [3]. In so doing we will take
E to be the average of Etrans rather than the median.
E is thus a function of embedding dimension so E(k).
Following Cao [6] we will calculate the quantity

�(k) =
E(k + 1)

E(k)
:

The translation error E(k) will generally decrease with
increasing embedding dimension. As k increases �(k) will
typically rise, however, there will be a marked change in
the rate of increase of �(k) when a suitable embedding
dimension is attained. This change is distinctive and the
k at which it occurs is what we will choose as the embed-
ding dimension. There is the possibility of an increase in
E(k) for large k due to de-correlations in the embedded
data. This will cause a decrease in �(k) and so as an ad-
ditional indicator we suggest choosing the �rst maximum
of �(k) if the distinctive rise has not yet occured. We will
study how robust this prescription is to the observational
noise level in the data and the number m of neighbours
chosen in the calculations.

III. INPUT{OUTPUT DIAGNOSTIC

The above diagnostic can be extended to input{output
time series data in a simple manner. The scheme is es-
sentially the same but the method of determining near-
est neighbours is modi�ed. The near neighbours of a
vector x0 are instead determined in the extended recon-
structed space from the vectors z(t) (see 1). The vector
x0 is associated with a vector z0. Let z1; z2; . . . ; zm be

the (de-correlated) near neighbours of z0. We denote
by wj the images of these near neighbours. For each
zj ; j = 1; 2; . . .;m we project down to the \x" subspace,
i.e., xj = Czj and yj = Cwj where C picks out the parts
of z(t) constructed using the output time series. We cal-
culate the translation error as before with these vectors.
We note that the inputs can possibly be deterministic

or stochastic. The above scheme is based on the fact
that vectors close in reconstructed phase space subject
to similar inputs should end up in the same place.
We observe that the choice of the near neighbours in

this extended reconstructed space may be dominated by
closeness in reconstructed phase space or closeness in the
reconstructed input phase space. For example two vec-
tors may be deemed close in the extended phase space
because their distance apart in phase space masks the
di�erence in the inputs. The two vectors although close
in phase space could be subject to vastly di�erent inputs
thus compromising the translation errors. To avoid this
eventuality we suggest normalising the output and input
time series. (As mentioned above we normalise all time
series to lie in the range �2 and 2.)
Once again following the route of Cao et al. [3] we will

calculate

�(k; l) =
E(k + 1; l)

E(k; l)
:

We will consider the �rst maximum of this quantity as
a suitable choice for the embedding dimension k. To
distinguish between di�erent values of l we will choose
the �(k; l) for which k + l is a minimum. We will also
favour values of k and l where l > k. For example if
the �rst maxima of �(k; l) give two choices (k; l) = (2; 2)
and (k; l) = (1; 3) say, we will choose the latter. A rea-
son for this choice comes from our interest in modelling
electronic device components [7] for the purpose of sim-
ulations. We believe a model with as little feedback as
possible, i.e., small k, should be more stable under itera-
tion than a model with large k.

IV. EXAMPLES

We present an example illustrating the e�ectiveness
of the method when applied to output time series data.
The output data is obtained by integrating the chaotic
Lorenz equations. For this example appropriate embed-
ding dimensions are known from studies elsewhere (see
for example Abarbanel [8]). We will study how robust
our prescription is to observational noise in the data and
the number of near neighbours in the diagnostic.
We present two examples to illustrate the e�ectiveness

of our extension to the Wayland scheme to accomodate
input{output time series data. In the �rst example we
will consider data from Du�ng's equation. Once again



we will study the robustness of our method to observa-
tional noise on the input and output time series, and the
number of near neighbours on the diagnostic. We also
compare the results of our method to the results pro-
duced by using the methods suggested by Rhodes and
Morari [2] and Cao et al. [3]. The second data set we
study using our method is obtained from simulating a
model of a BJT { the Ebers{Moll model [9].

A. Output time series

The Lorenz di�erential equations are

_u = �(�u+ v)

_v = ru� v � uw

_w = �bw + uv;

where for � = 10, r = 28 and b = 8

3
chaotic solutions are

generated. We generate time series data by integrating
the Lorenz equations using a variable step-size Runge-
Kutta method { matlab's ode23 routine { and output the
u coordinate every 0:01 time units after transients have
diminished. We obtain a 10; 000 point time series, and
determine a lag s = 35 by choosing the �rst minimum of
the average mutual information function.
We apply the Wayland et al. diagnostic for di�erent

numbers of neighbours m = 5; 10; and20 and with a de-
correlation interval of 10. The results are shown in Fig-
ure 1. We see that an embedding dimension of 4 is sug-
gested consistent with known values. We also notice that
this value appears to persist with respect to the number
of near neighbours used in the diagnostic.
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FIG. 1. A plot of �(k) for various numbers of near neigh-

bours, �{m = 5, �{m = 10 and x{m = 20. We notice that

there is no distinctive increase in the slope of �(k) but a max-
imum occurs at k = 4. We thus conclude that k = 4 is a

suitable embedding dimension which is consistent with known

results.

To see how robust the diagnostic is to noise in the data
we add observational noise at various levels. The noise
added is zero mean Gaussian with standard deviations of
5%; 10%; 20%and40% the standard deviation of the clean

Lorenz signal. In Figure 2 we show how �(k) varies for
m = 10 on each of the noisy data sets. We see that as
the noise level in the data increases it becomes harder
to distinguish a marked change in the slope of �(k) as is
expected but the drop-of in performance is quite graceful.
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FIG. 2. A plot of �(k) with m = 10 for data sets corrupted

with observational noise. � = 0%, � = 5%, x = 10%, o = 20%

and + = 40%. We see that the plateau at k = 4 persists for
noise levels upto 10% but then degrades gracefully thereafter.

B. Input{Output time series

The �rst example we use to study our method is Du�-
ing's di�erential equation. This equation is given by

_u = v

_v = u� u3 � �v + 
 cos(!t):

We use parameter values which generate chaotic solu-
tions, i.e., � = 0:25, 
 = 0:3 and ! = 1:0. We consider the
system as a driven system with the input g(t) = cos(!t).
We generate a 10; 000 point output time series by in-
tegrating the di�erential equations and outputing the u
component every 0:05 time units after transients have di-
minished. The input time series is obtained by evaluating
g(t) every 0:05 time unit. We use a lag of s = 26 by locat-
ing the �rst minimum of the average mutual information
function applied to the output time series.
In Figure 3 we ahow the result of applying our diag-

nostic with m = 10 to clean input and output data. We
see that embedding the output data in two dimensions
(k = 2) and using one input (l = 1) is suggested. To see
how this answer persists in the presence of noise we show
in Figure 4 the results of applying our diagnostic with
m = 10 to data corrupted with 10% observational noise
at both the inputs and outputs. We notice that the e�ect
of the noise has caused the suggested embedding dimen-
sion to increase but even with such noisy data it was still
possible to detect a suitable embedding strategy. For
comparison we show in Figures 5 and 6 the results of ap-
plying the Rhodes and Morari scheme and the Cao et al.
scheme to the clean data respectively. We see that both



schemes suggest embedding with (k; l) = (2; 1) which is
consistent with the values suggested by our diagnostic.
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FIG. 3. A plot of �(k; l) for l = 1; . . . ; 5. �{l = 1, �{l = 2,

x{l = 3, o{l = 4 and +{l = 5. We see that choosing k = 2
and l = 1 is a suitable and minimal choice for embedding the

Du�ng input{output time series data.
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FIG. 4. A plot of �(k; l) for l = 1; . . . ; 5. �{l = 1, �{l = 2,
x{l = 3, o{l = 4 and +{l = 5. We see that the e�ect of

the noise has been to increase the dimension suggested by the

diagnostic. Examining the �gure we see that two strategies
could be followed (i) (k; l) = (3; 1) or (ii) (k; l) = (3; 4). Since

the �rst strategy has lower total dimension ths is the one we

would use.
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FIG. 5. A plot of the percentage of false nearest neighbours

for l = 1; . . . ; 5. �{l = 1, �{l = 2, x{l = 3, o{l = 4 and

+{l = 5. We see that consistent with our diagnostic the

method suggests embedding with (k; l) = (2; 1).
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FIG. 6. A plot of Cao et al. E2 statistic for l = 1; . . . ; 5.
�{l = 1, �{l = 2, x{l = 3, o{l = 4 and +{l = 5. We see that

consistent with our diagnostic this method suggests embed-

ding with (k; l) = (2; 1).

The second example we study to compare our method
uses input{ouput data obtained from a nonlinear tran-
sistor. We consider the Ebers{Moll model [9] for a BJT
shown schematically in Figure 7. We obtain time series
data by applying voltages across the base and emitter,
and across the collector and emitter. We integrate the
circuit equations and obtain the currents at Ic and Ib.
For the purposes of this study we will consider the cur-
rent Ic as the output data and the voltage across the
collector and emitter, Vce as the input data.
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FIG. 7. Ebers-Moll transistor model.

We integrate from time zero to time 1e� 6 outputing
every 1e�10 steps. This generates approximately 10; 000
input{output data points. The voltage Vbe consists of a
�xed dc-o�set plus an amplitude modulated signal given
by (1+m sin(!mt))Vc sin(!ct), where m = 4=5, Vc = 5V ,
!m = 50MHz and !c = 5GHz. The voltage Vce (our
input sequence) consists of a �xed dc-o�set and a one{
tone signal f = 20 sin(50�t=T ) where T = 1e � 6.
In Figure 8 we show the results of applying our diag-

nostic with number of near{neighbours m = 10. Study-
ing the �gure we see that a suitable embedding strategy
is to choose k = 3 and l = 1. In Figures 9 and 10 we show
the results obtained by using the diagnostics of Rhodes



and Morari and Cao et al. We see that the embedding
strategies suggested by these two diagnostics are consis-
tent with the results we obtained use our method.

1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Embedding dimension k

E
ps

ilo
n(

k,
l)

FIG. 8. A plot of �(k; l) for l = 1; . . . ; 5. �{l = 1, �{l = 2,
x{l = 3, o{l = 4 and +{l = 5. We see that choosing k = 3

and l = 1 is a suitable and minimal choice for embedding the

BJT input{output time series data.
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FIG. 9. A plot of the percentage of false nearest neighbours

for l = 1; . . . ; 5. �{l = 1, �{l = 2, x{l = 3, o{l = 4 and

+{l = 5. We see that consistent with our diagnostic the
method suggests embedding with (k; l) = (3; 1).
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FIG. 10. A plot of Cao et al. E2 statistic for l = 1; . . . ; 5.
�{l = 1, �{l = 2, x{l = 3, o{l = 4 and +{l = 5. We see that

consistent with our diagnostic this method suggests embed-

ding with (k; l) = (3; 1).

V. CONCLUSION

We have demonstrated that a method originally pro-
posed by Wayland et al. to recognise determinism in a
time series can also be used as a diagnostic for deter-
mining an appropriate embedding dimension for phase
space reconstruction. Our contribution has extended
the Wayland et al. scheme to produce a diagnostic for
determining the embedding dimension for input-output
time series. We have shown that the diagnostic degrades
gracefully with noise and produces results consistent with
those of other diagnostics.
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